1
|
Gulubova M, Tolekova A, Berbatov D, Aydogdu N. Development of pancreatic islet cells in the extrahepatic bile ducts of rats with experimentally-induced metabolic syndrome. Arch Physiol Biochem 2024; 130:669-677. [PMID: 37651586 DOI: 10.1080/13813455.2023.2252205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
CONTEXT There is data about the existence of some endocrine cells in the epithelial layer of the bile duct in humans and rats. OBJECTIVE We evaluated Ghrelin-, Insulin-, Glucagon- and Somatostatin-positive cells in peribiliary glands, mast cells, and nerve fibres. MATERIALS AND METHODS Wistar rats were used for dietary manipulation with a 15% fructose solution for 12 weeks. Tissue samples were elaborated with immunohistochemistry for Insulin, Glucagon, Ghrelin, and Somatostatin. Glucose and lipid parameters were studied. RESULTS In treated animals, Ghrelin+ and Insulin+ cells in perybiliary glands (PBGs) were significantly increased. In the male fructose group there was a significant increase of the homeostasis model assessment insulin resistance (HOMA-IR). CONCLUSIONS Stem/progenitor cells in extrahepatic bile tree (EHBT) could be a source of Insulin-producing cells in metabolic syndrome. Fructose treatment induces the increase of Ghrelin+ and Insulin+ cells in PBGs and the elevation of Insulin and Ghrelin plasma concentration.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of pathology, Trakia University, Stara Zagora, Bulgaria
| | - Anna Tolekova
- Medical College, Trakia University, Stara Zagora, Bulgaria
| | | | | |
Collapse
|
2
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
5
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
6
|
Yi X, Xie Y, Gerber DA. Pancreas patch grafting to treat type 1 diabetes. Biochem Biophys Res Commun 2023; 686:149200. [PMID: 37926045 DOI: 10.1016/j.bbrc.2023.149200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Stem/progenitor cell therapy is a promising treatment option for patients with type 1 diabetes (T1D) a disease characterized by autoimmune destruction of pancreatic β cells. Actively injecting cells into an organ is one option for cell delivery, but in the pancreas, this contributes to acute inflammation and pancreatitis. We employed a patch grafting approach to transplant biliary tree stem cells/progenitor cells (BTSC) onto the surface of the pancreas in diabetic mice. The cells engraft and differentiate into β-like cells reversing hyperglycemia during a four-month period of observation. In addition, C-peptide and insulin gradually increase in blood circulation without detectable adverse effects during this period. Moreover, the patch graft transplant promoted the proliferation and differentiation of pancreatic β-like cells with co-expression of the β cell biomarker. CONCLUSION: BTSC transplantation can effectively attenuate T1D over a four-month period that is vital important for clinical applications.
Collapse
Affiliation(s)
- Xianwen Yi
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Youmei Xie
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - David A Gerber
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Ortega-Pineda L, Guilfoyle E, Rincon-Benavides MA, Anaparthi AL, Lemmerman LR, Cuellar-Gaviria TZ, Lawrence W, Buss JL, Deng B, Blackstone BN, Salazar-Puerta A, McComb DW, Powell H, Gallego-Perez D, Higuita-Castro N. Engineered extracellular vesicles from human skin cells induce pro-β-cell conversions in pancreatic ductal cells. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200173. [PMID: 38911285 PMCID: PMC11192446 DOI: 10.1002/anbr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Direct nuclear reprogramming has the potential to enable the development of β cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to β cell-directed reprogramming rely heavily on the use of viral vectors. Here we explored the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) as novel non-viral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) led to the release of EVs loaded with PNM at the gene, mRNA, and protein level. Exposing PDC cultures to PNM-loaded EVs led to successful transfection and increased PNM expression in PDCs, which ultimately resulted in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings were further corroborated in vivo in a mouse model following intraductal injection of PNM- vs sham-loaded EVs. Collectively these findings suggest that dermal fibroblast-derived EVs could potentially serve as a powerful platform technology for the development and deployment of non-viral reprogramming-based cell therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
| | - Elizabeth Guilfoyle
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | | | - Luke R. Lemmerman
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | - William Lawrence
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH
| | - Jill L Buss
- Department of Hematology and the Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Shriners Hospitals-Ohio, Dayton, OH 45404, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, -The Ohio State University, Columbus, OH
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, -The Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, Téllez N, Alves-Figueiredo H, Ramos-Rodríguez M, Enrich C, Fernandez-Ruiz R, Cervantes S, Clua L, Ramón-Azcón J, Broca C, Wojtusciszyn A, Montserrat N, Pasquali L, Novials A, Servitja JM, Vidal J, Gomis R, Gasa R. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors. Commun Biol 2023; 6:256. [PMID: 36964318 PMCID: PMC10039074 DOI: 10.1038/s42003-023-04627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.
Collapse
Affiliation(s)
| | - Ainhoa García-Alamán
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Èlia Prades
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noèlia Téllez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine of University of Vic, Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute of Health Research and Innovation at Central Catalonia (IRIS-CC), Vic, Spain
| | - Hugo Alves-Figueiredo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., México
| | | | - Carlos Enrich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Cervantes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Clua
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Novials
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan-Marc Servitja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ramon Gomis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Gasa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Narayan G, Ronima K R, Thummer RP. Direct Reprogramming of Somatic Cells into Induced β-Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:171-189. [PMID: 36515866 DOI: 10.1007/5584_2022_756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The persistent shortage of insulin-producing islet mass or β-cells for transplantation in the ever-growing diabetic population worldwide is a matter of concern. To date, permanent cure to this medical complication is not available and soon after the establishment of lineage-specific reprogramming, direct β-cell reprogramming became a viable alternative for β-cell regeneration. Direct reprogramming is a straightforward and powerful technique that can provide an unlimited supply of cells by transdifferentiating terminally differentiated cells toward the desired cell type. This approach has been extensively used by multiple groups to reprogram non-β-cells toward insulin-producing β-cells. The β-cell identity has been achieved by various studies via ectopic expression of one or more pancreatic-specific transcription factors in somatic cells, bypassing the pluripotent state. This work highlights the importance of the direct reprogramming approaches (both integrative and non-integrative) in generating autologous β-cells for various applications. An in-depth understanding of the strategies and cell sources could prove beneficial for the efficient generation of integration-free functional insulin-producing β-cells for diabetic patients lacking endogenous β-cells.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
10
|
Colarusso JL, Zhou Q. Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells. Cell Reprogram 2022; 24:252-258. [PMID: 35838597 PMCID: PMC9634980 DOI: 10.1089/cell.2022.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.
Collapse
Affiliation(s)
- Jonathan L. Colarusso
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Reprogramming—Evolving Path to Functional Surrogate β-Cells. Cells 2022; 11:cells11182813. [PMID: 36139388 PMCID: PMC9496933 DOI: 10.3390/cells11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Many of these cell sources have been shown to possess a degree of plasticity permitting differentiation along new lineages into insulin-secreting β-cells. In this review, we explore emerging reprograming pathways that aim to generate bone fide insulin producing cells. We focus on small molecules and key transcriptional regulators that orchestrate phenotypic conversion and maintenance of engineered cells.
Collapse
|
12
|
Duvall E, Benitez CM, Tellez K, Enge M, Pauerstein PT, Li L, Baek S, Quake SR, Smith JP, Sheffield NC, Kim SK, Arda HE. Single-cell transcriptome and accessible chromatin dynamics during endocrine pancreas development. Proc Natl Acad Sci U S A 2022; 119:e2201267119. [PMID: 35733248 PMCID: PMC9245718 DOI: 10.1073/pnas.2201267119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Delineating gene regulatory networks that orchestrate cell-type specification is a continuing challenge for developmental biologists. Single-cell analyses offer opportunities to address these challenges and accelerate discovery of rare cell lineage relationships and mechanisms underlying hierarchical lineage decisions. Here, we describe the molecular analysis of mouse pancreatic endocrine cell differentiation using single-cell transcriptomics, chromatin accessibility assays coupled to genetic labeling, and cytometry-based cell purification. We uncover transcription factor networks that delineate β-, α-, and δ-cell lineages. Through genomic footprint analysis, we identify transcription factor-regulatory DNA interactions governing pancreatic cell development at unprecedented resolution. Our analysis suggests that the transcription factor Neurog3 may act as a pioneer transcription factor to specify the pancreatic endocrine lineage. These findings could improve protocols to generate replacement endocrine cells from renewable sources, like stem cells, for diabetes therapy.
Collapse
Affiliation(s)
- Eliza Duvall
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Cecil M. Benitez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Martin Enge
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305
| | - Philip T. Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lingyu Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Stephen R. Quake
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Jason P. Smith
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Nathan C. Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
13
|
Karimova MV, Gvazava IG, Vorotelyak EA. Overcoming the Limitations of Stem Cell-Derived Beta Cells. Biomolecules 2022; 12:biom12060810. [PMID: 35740935 PMCID: PMC9221417 DOI: 10.3390/biom12060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Great advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro. The most promising approach is the generation of stem cell-derived beta cells that could provide an unlimited source of insulin-secreting cells. Recent studies provide methods to produce beta-like cell clusters that display glucose-stimulated insulin secretion—one of the key characteristics of the beta cell. However, in comparison with native beta cells, stem cell-derived beta cells do not undergo full functional maturation. In this paper we review the development and current state of various protocols, consider advantages, and propose ways to improve them. We examine molecular pathways, epigenetic modifications, intracellular components, and the microenvironment as a possible leverage to promote beta cell functional maturation. A possibility to create islet organoids from stem cell-derived components, as well as their encapsulation and further transplantation, is also examined. We try to combine modern research on beta cells and their crosstalk to create a holistic overview of developing insulin-secreting systems.
Collapse
Affiliation(s)
- Mariana V. Karimova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Inessa G. Gvazava
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
14
|
Joglekar MV, Sahu S, Wong WKM, Satoor SN, Dong CX, Farr RJ, Williams MD, Pandya P, Jhala G, Yang SNY, Chew YV, Hetherington N, Thiruchevlam D, Mitnala S, Rao GV, Reddy DN, Loudovaris T, Hawthorne WJ, Elefanty AG, Joglekar VM, Stanley EG, Martin D, Thomas HE, Tosh D, Dalgaard LT, Hardikar AA. A Pro-Endocrine Pancreatic Islet Transcriptional Program Established During Development Is Retained in Human Gallbladder Epithelial Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1530-1553.e4. [PMID: 35032693 PMCID: PMC9043310 DOI: 10.1016/j.jcmgh.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Pancreatic islet β-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Sarang N Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Charlotte X Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ryan J Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Michael D Williams
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Prapti Pandya
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Sundy N Y Yang
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Yi Vee Chew
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicola Hetherington
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Dhan Thiruchevlam
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Sasikala Mitnala
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | - Guduru V Rao
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Thomas Loudovaris
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Wayne J Hawthorne
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Edouard G Stanley
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - David Martin
- Upper Gastrointestinal Surgery, Strathfield Hospital, Strathfield, New South Wales, Australia
| | - Helen E Thomas
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Louise T Dalgaard
- Section of Eukaryotic Cell Biology, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.
| |
Collapse
|
15
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
16
|
Li B, Wang Y, Pelz C, Moss J, Shemer R, Dor Y, Akkari YK, Canady PS, Naugler WE, Orloff S, Grompe M. In vitro expansion of cirrhosis derived liver epithelial cells with defined small molecules. Stem Cell Res 2021; 56:102523. [PMID: 34601385 DOI: 10.1016/j.scr.2021.102523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND & AIMS Mature hepatocytes have limited expansion capability in culture and rapidly loose key functions. Recently however, tissue culture conditions have been developed that permit rodent hepatocytes to proliferate and transform into progenitor-like cells with ductal characteristics in vitro. Analogous cells expressing both hepatic and duct markers can be found in human cirrhotic liver in vivo and may represent an expandable population. METHODS An in vitro culture system to expand epithelial cells from human end stage liver disease organs was developed by inhibiting the canonical TGF-β, Hedgehog and BMP pathways. RESULTS Human cirrhotic liver epithelial cells became highly proliferative in vitro. Both gene expression and DNA methylation site analyses revealed that cirrhosis derived epithelial liver cells were intermediate between normal hepatocytes and cholangiocytes. Mouse hepatocytes could be expanded under the same conditions and retained the ability to re-differentiate into hepatocytes upon transplantation. In contrast, human cirrhotic liver derived cells had only low re-differentiation capacity. CONCLUSIONS Epithelial cells of intermediate ductal-hepatocytic phenotype can be isolated from human cirrhotic livers and expanded in vitro. Unlike their murine counterparts they have limited liver repopulation potential.
Collapse
Affiliation(s)
- Bin Li
- Oregon Stem Cell Center, USA; Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yuhan Wang
- Oregon Stem Cell Center, USA; Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carl Pelz
- Oregon Stem Cell Center, USA; Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, OR, USA
| | - Josh Moss
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Yassmine K Akkari
- Cytogenetics Services and Molecular Pathology, Legacy Health, Portland, OR, USA
| | - Pamela S Canady
- Oregon Stem Cell Center, USA; Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, OR, USA
| | - Willscott E Naugler
- Oregon Stem Cell Center, USA; School of Medicine, Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, OR, USA
| | - Susan Orloff
- School of Medicine, Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, USA; Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
18
|
Molecular mechanisms of transcription factor mediated cell reprogramming: conversion of liver to pancreas. Biochem Soc Trans 2021; 49:579-590. [PMID: 33666218 PMCID: PMC8106502 DOI: 10.1042/bst20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic β-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to β-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate β-cells.
Collapse
|
19
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Pancreatic and duodenal homeobox-1 in pancreatic ductal adenocarcinoma and diabetes mellitus. Chin Med J (Engl) 2020; 133:344-350. [PMID: 31904730 PMCID: PMC7004619 DOI: 10.1097/cm9.0000000000000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus and pancreatic ductal adenocarcinoma are two common diseases worldwidely which are both derived from different components of pancreas. The pancreatic and duodenal homeobox-1 (PDX1) is an essential transcription factor for the early development of pancreas that is required for the differentiation of all pancreatic cell lineages. Current evidence suggests an important role of PDX1 in both the origin and progression of pancreatic diseases. In this review, we discussed recent studies of PDX1 in diabetes mellitus and pancreatic cancer, and the therapeutic strategies derived from this transcription factor.
Collapse
|
21
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
22
|
Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020; 16:506-518. [PMID: 32587391 PMCID: PMC9188823 DOI: 10.1038/s41574-020-0375-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic 'cells' or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.
Collapse
Affiliation(s)
- Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel S Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035626. [PMID: 31767653 DOI: 10.1101/cshperspect.a035626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct lineage reprogramming of abundant and accessible cells into therapeutically useful cell types holds tremendous potential in regenerative medicine. To date, a number of different cell types have been generated by lineage reprogramming methods, including cells from the neural, cardiac, hepatic, and pancreatic lineages. The success of this strategy relies on developmental biology and the knowledge of cell-fate-defining transcriptional networks. Hepatocytes represent a prime target for β cell conversion for numerous reasons, including close developmental origin, accessibility, and regenerative potential. We present here an overview of pancreatic and hepatic development, with a particular focus on the mechanisms underlying the divergence between the two cell lineages. Additionally, we discuss to what extent this lineage relationship can be exploited in efforts to reprogram one cell type into the other and whether such an approach may provide a suitable strategy for regenerative therapies of diabetes.
Collapse
Affiliation(s)
- Silvia Ruzittu
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom.,Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany
| | - David Willnow
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
24
|
Kuncorojakti S, Srisuwatanasagul S, Kradangnga K, Sawangmake C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front Vet Sci 2020; 7:4. [PMID: 32118053 PMCID: PMC7028771 DOI: 10.3389/fvets.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Krishaporn Kradangnga
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Zhao F, Liu X, Wang Z, Lang H, Zhang T, Wang R, Lin X, He D, Shi P, Pang X. Novel Mouse miRNA Chr13_novelMiR7354-5p Improves Bone-Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1110-1122. [PMID: 32059337 PMCID: PMC7016162 DOI: 10.1016/j.omtn.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) that play key roles in the generation of insulin-producing cells from stem cells provide a cell-based approach for insulin replacement therapy. In this study, we used next-generation sequencing to detect the miRNA expression profile of normal mouse pancreatic β cells, non-β cells, bone marrow mesenchymal stem cells (BM-MSCs), and adipose-derived stem cells (ADSCs) and determined relative miRNA expression levels in mouse pancreatic β cells. After the novel mouse miRNA candidates were identified using miRDeep 2.0, we found that Chr13_novelMiR7354-5p, a novel miRNA candidate, significantly promoted the differentiation of BM-MSCs into insulin-producing cells in vitro. Furthermore, Chr13_novelMiR7354-5p-transfected BM-MSCs reversed hyperglycemia in streptozotocin (STZ)-treated diabetic mice. In addition, bioinformatics analyses, a luciferase reporter assay, and western blotting demonstrated that Chr13_novelMiR7354-5p targeted Notch1 and Rbpj. Our results provide compelling evidence of the existence of 65 novel mouse miRNA candidates and present a new treatment strategy to generate insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Center for Assisted Reproduction, Shengjing Hospital of China Medical University, 39 Huaxiang Street, Tiexi District, Shenyang City 110022, Liaoning Province, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Rui Wang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Dan He
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China
| | - Ping Shi
- Shenyang Amnion Bioengineering and Technology R&D Center, 155-5 Chuangxin Street, Hunnan District, Shenyang City 110015, Liaoning Province, China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110122, Liaoning Province, China; Shenyang Amnion Bioengineering and Technology R&D Center, 155-5 Chuangxin Street, Hunnan District, Shenyang City 110015, Liaoning Province, China.
| |
Collapse
|
26
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
27
|
Williams MD, Joglekar MV, Satoor SN, Wong W, Keramidaris E, Rixon A, O'Connell P, Hawthorne WJ, Mitchell GM, Hardikar AA. Epigenetic and Transcriptome Profiling Identifies a Population of Visceral Adipose-Derived Progenitor Cells with the Potential to Differentiate into an Endocrine Pancreatic Lineage. Cell Transplant 2018; 28:89-104. [PMID: 30376726 PMCID: PMC6322142 DOI: 10.1177/0963689718808472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by the loss of insulin-producing β-cells in the pancreas. T1D can be treated using cadaveric islet transplantation, but this therapy is severely limited by a lack of pancreas donors. To develop an alternative cell source for transplantation therapy, we carried out the epigenetic characterization in nine different adult mouse tissues and identified visceral adipose-derived progenitors as a candidate cell population. Chromatin conformation, assessed using chromatin immunoprecipitation (ChIP) sequencing and validated by ChIP-polymerase chain reaction (PCR) at key endocrine pancreatic gene promoters, revealed similarities between visceral fat and endocrine pancreas. Multiple techniques involving quantitative PCR, in-situ PCR, confocal microscopy, and flow cytometry confirmed the presence of measurable (2-1000-fold over detectable limits) pancreatic gene transcripts and mesenchymal progenitor cell markers (CD73, CD90 and CD105; >98%) in visceral adipose tissue-derived mesenchymal cells (AMCs). The differentiation potential of AMCs was explored in transgenic reporter mice expressing green fluorescent protein (GFP) under the regulation of the Pdx1 (pancreatic and duodenal homeobox-1) gene promoter. GFP expression was measured as an index of Pdx1 promoter activity to optimize culture conditions for endocrine pancreatic differentiation. Differentiated AMCs demonstrated their capacity to induce pancreatic endocrine genes as evidenced by increased GFP expression and validated using TaqMan real-time PCR (at least 2-200-fold relative to undifferentiated AMCs). Human AMCs differentiated using optimized protocols continued to produce insulin following transplantation in NOD/SCID mice. Our studies provide a systematic analysis of potential islet progenitor populations using genome-wide profiling studies and characterize visceral adipose-derived cells for replacement therapy in diabetes.
Collapse
Affiliation(s)
- Michael D Williams
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.,2 Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mugdha V Joglekar
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sarang N Satoor
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Wilson Wong
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Effie Keramidaris
- 3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Amanda Rixon
- 3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,4 Experimental Medical and Surgical Unit (EMSU), St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Philip O'Connell
- 5 The Center for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Wayne J Hawthorne
- 5 The Center for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Geraldine M Mitchell
- 2 Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,6 Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Anandwardhan A Hardikar
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
28
|
Abstract
The pancreas is made from two distinct components: the exocrine pancreas, a reservoir of digestive enzymes, and the endocrine islets, the source of the vital metabolic hormone insulin. Human islets possess limited regenerative ability; loss of islet β-cells in diseases such as type 1 diabetes requires therapeutic intervention. The leading strategy for restoration of β-cell mass is through the generation and transplantation of new β-cells derived from human pluripotent stem cells. Other approaches include stimulating endogenous β-cell proliferation, reprogramming non-β-cells to β-like cells, and harvesting islets from genetically engineered animals. Together these approaches form a rich pipeline of therapeutic development for pancreatic regeneration.
Collapse
|
29
|
Luo Y, Xu Y, Wang ZY, Li X, Xing WB, Zhang TC. The Synergy of Two Factors on Insulin Expression. Cell Reprogram 2018; 20:49-54. [PMID: 29303357 DOI: 10.1089/cell.2017.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a potential cure for diabetes, more and more attentions have been paid to organ transplants to replace insulin therapy. As a result, many researchers have explored out many programs to get insulin-producing cells (IPCs) to replace the defective β cells. Currently, more and more new induction methods are being proposed, and at the same time, more and more possible induction molecular mechanisms are being revealed. The purpose of this study was to explore whether and how the two factors pdx-1 and myocardin affected the differentiation of rat mesenchymal stem cells (rMSCs) into IPCs. In this study, we investigated the process of transfecting myocardin and/or pdx-1 in rMSCs in vitro. The results showed that rMSCs were able to secrete insulin after cotransfected with myocardin and pdx-1. At the same time, we explored the possible mechanism that myocardin and pdx-1 coinduced rMSCs into IPCs by forming a complex to promote the transcriptional activity of insulin. Our results may provide a theoretical basis to the study of islet transplantation in the future.
Collapse
Affiliation(s)
- Ying Luo
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China
| | - Yao Xu
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China
| | - Zhen-Yu Wang
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China
| | - Xi Li
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China
| | - Wei-Bing Xing
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China
| | - Tong-Cun Zhang
- 1 Institute of Biology and Medicine, Wuhan University of Science and Technology , Wuhan, China .,2 Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, China
| |
Collapse
|
30
|
Demcollari TI, Cujba AM, Sancho R. Phenotypic plasticity in the pancreas: new triggers, new players. Curr Opin Cell Biol 2017; 49:38-46. [PMID: 29227863 PMCID: PMC6277812 DOI: 10.1016/j.ceb.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022]
Abstract
The pancreas has a very limited regenerative potential during homeostasis. Despite its quiescent nature, recent in vivo models suggest a certain degree of regeneration and cellular interconversion is possible within the adult pancreas. It has now become evident that cellular plasticity can be observed in essentially all cell types within the pancreas when provided with the right stress stimuli. In this review, we will focus on the latest findings uncovering phenotypic plasticity of different cell types in the pancreas, the molecular mechanisms behind such plasticity and how plasticity associated with pancreatic or non-pancreatic cells could be harnessed in the generation of new insulin-producing beta cells.
Collapse
Affiliation(s)
- Theoni Ingrid Demcollari
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK
| | - Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK.
| |
Collapse
|