1
|
Honecker B, Bärreiter VA, Höhn K, Horváth B, Harant K, Metwally NG, Marggraff C, Anders J, Leyk S, Martínez-Tauler MDP, Bea A, Hansen C, Fehling H, Lütkemeyer M, Lorenzen S, Franzenburg S, Lotter H, Bruchhaus I. Entamoeba histolytica extracellular vesicles drive pro-inflammatory monocyte signaling. PLoS Negl Trop Dis 2025; 19:e0012997. [PMID: 40208874 PMCID: PMC12052212 DOI: 10.1371/journal.pntd.0012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025] Open
Abstract
The parasitic protozoan Entamoeba histolytica secretes extracellular vesicles (EVs), but so far little is known about their function in the interaction with the host immune system. Infection with E. histolytica trophozoites can lead to formation of amebic liver abscesses (ALAs), in which pro-inflammatory immune responses of Ly6Chi monocytes contribute to liver damage. Men exhibit a more severe pathology as the result of higher monocyte recruitment and a stronger immune response. To investigate the role of EVs and pathogenicity in the host immune response, we studied the effect of EVs secreted by low pathogenic EhA1 and highly pathogenic EhB2 amebae on monocytes. Size and quantity of isolated EVs from both clones were similar. However, they differed in their proteome and miRNA cargo, providing insight into factors potentially involved in amebic pathogenicity. In addition, EVs were enriched in proteins with signaling peptides compared with the total protein content of trophozoites. Exposure to EVs from both clones induced monocyte activation and a pro-inflammatory immune response as evidenced by increased surface presentation of the activation marker CD38 and upregulated gene expression of key signaling pathways (including NF-κB, IL-17 and TNF signaling). The release of pro-inflammatory cytokines was increased in EV-stimulated monocytes and more so in male- than in female-derived cells. While EhA1 EV stimulation caused elevated myeloperoxidase (MPO) release by both monocytes and neutrophils, EhB2 EV stimulation did not, indicating the protective role of MPO during amebiasis. Collectively, our results suggest that parasite-released EVs contribute to the male-biased immunopathology mediated by pro-inflammatory monocytes during ALA formation.
Collapse
Affiliation(s)
- Barbara Honecker
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Katharina Höhn
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Balázs Horváth
- Arbovirus and Entomology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Karel Harant
- Laboratory of Mass Spectrometry, BIOCEV, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nahla Galal Metwally
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Juliett Anders
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- RG Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria del Pilar Martínez-Tauler
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center (Airway Research Center North), German Centre for Lung Research, Borstel, Germany
| | - Annika Bea
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Charlotte Hansen
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Melanie Lütkemeyer
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Infection Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Hanna Lotter
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Vilela da Silva CA, Costa Dos Santos CE, de Paula Cortezzi MF, Moura CDSS, Cruz RE, Almeida Lopes CD, Costa K, Souza LTD, Silva PCLD, Neumann E, Nunes ÁC, Gomes MA, Silva Oliveira FM, Caliari MV. Enteropathogenic Escherichia coli modulates the virulence and pathogenicity of Entamoeba dispar. Exp Parasitol 2024; 261:108750. [PMID: 38614222 DOI: 10.1016/j.exppara.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.
Collapse
Affiliation(s)
| | | | | | - César da Silva Santana Moura
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Camila de Almeida Lopes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Karen Costa
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Lucas Teixeira de Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Patrícia Costa Lima da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | | | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| |
Collapse
|
3
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Higuera-Martínez G, Arciniega-Martínez IM, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Levaro-Loquio D, Velásquez-Torres M, Abarca-Rojano E, Reséndiz-Albor AA, Pacheco-Yépez J. Apocynin, an NADPH Oxidase Enzyme Inhibitor, Prevents Amebic Liver Abscess in Hamster. Biomedicines 2023; 11:2322. [PMID: 37626818 PMCID: PMC10452916 DOI: 10.3390/biomedicines11082322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Amebiasis is an intestinal infection caused by Entamoeba histolytica. Amebic liver abscess (ALA) is the most common extraintestinal complication of amebiasis. In animal models of ALA, neutrophils have been shown to be the first cells to come into contact with Entamoeba histolytica during the initial phase of ALA. One of the multiple mechanisms by which neutrophils exhibit amebicidal activity is through reactive oxygen species (ROS) and the enzyme NADPH oxidase (NOX2), which generates and transports electrons to subsequently reduce molecular oxygen into superoxide anion. Previous reports have shown that ROS release in the susceptible animal species (hamster) is mainly stimulated by the pathogen, in turn provoking such an exacerbated inflammatory reaction that it is unable to be controlled and results in the death of the animal model. Apocynin is a natural inhibitor of NADPH oxidase. No information is available on the role of NOX in the evolution of ALA in the hamster, a susceptible model. Our study showed that administration of a selective NADPH oxidase 2 (NOX2) enzyme inhibitor significantly decreases the percentage of ALA, the size of inflammatory foci, the number of neutrophils, and NOX activity indicated by the reduction in superoxide anion (O2-) production. Moreover, in vitro, the apocynin damages amoebae. Our results showed that apocynin administration induces a decrease in the activity of NOX that could favor a decrease in ALA progression.
Collapse
Affiliation(s)
- Germán Higuera-Martínez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Ivonne Maciel Arciniega-Martínez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.A.J.-L.); (L.M.C.-J.)
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.A.J.-L.); (L.M.C.-J.)
| | - David Levaro-Loquio
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Maritza Velásquez-Torres
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Edgar Abarca-Rojano
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Aldo Arturo Reséndiz-Albor
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| |
Collapse
|
5
|
Levaro-Loquio D, Serrano-Luna J, Velásquez-Torres M, Higuera-Martínez G, Arciniega-Martínez IM, Reséndiz-Albor AA, Pérez-Vielma NM, Pacheco-Yépez J. In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils. Int J Mol Sci 2023; 24:11216. [PMID: 37446394 DOI: 10.3390/ijms241311216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Entamoeba histolytica (E. histolytica) is a parasite in humans that provokes amoebiasis. The most employed drug is metronidazole (MTZ); however, some studies have reported that this drug induces genotoxic effects. Therefore, it is necessary to explore new compounds without toxicity that can eliminate E. histolytica. Flavonoids are polyphenolic compounds that have demonstrated inhibition of growth and dysregulation of amoebic proteins. Despite the knowledge acquired to date, action mechanisms are not completely understood. The present work evaluates the effect of kaempferol against E. histolytica trophozoites and in the interactions with neutrophils from hamster, which is a susceptibility model. Our study demonstrated a significant reduction in the amoebic viability of trophozoites incubated with kaempferol at 150 μM for 90 min. The gene expression analysis showed a significant downregulation of Pr (peroxiredoxin), Rr (rubrerythrin), and TrxR (thioredoxin reductase). In interactions with amoebae and neutrophils for short times, we observed a reduction in ROS (reactive oxygen species), NO (nitric oxide), and MPO (myeloperoxidase) neutrophil activities. In conclusion, we confirmed that kaempferol is an effective drug against E. histolytica through the decrease in E. histolytica antioxidant enzyme expression and a regulator of several neutrophil mechanisms, such as MPO activity and the regulation of ROS and NO.
Collapse
Affiliation(s)
- David Levaro-Loquio
- Sección de Estudios de Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Maritza Velásquez-Torres
- Sección de Estudios de Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Germán Higuera-Martínez
- Sección de Estudios de Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Aldo Arturo Reséndiz-Albor
- Sección de Estudios de Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Nadia Mabel Pérez-Vielma
- Centro Interdisciplinario de Ciencias de la Salud, CICS, San Tomás, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
6
|
Walters HA, Welter BH, Knight EW, Villano MA, Keramati CA, Morris MT, Temesvari LA. Hypothetical proteins play a role in stage conversion, virulence, and the stress response in the Entamoeba species. Exp Parasitol 2022; 243:108410. [PMID: 36309065 DOI: 10.1016/j.exppara.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and amoebic liver abscess in humans, affecting millions of people worldwide. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. As cysts can be ingested from contaminated food and water, this parasite is prevalent in underdeveloped countries and poses a significant health burden. Until recently there was no reliable method for inducing stage conversion in E. histolytica in vitro. As such, the reptilian pathogen, Entamoeba invadens, has long-served as a surrogate. Much remains unclear about stage conversion in these parasites and current treatments for amoebiasis are lacking, as they cause severe side effects. Therefore, new therapeutic strategies are needed. The genomes of these parasites remain enigmatic as approximately 54% of E. histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins. In this study, we characterized two hypothetical proteins in the Entamoeba species, EIN_059080, in E. invadens, and its homolog, EHI_056700, in the human pathogen, E. histolytica. EHI_056700 has no homolog in the human host. We used an RNAi-based silencing system to reduce expression of these genes in E. invadens and E. histolytica trophozoites. Loss of EIN_059080 resulted in a decreased rate of encystation and an increased rate of erythrophagocytosis, an important virulence function. Additionally, mutant parasites were more susceptible to oxidative stress. Similarly, loss of EHI_056700 in E. histolytica trophozoites resulted in increased susceptibility to oxidative stress and glucose deprivation, but not to nitrosative stress. Unlike the E. invadens mutants, E. histolytica parasites with decreased reduced expression of EHI_056700 exhibited a decreased rate of erythrophagocytosis of and adhesion to host cells. Taken together, these data suggest that these hypothetical proteins play a role in stage conversion, virulence, and the response to stress in the Entamoebae. Since parasites with reduced expression of EHI_056700 show decreased virulence functions and increased susceptibility to physiologically relevant stressors, EHI_056700 may represent a possible therapeutic target for the treatment of amoebiasis.
Collapse
Affiliation(s)
- Heather A Walters
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Emily W Knight
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Martha A Villano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Cameron A Keramati
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
7
|
Cruz-Baquero A, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Drago-Serrano ME, Serrano-Luna JDJ, Pacheco-Yépez J. Ascorbic Acid Ameriolates Liver Damage by Myeloperoxidase Oxidative Products in a Hamster Model of Amoebic Liver Abscess. Front Cell Infect Microbiol 2022; 12:855822. [PMID: 35392606 PMCID: PMC8982674 DOI: 10.3389/fcimb.2022.855822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Entamoeba histolytica is a protozoan-pathogen-causing amoebic liver abscess (ALA). After amoeba establishment in the liver, it causes abundant infiltrate of neutrophils. Liver tissue damage by neutrophils results in part from anti-amoebic oxidative intermediates, including reactive oxygen species (ROS), reactive nitrogen species (RNS), and hypochlorous acid (HOCl), derived from the myeloperoxidase (MPO) enzyme. Ascorbic acid (ASC) is an antioxidant that acts as a scavenger for ROS and NOS-derived free radicals. No previous information regarding the effect of ASC concerning the participation of MPO in an experimental model of ALA in hamsters has been reported. Thus, the aim of the present work was to analyze the effect of ASC on acute ALA development and to measure the activity and gene expression of the MPO enzyme. Hamsters were treated with ASC (800 mg/kg) and then intrahepatically inoculated with E. histolytica trophozoites. Animals were sacrificed at 3, 6, and 12 h post-inoculation (p.i.), and liver samples were collected. The percentage of lesions, amoeba in situ count, MPO activity, and mpo gene expression were ascertained. Compared to ALA hamsters without ASC treatment as the control group (CT), the ALA group treated with ASC had a significant decrease in liver lesions (all p.i. hours) and viable amoeba count (12 h p.i.) and an increase in MPO activity (12 h p.i.) and mpo gene expression (6 h/12 h p.i.). These data suggest that ASC ameliorated liver damage caused by oxidizing products via modulation of mpo expression and activity.
Collapse
Affiliation(s)
- Andrea Cruz-Baquero
- Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Rosa Adriana Jarillo-Luna
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México (CDMX), México
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México (CDMX), México
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México (CDMX), México
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México (CDMX), México
| | - José de Jesús Serrano-Luna
- Deparmento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México (CDMX), México
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México (CDMX), México
| |
Collapse
|
8
|
Arciniega-Martínez IM, Reséndiz Albor AA, Cárdenas Jaramillo LM, Gutiérrez-Meza JM, Falfán-Valencia R, Mendoza Arroyo B, Yépez-Ortega M, Pacheco-Yépez J, Abarca-Rojano E. CD4 +/IL‑4 + lymphocytes of the lamina propria and substance P promote colonic protection during acute stress. Mol Med Rep 2022; 25:63. [PMID: 34958108 PMCID: PMC8767552 DOI: 10.3892/mmr.2021.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Life stress may influence symptom onset and severity in certain gastrointestinal disorders in association with a dysregulated intestinal barrier. It has been widely accepted that stress triggers the hypothalamus‑pituitary‑adrenal (HPA) axis, releasing corticosterone, which promotes intestinal permeability. In response, colonic inflammation alters mucosal immune homeostasis and destroys the colonic architecture, leading to severe intestinal diseases. Endogenous substance P (SP) does not inhibit the initial extent of the HPA axis response to restraint stress, but it reduces the duration of the stress, suggesting that SP plays an important role in the transition between acute and chronic stress. The present study aimed to investigate the effect of two groups of mice exposed to stress, including acute and chronic stress. The corticosterone was evaluated by ELISA, colon samples were obtained to detected polymorphonuclear cells by hematoxylin and eosin staining, goblet and mast cells were identified by immunocytochemistry and cytokine‑producing CD4+ T cells were analyzed by flow cytometry assays, adhesion proteins in the colon epithelium by western blotting and serum SP levels by ELISA. The results demonstrated an increase in the number of polymorphonuclear, goblet and mast cells, a decrease in claudin‑1 expression and an elevation in E‑cadherin expression during acute stress. Increased E‑cadherin expression was also detected during chronic stress. Moreover, it was found that acute stress caused a shift towards a predominantly anti‑inflammatory immune response (T helper 2 cells), as shown by the increase in the percentage of CD4+/IL‑6+ and CD4+/IL4+ lymphocytes in the lamina propria and the increase in serum SP. In conclusion, this response promoted colonic protection during acute stress.
Collapse
Affiliation(s)
- Ivonne Maciel Arciniega-Martínez
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Aldo Arturo Reséndiz Albor
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Luz María Cárdenas Jaramillo
- Morphology Coordination, Department of Basic Disciplinary Training, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Juan Manuel Gutiérrez-Meza
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
- Morphology Coordination, Department of Basic Disciplinary Training, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Ramcés Falfán-Valencia
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, 14080 Mexico City, México
| | - Belen Mendoza Arroyo
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Mariazell Yépez-Ortega
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Judith Pacheco-Yépez
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Edgar Abarca-Rojano
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| |
Collapse
|
9
|
Muscarinic receptors control markers of inflammation in the small intestine of BALB/c mice. J Neuroimmunol 2022; 362:577764. [PMID: 34823118 DOI: 10.1016/j.jneuroim.2021.577764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Muscarinic-acetylcholine-receptors (mAChRs) modulate intestinal homeostasis, but their role in inflammation is unclear; thus, this issue was the focus of this study. BALB/c mice were treated for 7 days with muscarine (mAChR/agonist), atropine (mAChR/antagonist) or saline. Small-intestine samples were collected for histology and cytofluorometric assays in Peyer's patches (PP) and lamina propria (LP) cell-suspensions. In LP, goblet-cells/leukocytes/neutrophils/MPO+ cells and MPO/activity were increased in the muscarine group. In PP, IFN-γ+/CD4+ T or IL-6+/CD4+ T cell numbers were higher in the muscarine or atropine groups, respectively. In LP, TNF-α+/CD4+ T cell number was higher in the muscarine group and lower in the atropine.
Collapse
|
10
|
Rosales C. Neutrophils vs. amoebas: Immunity against the protozoan parasite Entamoeba histolytica. J Leukoc Biol 2021; 110:1241-1252. [PMID: 34085314 DOI: 10.1002/jlb.4mr0521-849rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite with high prevalence in developing countries, and causes amoebiasis. This disease affects the intestine and the liver, and is the third leading cause of human deaths among parasite infections. E. histolytica infection of the intestine or liver is associated with a strong inflammation characterized by a large number of infiltrating neutrophils. Consequently, several reports suggest that neutrophils play a protective role in amoebiasis. However, other reports indicate that amoebas making direct contact with neutrophils provoke lysis of these leukocytes, resulting in the release of their lytic enzymes, which in turn provoke tissue damage. Therefore, the role of neutrophils in this parasitic infection remains controversial. Neutrophils migrate from the circulation to sites of infection, where they display several antimicrobial functions, including phagocytosis, degranulation, and formation of neutrophil extracellular traps (NET). Recently, it was found that E. histolytica trophozoites are capable of inducing NET formation. Neutrophils in touch with amoebas launched NET in an explosive manner around the amoebas and completely covered them in nebulous DNA and cell aggregates where parasites got immobilized and killed. In addition, the phenotype of neutrophils can be modified by the microbiome resulting in protection against amoebas. This review describes the mechanisms of E. histolytica infection and discusses the novel view of how neutrophils are involved in innate immunity defense against amoebiasis. Also, the mechanisms on how the microbiome modulates neutrophil function are described.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Contis Montes de Oca A, Cruz Baquero A, Campos Rodríguez R, Cárdenas Jaramillo LM, Aguayo Flores JE, Rojas Hernández S, Olivos García A, Pacheco Yepez J. Neutrophil extracellular traps and MPO in models of susceptibility and resistance against Entamoeba histolytica. Parasite Immunol 2020; 42:e12714. [PMID: 32187688 DOI: 10.1111/pim.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022]
Abstract
The main effector mechanisms of neutrophils are the release of neutrophil extracellular traps (NETs) and myeloperoxidase (MPO). In this work, we evaluated the role of NETs and the activity of MPO in the interactions of rodent neutrophils with amoebae and in amoebic liver abscess (ALA)-resistant and ALA-susceptible models. We showed with in vitro assays that mice produced greater amounts of NETs and MPO than did hamsters, and the elastase activity was high in both models. However, the inhibition of NETs and MPO promoted an increase in amoeba viability in the mice. The mouse ALAs showed a more profound presence of NETs and MPO than did the hamster ALAs. We concluded that both effector mechanisms were essential for the amoebic damage and could prevent the formation of ALAs in the resistant model.
Collapse
Affiliation(s)
- Arturo Contis Montes de Oca
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Andrea Cruz Baquero
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México.,Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Rafael Campos Rodríguez
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Luz María Cárdenas Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - José Eduardo Aguayo Flores
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Saúl Rojas Hernández
- Laboratorio de Inmunología Celular y Molecular, Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Alfonso Olivos García
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Judith Pacheco Yepez
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
12
|
Wang XZ, Mao XY, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Huo JZ, Wang XR, Ding B. Solvothermal and Ultrasonic Preparation of Two Unique Cluster-Based Lu and Y Coordination Materials: Metal-Organic Framework-Based Ratiometric Fluorescent Biosensor for an Ornidazole and Ronidazole and Sensing Platform for a Biomarker of Amoeba Liver Abscess. Inorg Chem 2020; 59:2910-2922. [PMID: 32037805 DOI: 10.1021/acs.inorgchem.9b03272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Through powerful solvothermal and facile ultrasonic synthetic strategies, two unique cluster-based lanthanide Lu and Y nanoporous metal organic frameworks (MOFs) have been successfully prepared, namely, {[Lu2(L)2]·2DMF·H2O}n (Lu-MOF) and [Y(L)(DMF)0.75]n (Y-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid). In addition, both the morphologies and nanosizes of Lu-MOF and Y-MOF materials also have been deliberately tuned by adjustable ultrasonic conditions including irradiation time (40, 60, and 80 min) and power (70 w, 100 w). Currently, it is noted that the abuse of antibiotics such as ornidazole and ronidazole leads to great damage to human health, and therefore the development of highly effective and facile detection methods for ornidazole and ronidazole is quite important. Herein, to improve the fluorescent sensing sensitivity of antibiotics, Eu3+ and Tb3+ have been introduced into Lu-MOF (under a solvothermal preparation method) to fabricate a dual-emission hybrid material Eu3+/Tb3+@Lu-MOF through a postsynthesis strategy, which can be successfully applied as a self-calibrated ratiometric fluorescent sensor for ornidazole and ronidazole with high selectivity and sensitivity (the Ksv value for ornidazole is 1.0854 × 106 [M-1], and the Ksv value for ronidazole is 1.0595 × 107 [M-1]) and low detection limit values (2.85 nM for ornidazole and 26.7 nM for ronidazole). On the other hand, amoeba liver abscess (ALA) will easily lead to irregular fever, night sweats, and other tortured symptoms; C-reactive protein autoantibody (CRP Ab) is the important biomarker for the detection of ALA. Given this, Y-MOF (under the solvothermal preparation method) also has been successfully designed to combine FAM-labeled NH-ssDNA to construct the scarcely reported excellent hybrid FAM-labeled NH-ssDNA/Y-MOF sensing platform for the highly effective discrimination of CRP Ab with excellent sensitivity and selectivity in real samples such as human serum solution.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
13
|
Mechanisms of natural resistance of Balb/c mice to experimental liver amoebiasis. Biosci Rep 2019; 39:BSR20182333. [PMID: 30979831 PMCID: PMC6500896 DOI: 10.1042/bsr20182333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/24/2022] Open
Abstract
Entamoeba histolytica is the parasite responsible for human amoebiasis. The analysis of the natural resistance mechanisms of some rodents to amoebic liver abscess (ALA) may reveal alternative pathogenicity mechanisms to those previously discovered in the experimental model of ALA in hamsters. In this work the natural resistance of BALB/c mice to ALA was explored by performing: (i) in vivo chemotaxis analysis with a specifically designed chamber; (ii) in vitro amoebic survival in fresh and decomplemented serum; (iii) histological temporal course analysis of ALA development in mice with different treatments (hypocomplementemic, hyperimmune and treated with iNOS and NADPH oxidase inhibitors) and (iv) mouse liver amoebic infection by both in situ implantation of ALA from hamsters and inoculation of parasites into the peritoneal cavity. The results show that E. histolytica clearance from the mouse liver is related to a low chemotactic activity of complement, which results in poor inflammatory response and parasite inability to cause tissue damage. Also, the absence of amoebic tropism for the mouse liver is correlated with resistance to experimental liver amoebiasis.
Collapse
|
14
|
Complement is a rat natural resistance factor to amoebic liver infection. Biosci Rep 2018; 38:BSR20180713. [PMID: 30201693 PMCID: PMC6167500 DOI: 10.1042/bsr20180713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Amoebiasis is a parasitic disease caused by Entamoeba histolytica. This illness is prevalent in poor countries causing 100,000 deaths worldwide. Knowledge of the natural resistance mechanisms of rats to amoebic liver abscess (ALA) development may help to discover new pathogenic factors and to design novel therapeutic strategies against amoebiasis. In this work, histologic analyses suggested that the complement system may play a central role in rat natural resistance to ALA. E. histolytica trophozoites disappeared from rat liver within 6 h post-infection with minimal or no inflammatory infiltrate. In vitro findings indicate that rat complement was lethal for the parasite. Furthermore, hamsters became resistant to ALA by intravenous administration of fresh rat serum before infection. The amoebicidal potency of rat complement was 10 times higher than hamster complement and was not related to their respective CH50 levels. The alternative pathway of complement plays a central role in its toxicity to E. histolytica since trypan blue, which is a C3b receptor inhibitor, blocks its amoebicidal activity. These results suggest that amoebic membrane affinity, high for C3b and/or low for Factor H, in comparison with the hamster ones, may result in higher deposition of membrane complex attack on parasite surface and death.
Collapse
|