1
|
Iminjili V, Crowther A, Fisher MT, Kay A, Roberts P, Goldstein S, Boivin N, Fernandes R. A dataset of scientific dates from archaeological sites in eastern Africa spanning 5000 BCE to 1800 CE. Sci Data 2025; 12:801. [PMID: 40379663 DOI: 10.1038/s41597-025-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025] Open
Abstract
Large collections of archaeological spatiotemporal data can reveal past cultural and demographic trends, land use strategies, and processes of environmental adaptation. Within Africa, archaeological Big Data can contribute to the study of the spread of agriculture, domesticated species, and specific artefacts and technologies, as well as their ecological impacts. Although reviews addressing these topics are available for different parts of the continent, existing mid-late Holocene archaeology datasets have yet to be compiled into a central, open-access, standardized informatic-oriented dataset. Here we present Wanyika, a dataset of scientific dates from archaeological sites in eastern Africa spanning almost 7 millennia, from ~5000 BCE to 1800 CE. This dataset compiles published scientific dates and associated botanical, faunal, iron, and ceramic finds from sites in Kenya, Tanzania, the Comoros Islands, and Madagascar. The records also include data for megafauna extinctions in Madagascar. We describe the spatiotemporal coverage of the dataset, how the data were collected, the structure of the dataset, and the applied quality control measures.
Collapse
Affiliation(s)
- Victor Iminjili
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany.
- Institute for Prehistory and Early History, University of Cologne, Weyertal 125, 50931, Cologne, Germany.
| | - Alison Crowther
- School of Social Science, The University of Queensland, St Lucia, QLD, 4072, Brisbane, Australia
| | - Michael T Fisher
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
| | - Andrea Kay
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
| | - Steve Goldstein
- Department of Anthropology, University of Pittsburgh, 3302 WWPH, Pittsburgh, PA, 15260, USA
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
- School of Social Science, The University of Queensland, St Lucia, QLD, 4072, Brisbane, Australia
- Griffith Sciences, Griffith University, Brisbane, Australia
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany.
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warszawa, 00-927, Poland.
- Arne Faculty of Arts, Masaryk University, Nováka 1, 602 00, Brno-střed, Czech Republic.
- Climate Change and History Research Initiative, Princeton University, Princeton, NJ, 08542, USA.
| |
Collapse
|
2
|
Yonezawa T, Mannen H, Honma K, Matsunaga M, Rakotondraparany F, Ratsoavina FM, Wu J, Nishibori M, Yamamoto Y. Origin and spatial population structure of Malagasy native chickens based on mitochondrial DNA. Sci Rep 2024; 14:569. [PMID: 38177203 PMCID: PMC10766636 DOI: 10.1038/s41598-023-50708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
Since Malagasy human culture became established in a multi-layered way by genetic admixture of Austronesian (Indonesia), Bantu (East Africa) and West Asian populations, the Malagasy native livestock should also have originated from these regions. While recent genetic studies revealed that Malagasy native dogs and goats were propagated from Africa, the origin of Malagasy native chickens is still controversial. Here, we conducted a phylogeographic analysis of the native chickens, focusing on the historical relationships among the Indian Ocean rim countries and based on mitochondrial D-loop sequences. Although previous work suggested that the rare Haplogroup D occurs with high frequencies in Island Southeast Asia-Pacific, East Africa and Madagascar, the major mitochondrial lineage in Malagasy populations is actually not Haplogroup D but the Sub-haplogroup C2, which is also observed in East Africa, North Africa, India and West Asia. We demonstrate that the Malagasy native chickens were propagated directly from West Asia (including India and North Africa), and not via East Africa. Furthermore, they display clear genetic differentiation within Madagascar, separated into the Highland and Lowland regions as seen in the human genomic landscape on this island. Our findings provide new insights for better understanding the intercommunion of material/non-material cultures within and around Madagascar.
Collapse
Affiliation(s)
- Takahiro Yonezawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan.
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Kaho Honma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
- Chubu Regional Office, Agriculture and Forestry Bureau, Tottori, 682-0802, Japan
| | - Megumi Matsunaga
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Felix Rakotondraparany
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, BP 906, 101, Antananarivo, Madagascar
| | - Fanomezana Mihaja Ratsoavina
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, BP 906, 101, Antananarivo, Madagascar
| | - Jiaqi Wu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahide Nishibori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Yoshio Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
3
|
Le Meillour L, Zazzo A, Zirah S, Tombret O, Barriel V, Arthur KW, Arthur JW, Cauliez J, Chaix L, Curtis MC, Gifford-Gonzalez D, Gunn I, Gutherz X, Hildebrand E, Khalidi L, Millet M, Mitchell P, Studer J, Vila E, Welker F, Pleurdeau D, Lesur J. The name of the game: palaeoproteomics and radiocarbon dates further refine the presence and dispersal of caprines in eastern and southern Africa. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231002. [PMID: 38026023 PMCID: PMC10663795 DOI: 10.1098/rsos.231002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
We report the first large-scale palaeoproteomics research on eastern and southern African zooarchaeological samples, thereby refining our understanding of early caprine (sheep and goat) pastoralism in Africa. Assessing caprine introductions is a complicated task because of their skeletal similarity to endemic wild bovid species and the sparse and fragmentary state of relevant archaeological remains. Palaeoproteomics has previously proved effective in clarifying species attributions in African zooarchaeological materials, but few comparative protein sequences of wild bovid species have been available. Using newly generated type I collagen sequences for wild species, as well as previously published sequences, we assess species attributions for elements originally identified as caprine or 'unidentifiable bovid' from 17 eastern and southern African sites that span seven millennia. We identified over 70% of the archaeological remains and the direct radiocarbon dating of domesticate specimens allows refinement of the chronology of caprine presence in both African regions. These results thus confirm earlier occurrences in eastern Africa and the systematic association of domesticated caprines with wild bovids at all archaeological sites. The combined biomolecular approach highlights repeatability and accuracy of the methods for conclusive contribution in species attribution of archaeological remains in dry African environments.
Collapse
Affiliation(s)
- Louise Le Meillour
- Unité Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005 Paris, France
- Section for Molecular Ecology and Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 København, Denmark
| | - Antoine Zazzo
- Unité Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Olivier Tombret
- Unité Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
- Unité Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013 Paris, France
| | - Véronique Barriel
- Centre de Recherche en Paléontologie – Paris (CR2P), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, CP 38, 8 rue Buffon, 75005 Paris, France
| | - Kathryn W. Arthur
- Department of Anthropology, University of South Florida St. Petersburg, 140 7th Avenue South, St. Petersburg, FL 33713, USA
| | - John W. Arthur
- Department of Anthropology, University of South Florida St. Petersburg, 140 7th Avenue South, St. Petersburg, FL 33713, USA
| | - Jessie Cauliez
- Unité Travaux et Recherches Archéologiques sur les Cultures, les Espaces et les Sociétés (TRACES), CNRS, Université Toulouse Jean Jaurès, 5 allées Antonio Machado, 31058 Toulouse, France
| | - Louis Chaix
- Département d'archéozoologie, Muséum d'histoire naturelle (MHNG), 1 route de Malagnou, 1208 Genève, Switzerland
| | - Matthew C. Curtis
- Anthropology Program, California State University Channel Islands, 1 University Drive, Camarillo, CA 93012, USA
| | - Diane Gifford-Gonzalez
- Department of Anthropology, University of California, Santa Cruz, Social Sciences 1 Faculty Svcs, 1156 High Street, Santa Cruz, CA 95064-1077, USA
| | - Imogen Gunn
- Museum of Archaeology and Anthropology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Xavier Gutherz
- Unité Archéologie des Sociétés Méditerranéennes (ASM), CNRS, Université Montpellier III, Ministère de la Culture, INRAP, Montpellier, France
| | | | - Lamya Khalidi
- Unité Cultures et Environnements. Préhistoire, Antiquité, Moyen Age (CEPAM), Université Côte d'Azur, CNRS, 24 avenue des Diables Bleus, 06300 Nice, France
| | - Marie Millet
- Département des Antiquités Égyptiennes, Musée du Louvre, Paris, France
| | - Peter Mitchell
- School of Archaeology, University of Oxford, Oxford, OX1 3TG, United Kingdom and Rock Art Research Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Jacqueline Studer
- Département d'archéozoologie, Muséum d'histoire naturelle (MHNG), 1 route de Malagnou, 1208 Genève, Switzerland
| | - Emmanuelle Vila
- Unité Archéorient, Environnements et sociétés de l'Orient ancien, CNRS, Université de Lyon 2, Maison de l'Orient et de la Méditerranée, 7 rue Raulin, 69007 Lyon, France
| | - Frido Welker
- Section for Molecular Ecology and Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 København, Denmark
| | - David Pleurdeau
- Unité Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013 Paris, France
| | - Joséphine Lesur
- Unité Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
4
|
Hannaford MJ. Deep histories of food systems in eastern Africa and current patterns of food insecurity. NATURE FOOD 2023; 4:949-960. [PMID: 37974027 DOI: 10.1038/s43016-023-00879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Central to successful attempts to address food insecurity in Africa are understandings of the historical contexts and meanings of food systems. However, much research into current challenges remains separated from deeper agrarian and alimentary histories. Using qualitative data on food within the historical record alongside the wider multidisciplinary record of the past, this Review traces long-term patterns and drivers of continuity and change in eastern African food systems. Considerable dynamism in place-based and regional trends in the integration of new foodstuffs, agricultural commercialization, resistance and transformations in diets, and diversification and specialization as livelihood strategies is found-each of which emerged within imbricated contexts of African agency, transoceanic exchanges and colonial incursions. Such historical data provide important deep-time perspectives for interventions to address modern food insecurity, as demonstrated through examples of agricultural value chains, 'under-utilized' crops and major infrastructure projects in southeast Africa.
Collapse
|
5
|
HAYSTAC: A Bayesian framework for robust and rapid species identification in high-throughput sequencing data. PLoS Comput Biol 2022; 18:e1010493. [PMID: 36178955 PMCID: PMC9555677 DOI: 10.1371/journal.pcbi.1010493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Identification of specific species in metagenomic samples is critical for several key applications, yet many tools available require large computational power and are often prone to false positive identifications. Here we describe High-AccuracY and Scalable Taxonomic Assignment of MetagenomiC data (HAYSTAC), which can estimate the probability that a specific taxon is present in a metagenome. HAYSTAC provides a user-friendly tool to construct databases, based on publicly available genomes, that are used for competitive read mapping. It then uses a novel Bayesian framework to infer the abundance and statistical support for each species identification and provide per-read species classification. Unlike other methods, HAYSTAC is specifically designed to efficiently handle both ancient and modern DNA data, as well as incomplete reference databases, making it possible to run highly accurate hypothesis-driven analyses (i.e., assessing the presence of a specific species) on variably sized reference databases while dramatically improving processing speeds. We tested the performance and accuracy of HAYSTAC using simulated Illumina libraries, both with and without ancient DNA damage, and compared the results to other currently available methods (i.e., Kraken2/Bracken, KrakenUniq, MALT/HOPS, and Sigma). HAYSTAC identified fewer false positives than both Kraken2/Bracken, KrakenUniq and MALT in all simulations, and fewer than Sigma in simulations of ancient data. It uses less memory than Kraken2/Bracken, KrakenUniq as well as MALT both during database construction and sample analysis. Lastly, we used HAYSTAC to search for specific pathogens in two published ancient metagenomic datasets, demonstrating how it can be applied to empirical datasets. HAYSTAC is available from https://github.com/antonisdim/HAYSTAC. The emerging field of paleo-metagenomics (i.e., metagenomics from ancient DNA) holds great promise for novel discoveries in fields as diverse as pathogen evolution and paleoenvironmental reconstruction. However, there is presently a lack of computational methods for species identification from microbial communities in both degraded and nondegraded DNA material. Here, we present “HAYSTAC”, a user-friendly software package that implements a novel probabilistic model for species identification in metagenomic data obtained from both degraded and non-degraded DNA material. Through extensive benchmarking, we show that HAYSTAC can be used for accurately profiling the community composition, as well as for direct hypothesis testing for the presence of extremely low-abundance taxa, in complex metagenomic samples. After analysing simulated and publicly available datasets, HAYSTAC consistently produced the lowest number of false positive identifications during taxonomic profiling, produced robust results when databases of restricted size were used, and showed increased sensitivity for pathogen detection compared to other specialist methods. The newly proposed probabilistic model and software employed by HAYSTAC can have a substantial impact on the robust and rapid pathogen discovery in degraded/shallow sequenced metagenomic samples while optimising the use of computational resources.
Collapse
|
6
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
7
|
Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history. Nat Commun 2022; 13:2399. [PMID: 35504912 PMCID: PMC9064997 DOI: 10.1038/s41467-022-30009-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling. ‘Archaeogenetic analysis of black rat remains reveals that this species was introduced into temperate Europe twice, in the Roman and medieval periods. This population turnover was likely associated with multiple historical and environmental factors.’
Collapse
|
8
|
Abstract
Archaeological and paleontological records offer tremendous yet often untapped potential for examining long-term biodiversity trends and the impact of climate change and human activity on ecosystems. Yet, zooarchaeological and fossil remains suffer various limitations, including that they are often highly fragmented and morphologically unidentifiable, preventing them from being optimally leveraged for addressing fundamental research questions in archaeology, paleontology, and conservation paleobiology. Here, we explore the potential of palaeoproteomics—the study of ancient proteins—to serve as a critical tool for creating richer, more informative datasets about biodiversity change that can be leveraged to generate more realistic, constructive, and effective conservation and restoration strategies into the future.
Collapse
|
9
|
Griffiths J, Yeo HL, Yap G, Mailepessov D, Johansson P, Low HT, Siew CC, Lam P, Ng LC. Survey of rodent-borne pathogens in Singapore reveals the circulation of Leptospira spp., Seoul hantavirus, and Rickettsia typhi. Sci Rep 2022; 12:2692. [PMID: 35177639 PMCID: PMC8854382 DOI: 10.1038/s41598-021-03954-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Rodents living alongside humans increases the probability of encounter and also the transmission of rodent-borne diseases. Singapore’s cosmopolitan urban landscape provides a perfect setting to study the prevalence of four rodent-borne pathogens: Seoul hantavirus (SEOV), Leptospira species, Rickettsia typhi and Yersinia pestis, and identify the potential risk factors which may influence rodent density and transmission of rodent-borne diseases. A total of 1143 rodents were trapped from 10 unique landscape structures throughout Singapore. Real-time quantitative Polymerase Chain Reactions were used to detect pathogenic and intermediate Leptospira spp. and Yersinia pestis, whereas the seroprevalence of SEOV and R. typhi were analysed by Enzyme-Linked Immunosorbent Assay and Immunofluorescence Assay respectively. Multivariable logistic regression analysis was used to evaluate the association between prevalence of infection in rodent reservoirs and risk factors. Most of the rodents were caught in public residential developments (62.2%). Among the tested rodents, 42.4% were infected with Leptospira spp., while 35.5% and 32.2% were seropositive for SEOV and R. typhi respectively, whereas Yersinia pestis was not detected. Furthermore, risk factors including habitat, species, gender, and weight of rodents, influenced prevalence of infection to a varying extent. This study highlights the presence of Leptospira spp., SEOV and R. typhi in Singapore’s rodent population, suggesting the need for effective rodent management and sanitation strategies to prevent further circulation and transmission to humans.
Collapse
Affiliation(s)
- Jane Griffiths
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Hui Ling Yeo
- Environmental Health Institute, National Environment Agency, Singapore, Singapore.
| | - Grace Yap
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Patrik Johansson
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Hwee Teng Low
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Chern-Chiang Siew
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Patrick Lam
- SAF Biodefence Centre, Force Medical Protection Command, HQ Medical Corps, Singapore Armed Forces, Singapore, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore.
| |
Collapse
|
10
|
Gheyas AA, Vallejo-Trujillo A, Kebede A, Lozano-Jaramillo M, Dessie T, Smith J, Hanotte O. Integrated Environmental and Genomic Analysis Reveals the Drivers of Local Adaptation in African Indigenous Chickens. Mol Biol Evol 2021; 38:4268-4285. [PMID: 34021753 PMCID: PMC8476150 DOI: 10.1093/molbev/msab156] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breeding for climate resilience is currently an important goal for sustainable livestock production. Local adaptations exhibited by indigenous livestock allow investigating the genetic control of this resilience. Ecological niche modeling (ENM) provides a powerful avenue to identify the main environmental drivers of selection. Here, we applied an integrative approach combining ENM with genome-wide selection signature analyses (XPEHH and Fst) and genotype-environment association (redundancy analysis), with the aim of identifying the genomic signatures of adaptation in African village chickens. By dissecting 34 agro-climatic variables from the ecosystems of 25 Ethiopian village chicken populations, ENM identified six key drivers of environmental challenges: One temperature variable-strongly correlated with elevation, three precipitation variables as proxies for water availability, and two soil/land cover variables as proxies of food availability for foraging chickens. Genome analyses based on whole-genome sequencing (n = 245), identified a few strongly supported genomic regions under selection for environmental challenges related to altitude, temperature, water scarcity, and food availability. These regions harbor several gene clusters including regulatory genes, suggesting a predominantly oligogenic control of environmental adaptation. Few candidate genes detected in relation to heat-stress, indicates likely epigenetic regulation of thermo-tolerance for a domestic species originating from a tropical Asian wild ancestor. These results provide possible explanations for the rapid past adaptation of chickens to diverse African agro-ecologies, while also representing new landmarks for sustainable breeding improvement for climate resilience. We show that the pre-identification of key environmental drivers, followed by genomic investigation, provides a powerful new approach for elucidating adaptation in domestic animals.
Collapse
Affiliation(s)
- Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Vallejo-Trujillo
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Adebabay Kebede
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Maria Lozano-Jaramillo
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Tadelle Dessie
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivier Hanotte
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Culley C, Janzen A, Brown S, Prendergast ME, Wolfhagen J, Abderemane B, Ali AK, Haji O, Horton MC, Shipton C, Swift J, Tabibou TA, Wright HT, Boivin N, Crowther A. Collagen fingerprinting traces the introduction of caprines to island Eastern Africa. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202341. [PMID: 34350011 PMCID: PMC8316820 DOI: 10.1098/rsos.202341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The human colonization of eastern Africa's near- and offshore islands was accompanied by the translocation of several domestic, wild and commensal fauna, many of which had long-term impacts on local environments. To better understand the timing and nature of the introduction of domesticated caprines (sheep and goat) to these islands, this study applied collagen peptide fingerprinting (Zooarchaeology by Mass Spectrometry or ZooMS) to archaeological remains from eight Iron Age sites, dating between ca 300 and 1000 CE, in the Zanzibar, Mafia and Comoros archipelagos. Where previous zooarchaeological analyses had identified caprine remains at four of these sites, this study identified goat at seven sites and sheep at three, demonstrating that caprines were more widespread than previously known. The ZooMS results support an introduction of goats to island eastern Africa from at least the seventh century CE, while sheep in our sample arrived one-two centuries later. Goats may have been preferred because, as browsers, they were better adapted to the islands' environments. The results allow for a more accurate understanding of early caprine husbandry in the study region and provide a critical archaeological baseline for examining the potential long-term impacts of translocated fauna on island ecologies.
Collapse
Affiliation(s)
- Courtney Culley
- School of Social Science, The University of Queensland, St Lucia, Queensland, Australia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Anneke Janzen
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, The University of Tennessee, Knoxville, USA
| | - Samantha Brown
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Scientific Archaeology, University of Tübingen, Tübingen, Germany
| | | | - Jesse Wolfhagen
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Bourhane Abderemane
- Centre National de Documentation et de Recherche Scientifique, Mutsamudu, Anjouan, Comoros
| | | | - Othman Haji
- Department of Museums and Antiquities, Zanzibar, Tanzania
| | - Mark C. Horton
- Cultural Heritage Institute, Royal Agricultural University, Cirencester, England
| | - Ceri Shipton
- Institute of Archaeology, Gordon Square, University College London, London, UK
- Centre of Excellence for Australian Biodiversity and Heritage, College of Asia and the Pacific, Australian National University, Canberra, Australia
| | - Jillian Swift
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, Bernice Pauahi Bishop Museum, Honolulu, HI, USA
| | - Tabibou A. Tabibou
- Centre National de Documentation et de Recherche Scientifique, Moroni, Grand Comore, Comoros
| | - Henry T. Wright
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Boivin
- School of Social Science, The University of Queensland, St Lucia, Queensland, Australia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Alison Crowther
- School of Social Science, The University of Queensland, St Lucia, Queensland, Australia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
12
|
Lawal RA, Hanotte O. Domestic chicken diversity: Origin, distribution, and adaptation. Anim Genet 2021; 52:385-394. [PMID: 34060099 DOI: 10.1111/age.13091] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Chicken is the most numerous among the domesticated livestock species. Across cultures, religions, and societies, chicken is widely accepted with little or no taboo compared to other domestic animals. Its adaptability to diverse environmental conditions and demonstrated potential for breeding improvement provide a unique genetic resource for addressing the challenges of food security in a world impacted by climatic change and human population growth. Recent studies, shedding new knowledge on the chicken genomes, have helped reconstruct its past evolutionary history. Here, we review the literature concerning the origin, dispersion, and adaptation of domestic chicken. We highlight the role of human and natural selection in shaping the diversity of the species and provide a few examples of knowledge gaps that may be the focus of future research.
Collapse
Affiliation(s)
- R A Lawal
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - O Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, EH25 9RG, UK.,LiveGene, International Livestock Research Institute (ILRI), P.O. 5689, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Janzen A, Richter KK, Mwebi O, Brown S, Onduso V, Gatwiri F, Ndiema E, Katongo M, Goldstein ST, Douka K, Boivin N. Distinguishing African bovids using Zooarchaeology by Mass Spectrometry (ZooMS): New peptide markers and insights into Iron Age economies in Zambia. PLoS One 2021; 16:e0251061. [PMID: 34003857 PMCID: PMC8130928 DOI: 10.1371/journal.pone.0251061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Assessing past foodways, subsistence strategies, and environments depends on the accurate identification of animals in the archaeological record. The high rates of fragmentation and often poor preservation of animal bones at many archaeological sites across sub-Saharan Africa have rendered archaeofaunal specimens unidentifiable beyond broad categories, such as “large mammal” or “medium bovid”. Identification of archaeofaunal specimens through Zooarchaeology by Mass Spectrometry (ZooMS), or peptide mass fingerprinting of bone collagen, offers an avenue for identification of morphologically ambiguous or unidentifiable bone fragments from such assemblages. However, application of ZooMS analysis has been hindered by a lack of complete reference peptide markers for African taxa, particularly bovids. Here we present the complete set of confirmed ZooMS peptide markers for members of all African bovid tribes. We also identify two novel peptide markers that can be used to further distinguish between bovid groups. We demonstrate that nearly all African bovid subfamilies are distinguishable using ZooMS methods, and some differences exist between tribes or sub-tribes, as is the case for Bovina (cattle) vs. Bubalina (African buffalo) within the subfamily Bovinae. We use ZooMS analysis to identify specimens from extremely fragmented faunal assemblages from six Late Holocene archaeological sites in Zambia. ZooMS-based identifications reveal greater taxonomic richness than analyses based solely on morphology, and these new identifications illuminate Iron Age subsistence economies c. 2200–500 cal BP. While the Iron Age in Zambia is associated with the transition from hunting and foraging to the development of farming and herding, our results demonstrate the continued reliance on wild bovids among Iron Age communities in central and southwestern Zambia Iron Age and herding focused primarily on cattle. We also outline further potential applications of ZooMS in African archaeology.
Collapse
Affiliation(s)
- Anneke Janzen
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| | - Kristine Korzow Richter
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, Harvard University, Boston, Massachusetts, United States of America
| | - Ogeto Mwebi
- Department of Zoology, Osteology Section, National Museums of Kenya, Nairobi, Kenya
| | - Samantha Brown
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
| | - Veronicah Onduso
- Department of Zoology, Osteology Section, National Museums of Kenya, Nairobi, Kenya
| | - Filia Gatwiri
- Department of Earth Sciences, Archaeology Section, National Museums of Kenya, Nairobi, Kenya
| | - Emmanuel Ndiema
- Department of Earth Sciences, Archaeology Section, National Museums of Kenya, Nairobi, Kenya
| | - Maggie Katongo
- Department of Archaeology, Livingstone Museum, Livingstone, Zambia
| | - Steven T. Goldstein
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
| | - Katerina Douka
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max-Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
14
|
Martinón-Torres M, d'Errico F, Santos E, Álvaro Gallo A, Amano N, Archer W, Armitage SJ, Arsuaga JL, Bermúdez de Castro JM, Blinkhorn J, Crowther A, Douka K, Dubernet S, Faulkner P, Fernández-Colón P, Kourampas N, González García J, Larreina D, Le Bourdonnec FX, MacLeod G, Martín-Francés L, Massilani D, Mercader J, Miller JM, Ndiema E, Notario B, Pitarch Martí A, Prendergast ME, Queffelec A, Rigaud S, Roberts P, Shoaee MJ, Shipton C, Simpson I, Boivin N, Petraglia MD. Earliest known human burial in Africa. Nature 2021; 593:95-100. [PMID: 33953416 DOI: 10.1038/s41586-021-03457-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
The origin and evolution of hominin mortuary practices are topics of intense interest and debate1-3. Human burials dated to the Middle Stone Age (MSA) are exceedingly rare in Africa and unknown in East Africa1-6. Here we describe the partial skeleton of a roughly 2.5- to 3.0-year-old child dating to 78.3 ± 4.1 thousand years ago, which was recovered in the MSA layers of Panga ya Saidi (PYS), a cave site in the tropical upland coast of Kenya7,8. Recent excavations have revealed a pit feature containing a child in a flexed position. Geochemical, granulometric and micromorphological analyses of the burial pit content and encasing archaeological layers indicate that the pit was deliberately excavated. Taphonomical evidence, such as the strict articulation or good anatomical association of the skeletal elements and histological evidence of putrefaction, support the in-place decomposition of the fresh body. The presence of little or no displacement of the unstable joints during decomposition points to an interment in a filled space (grave earth), making the PYS finding the oldest known human burial in Africa. The morphological assessment of the partial skeleton is consistent with its assignment to Homo sapiens, although the preservation of some primitive features in the dentition supports increasing evidence for non-gradual assembly of modern traits during the emergence of our species. The PYS burial sheds light on how MSA populations interacted with the dead.
Collapse
Affiliation(s)
- María Martinón-Torres
- CENIEH (National Research Center on Human Evolution), Burgos, Spain. .,Anthropology Department, University College London, London, UK.
| | - Francesco d'Errico
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France.,SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - Elena Santos
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Instituto de Salud Carlos III, Madrid, Spain.,Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Álvaro Gallo
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Noel Amano
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - William Archer
- Department of Archaeology and Anthropology, National Museum, Bloemfontein, South Africa.,Department of Archaeology, University of Cape Town, Cape Town, South Africa.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simon J Armitage
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway.,Department of Geography, Royal Holloway, University of London, Egham, UK
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Bermúdez de Castro
- CENIEH (National Research Center on Human Evolution), Burgos, Spain.,Anthropology Department, University College London, London, UK
| | - James Blinkhorn
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Geography, Royal Holloway, University of London, Egham, UK.,Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alison Crowther
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Katerina Douka
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Stéphan Dubernet
- UMR 5060 CNRS-Université Bordeaux Montaigne IRAMAT-CRP2A: Institut de recherche sur les Archéomatériaux - Centre de recherche en physique appliquée à l'archéologie, Maison de l'archéologie, Pessac, France
| | - Patrick Faulkner
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Faculty of Arts and Social Sciences, Department of Archaeology, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Nikos Kourampas
- Centre for Open Learning, University of Edinburgh, Edinburgh, UK.,Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jorge González García
- 3D Applications Engineer and Heritage Specialist Digital Heritage and Humanities Collections, University of South Florida, Tampa, FL, USA
| | - David Larreina
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - François-Xavier Le Bourdonnec
- UMR 5060 CNRS-Université Bordeaux Montaigne IRAMAT-CRP2A: Institut de recherche sur les Archéomatériaux - Centre de recherche en physique appliquée à l'archéologie, Maison de l'archéologie, Pessac, France
| | - George MacLeod
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Laura Martín-Francés
- CENIEH (National Research Center on Human Evolution), Burgos, Spain.,Anthropology Department, University College London, London, UK
| | - Diyendo Massilani
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julio Mercader
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer M Miller
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Emmanuel Ndiema
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,National Museums of Kenya, Department of Earth Sciences, Nairobi, Kenya
| | - Belén Notario
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Africa Pitarch Martí
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France.,Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Alain Queffelec
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France
| | - Solange Rigaud
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Mohammad Javad Shoaee
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ceri Shipton
- Institute of Archaeology, University College London, London, UK.,Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ian Simpson
- Centre for Open Learning, University of Edinburgh, Edinburgh, UK
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany. .,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia. .,Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada. .,Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany. .,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia. .,Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. .,Australian Research Centre for Human Evolution (ARCHE), Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Affiliation(s)
- Masaki Eda
- Hokkaido University Museum, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido 060-0810, Japan
| |
Collapse
|
16
|
Coutu AN, Taurozzi AJ, Mackie M, Jensen TZT, Collins MJ, Sealy J. Palaeoproteomics confirm earliest domesticated sheep in southern Africa ca. 2000 BP. Sci Rep 2021; 11:6631. [PMID: 33758223 PMCID: PMC7988125 DOI: 10.1038/s41598-021-85756-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
We used palaeoproteomics and peptide mass fingerprinting to obtain secure species identifications of key specimens of early domesticated fauna from South Africa, dating to ca. 2000 BP. It can be difficult to distinguish fragmentary remains of early domesticates (sheep) from similar-sized local wild bovids (grey duiker, grey rhebok, springbok-southern Africa lacks wild sheep) based on morphology alone. Our analysis revealed a Zooarchaeology by Mass Spectrometry (ZooMS) marker (m/z 1532) present in wild bovids and we demonstrate through LC-MS/MS that it is capable of discriminating between wild bovids and caprine domesticates. We confirm that the Spoegrivier specimen dated to 2105 ± 65 BP is indeed a sheep. This is the earliest directly dated evidence of domesticated animals in southern Africa. As well as the traditional method of analysing bone fragments, we show the utility of minimally destructive sampling methods such as PVC eraser and polishing films for successful ZooMS identification. We also show that collagen extracted more than 25 years ago for the purpose of radiocarbon dating can yield successful ZooMS identification. Our study demonstrates the importance of developing appropriate regional frameworks of comparison for future research using ZooMS as a method of biomolecular species identification.
Collapse
Affiliation(s)
- Ashley N Coutu
- Pitt Rivers Museum, University of Oxford, Oxford, OX1 3PP, UK.,BioArCh, University of York, York, YO10 5DD, UK.,Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Alberto J Taurozzi
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.
| | - Meaghan Mackie
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen N, Denmark
| | - Theis Zetner Trolle Jensen
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - Matthew J Collins
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.,McDonald Institute for Archaeological Research, University of Cambridge, West Tower, Downing St, Cambridge, CB2 3ER, UK
| | - Judith Sealy
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.
| |
Collapse
|
17
|
Shipton C, Blinkhorn J, Archer W, Kourampas N, Roberts P, Prendergast ME, Curtis R, Herries AIR, Ndiema E, Boivin N, Petraglia MD. The Middle to Later Stone Age transition at Panga ya Saidi, in the tropical coastal forest of eastern Africa. J Hum Evol 2021; 153:102954. [PMID: 33714916 DOI: 10.1016/j.jhevol.2021.102954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
The Middle to Later Stone Age transition is a critical period of human behavioral change that has been variously argued to pertain to the emergence of modern cognition, substantial population growth, and major dispersals of Homo sapiens within and beyond Africa. However, there is little consensus about when the transition occurred, the geographic patterning of its emergence, or even how it is manifested in the stone tool technology that is used to define it. Here, we examine a long sequence of lithic technological change at the cave site of Panga ya Saidi, Kenya, that spans the Middle and Later Stone Age and includes human occupations in each of the last five Marine Isotope Stages. In addition to the stone artifact technology, Panga ya Saidi preserves osseous and shell artifacts, enabling broader considerations of the covariation between different spheres of material culture. Several environmental proxies contextualize the artifactual record of human behavior at Panga ya Saidi. We compare technological change between the Middle and Later Stone Age with on-site paleoenvironmental manifestations of wider climatic fluctuations in the Late Pleistocene. The principal distinguishing feature of Middle from Later Stone Age technology at Panga ya Saidi is the preference for fine-grained stone, coupled with the creation of small flakes (miniaturization). Our review of the Middle to Later Stone Age transition elsewhere in eastern Africa and across the continent suggests that this broader distinction between the two periods is in fact widespread. We suggest that the Later Stone Age represents new short use-life and multicomponent ways of using stone tools, in which edge sharpness was prioritized over durability.
Collapse
Affiliation(s)
- Ceri Shipton
- Institute of Archaeology, Gordon Square, University College London, London, WC1H 0PY, UK; Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT, 2000, Australia.
| | - James Blinkhorn
- Department of Geography, Royal Holloway, University of London, Egham, TW20 0EX, UK; Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany
| | - Will Archer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Pl. 6, 04103, Leipzig, Germany; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, National Museum, Bloemfontein, 9300, South Africa
| | - Nikolaos Kourampas
- Centre for Open Learning, University of Edinburgh, Edinburgh, UK; Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany
| | - Mary E Prendergast
- Department of Sociology and Anthropology, Saint Louis University, Avenida del Valle 34, Madrid, Spain; Department of Anthropology, Rice University, Houston, TX, USA
| | - Richard Curtis
- The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, 3086, Australia
| | - Andy I R Herries
- The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, 3086, Australia; Palaeo-Research Institute, University of Johannesburg, Auckland Park, Gauteng, South Africa
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museum of Kenya, Museum Hill Road, Nairobi, Kenya
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C., USA; School of Social Science, The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Anthropology and Archaeology, University of Calgary, 620 2500, University Drive NW, Calgary, Canada
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C., USA; School of Social Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
18
|
Puckett EE, Orton D, Munshi‐South J. Commensal Rats and Humans: Integrating Rodent Phylogeography and Zooarchaeology to Highlight Connections between Human Societies. Bioessays 2020; 42:e1900160. [DOI: 10.1002/bies.201900160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Emily E. Puckett
- Department of Biological SciencesUniversity of Memphis Memphis TN 38152 USA
| | - David Orton
- BioArChDepartment of ArchaeologyUniversity of York York YO10 5DD UK
| | | |
Collapse
|
19
|
Otecko NO, Ogali I, Ng'ang'a SI, Mauki DH, Ogada S, Moraa GK, Lichoti J, Agwanda B, Peng MS, Ommeh SC, Zhang YP. Phenotypic and morphometric differentiation of indigenous chickens from Kenya and other tropical countries augments perspectives for genetic resource improvement and conservation. Poult Sci 2019; 98:2747-2755. [PMID: 30850827 PMCID: PMC6591685 DOI: 10.3382/ps/pez097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Indigenous chickens at the Swahili coast and other traditional migratory corridors in Kenya represent important populations that are inconclusively characterized. Using a comprehensive dataset of Kenyan indigenous chickens and additional mined data of chickens from 8 African and 5 Asian countries, we performed univariate and multivariate assessments to uncover the underlying phenotypic and morphometric variability. Kenyan indigenous chickens expressed differentiation of several qualitative and quantitative traits, both among different counties in the Swahili coast, and among coastal, western, and northern migratory corridors. There was a substantial population stratification of these chickens, particularly distinctive clustering of chickens from Marsabit, Lamu, and Kilifi counties. The pooled dataset further clarified a closer phenotypic and morphometric proximity of chickens within different geographical regions. We additionally revealed a preponderance of bantam and rumpless traits to hot and humid locales, and feathered shanks to cooler regions. Currently, most chicken breeding programs in developing countries rely on phenotypic and morphometric properties. Hence, the high chicken diversity and population stratification observed in our study, possibly shaped by natural and artificial selective pressures, reveal opportunities for complementary phenotypic and genotypic assessments to identify resources for effective breed improvement and conservation strategies of indigenous chickens in the tropics.
Collapse
Affiliation(s)
- Newton O Otecko
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Sino-Africa Joint Research Center, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya
| | - Irene Ogali
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya.,Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi 00200, Kenya
| | - Said I Ng'ang'a
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, 650223, China
| | - David H Mauki
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, 650223, China
| | - Stephen Ogada
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya.,Sino-Africa Joint Research Center, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya
| | - Grace K Moraa
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya.,Sino-Africa Joint Research Center, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya
| | - Jacqueline Lichoti
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi 00625, Kenya
| | - Bernard Agwanda
- Department of Zoology, National Museums of Kenya, Nairobi 00100, Kenya
| | - Min-Shen Peng
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, 650223, China
| | - Sheila C Ommeh
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya.,Sino-Africa Joint Research Center, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya
| | - Ya-Ping Zhang
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, 650223, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Godfrey LR, Scroxton N, Crowley BE, Burns SJ, Sutherland MR, Pérez VR, Faina P, McGee D, Ranivoharimanana L. A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis". J Hum Evol 2019; 130:126-140. [PMID: 31010539 DOI: 10.1016/j.jhevol.2019.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Fundamental disagreements remain regarding the relative importance of climate change and human activities as triggers for Madagascar's Holocene megafaunal extinction. We use stable isotope data from stalagmites from northwest Madagascar coupled with radiocarbon and butchery records from subfossil bones across the island to investigate relationships between megafaunal decline, climate change, and habitat modification. Archaeological and genetic evidence support human presence by 2000 years Before Common Era (BCE). Megafaunal decline was at first slow; it hastened at ∼700 Common Era (CE) and peaked between 750 and 850 CE, just before a dramatic vegetation transformation in the northwest that resulted in the replacement of C3 woodland habitat with C4 grasslands, during a period of heightened monsoonal activity. Cut and chop marks on subfossil lemur bones reveal a shift in primary hunting targets from larger, now-extinct species prior to ∼900 CE, to smaller, still-extant species afterwards. By 1050 CE, megafaunal populations had essentially collapsed. Neither the rapid megafaunal decline beginning ∼700 CE, nor the dramatic vegetation transformation in the northwest beginning ∼890 CE, was influenced by aridification. However, both roughly coincide with a major transition in human subsistence on the island from hunting/foraging to herding/farming. We offer a new hypothesis, which we call the "Subsistence Shift Hypothesis," to explain megafaunal decline and extinction in Madagascar. This hypothesis acknowledges the importance of wild-animal hunting by early hunter/foragers, but more critically highlights negative impacts of the shift from hunting/foraging to herding/farming, settlement by new immigrant groups, and the concomitant expansion of the island's human population. The interval between 700 and 900 CE, when the pace of megafaunal decline quickened and peaked, coincided with this economic transition. While early megafaunal decline through hunting may have helped to trigger the transition, there is strong evidence that the economic shift itself hastened the crash of megafaunal populations.
Collapse
Affiliation(s)
- Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Nick Scroxton
- Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brooke E Crowley
- Departments of Geology and Anthropology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephen J Burns
- Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael R Sutherland
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA
| | - Ventura R Pérez
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003, USA
| | - Peterson Faina
- Département Bassins Sédimentaires Evolution Conservation (BEC), Université D'Antananarivo, Antananarivo 101, Madagascar
| | - David McGee
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lovasoa Ranivoharimanana
- Département Bassins Sédimentaires Evolution Conservation (BEC), Université D'Antananarivo, Antananarivo 101, Madagascar
| |
Collapse
|
21
|
Guiry E, Buckley M. Urban rats have less variable, higher protein diets. Proc Biol Sci 2018; 285:rspb.2018.1441. [PMID: 30333207 PMCID: PMC6234891 DOI: 10.1098/rspb.2018.1441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
Over the past 1000 years, rats (Rattus spp.) have become one of the most successful and prolific pests in human society. Despite their cosmopolitan distribution across six continents and ubiquity throughout the world's cities, rat urban ecology remains poorly understood. We investigate the role of human foods in brown rat (Rattus norvegicus) diets in urban and rural areas over a 100 year period (ca AD 1790–1890) in Toronto, Canada using stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of archaeological remains. We found that rat diets from urban sites were of higher quality and were more homogeneous and stable over time. By contrast, in rural areas, they show a wide range of dietary niche specializations that directly overlap, and probably competed, with native omnivorous and herbivorous species. These results demonstrate a link between rodent diets and human population density, providing, to our knowledge, the first long-term dietary perspective on the relative value of different types of human settlements as rodent habitat. This study highlights the potential of using the historical and archaeological record to provide a retrospective on the urban ecology of commensal and synanthropic animals that could be useful for improving animal management and conservation strategies in urban areas.
Collapse
Affiliation(s)
- E Guiry
- Department of Anthropology, Trent University, 1600 W Bank Drive, Peterborough, Ontario, Canada K9 J 0G2 .,Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1Z1
| | - M Buckley
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
22
|
Dental Shape Variation and Phylogenetic Signal in the Rattini Tribe Species of Mainland Southeast Asia. J MAMM EVOL 2018. [DOI: 10.1007/s10914-017-9423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Correction: Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets. PLoS One 2017; 12:e0190336. [PMID: 29261804 PMCID: PMC5738094 DOI: 10.1371/journal.pone.0190336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Central European Woolly Mammoth Population Dynamics: Insights from Late Pleistocene Mitochondrial Genomes. Sci Rep 2017; 7:17714. [PMID: 29255197 PMCID: PMC5735091 DOI: 10.1038/s41598-017-17723-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
The population dynamics of the Pleistocene woolly mammoth (Mammuthus primigenius) has been the subject of intensive palaeogenetic research. Although a large number of mitochondrial genomes across Eurasia have been reconstructed, the available data remains geographically sparse and mostly focused on eastern Eurasia. Thus, population dynamics in other regions have not been extensively investigated. Here, we use a multi-method approach utilising proteomic, stable isotope and genetic techniques to identify and generate twenty woolly mammoth mitochondrial genomes, and associated dietary stable isotopic data, from highly fragmentary Late Pleistocene material from central Europe. We begin to address region-specific questions regarding central European woolly mammoth populations, highlighting parallels with a previous replacement event in eastern Eurasia ten thousand years earlier. A high number of shared derived mutations between woolly mammoth mitochondrial clades are identified, questioning previous phylogenetic analysis and thus emphasizing the need for nuclear DNA studies to explicate the increasingly complex genetic history of the woolly mammoth.
Collapse
|
25
|
Prendergast ME, Buckley M, Crowther A, Frantz L, Eager H, Lebrasseur O, Hutterer R, Hulme-Beaman A, Van Neer W, Douka K, Veall MA, Quintana Morales EM, Schuenemann VJ, Reiter E, Allen R, Dimopoulos EA, Helm RM, Shipton C, Mwebi O, Denys C, Horton M, Wynne-Jones S, Fleisher J, Radimilahy C, Wright H, Searle JB, Krause J, Larson G, Boivin NL. Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets. PLoS One 2017; 12:e0182565. [PMID: 28817590 PMCID: PMC5560628 DOI: 10.1371/journal.pone.0182565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023] Open
Abstract
Human-mediated biological exchange has had global social and ecological impacts. In sub-Saharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation.
Collapse
Affiliation(s)
- Mary E. Prendergast
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, United States of America
- * E-mail:
| | - Michael Buckley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alison Crowther
- School of Social Science, The University of Queensland, Brisbane Queensland, Australia
| | - Laurent Frantz
- Palaeogenomics & Bio-Archaeology Research Network, Oxford University, Oxford, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Heidi Eager
- Dept. Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
- Research Laboratory for Archaeology and the History of Art, Oxford University, Oxford, United Kingdom
| | - Ophélie Lebrasseur
- Palaeogenomics & Bio-Archaeology Research Network, Oxford University, Oxford, United Kingdom
| | - Rainer Hutterer
- Dept. Vertebrates, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Wim Van Neer
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Dept. Biology, University of Leuven, Leuven, Belgium
| | - Katerina Douka
- Research Laboratory for Archaeology and the History of Art, Oxford University, Oxford, United Kingdom
| | - Margaret-Ashley Veall
- Research Laboratory for Archaeology and the History of Art, Oxford University, Oxford, United Kingdom
| | | | | | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Richard Allen
- Palaeogenomics & Bio-Archaeology Research Network, Oxford University, Oxford, United Kingdom
- Research Laboratory for Archaeology and the History of Art, Oxford University, Oxford, United Kingdom
| | - Evangelos A. Dimopoulos
- Palaeogenomics & Bio-Archaeology Research Network, Oxford University, Oxford, United Kingdom
| | | | - Ceri Shipton
- McDonald Institute for Archaeological Research, Cambridge, United Kingdom
- British Institute in Eastern Africa, Nairobi, Kenya
| | - Ogeto Mwebi
- Dept. Zoology, Osteology Section, National Museums of Kenya, Nairobi, Kenya
| | - Christiane Denys
- Dept. Systématique & Evolution, Muséum National d’Histoire Naturelle, Paris, France
| | - Mark Horton
- Dept. Archaeology and Anthropology, University of Bristol, Bristol, United Kingdom
| | | | - Jeffrey Fleisher
- Dept. Anthropology, Rice University, Houston, United States of America
| | - Chantal Radimilahy
- Musée d’Art et d’Archéologie, Université d’Antananarivo, Antananarivo, Madagascar
| | - Henry Wright
- Museum of Anthropology, University of Michigan, Ann Arbor, United States of America
- Santa Fe Institute, Santa Fe NM, United States of America
| | - Jeremy B. Searle
- Dept. Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, Oxford University, Oxford, United Kingdom
| | - Nicole L. Boivin
- Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|