1
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Miyake T, Miyake T, Kurashiki T, Morishita R. Molecular Pharmacological Approaches for Treating Abdominal Aortic Aneurysm. Ann Vasc Dis 2019; 12:137-146. [PMID: 31275464 PMCID: PMC6600097 DOI: 10.3400/avd.ra.18-00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is considered to be a potent life-threatening disorder in elderly individuals. Although many patients with a small AAA are detected during routine abdominal screening, there is no effective therapeutic option to prevent the progression or regression of AAA in the clinical setting. Recent advances in molecular biology have led to the identification of several important molecules, including microRNA and transcription factor, in the process of AAA formation. Regulation of these factors using nucleic acid drugs is expected to be a novel therapeutic option for AAA. Nucleic acid drugs can bind to target factors, mRNA, microRNA, and transcription factors in a sequence-specific fashion, resulting in a loss of function of the target molecule at the transcriptional or posttranscriptional level. Of note, inhibition of a transcription factor using a decoy strategy effectively suppresses experimental AAA formation, by regulating the expression of several genes associated with the disease progression. This review focuses on recent advances in molecular therapy of using nucleic acid drugs to treat AAA.
Collapse
Affiliation(s)
- Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuo Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Kurashiki
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Guo D, Shen Y, Li W, Li Q, Zhao Y, Pan C, Chen B, Zhong Y, Miao Y. 6-Bromoindirubin-3'-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver. Front Pharmacol 2019; 10:320. [PMID: 31057395 PMCID: PMC6477879 DOI: 10.3389/fphar.2019.00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
Liver aging is associated with age-related histopathological and functional changes that significantly enhance the risk of numerous diseases or disorders developing in elderly populations. 6-Bromoindirubin-3'-oxime (6BIO), a potent inhibitor of glycogen synthase kinase-3 (GSK-3), has been implicated in various age-related diseases and processes, such as tumorigenesis, neurodegeneration, and diabetes. Recent studies have also revealed that 6BIO increases autophagy in yeast, mammalian cell lines, and dopaminergic neurons, which is one of the classical mechanisms strongly associated with liver aging. However, the impact or the mechanism of action of 6BIO in liver remains entirely unknown. Here, we find that 6BIO reduces oxidative stress, improves lipid metabolism, enhances autophagy, and significantly retards liver aging via modulating the GSK-3β pathway and mTOR pathway. Our findings suggest that 6BIO could be a potential agent to protect the liver in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
- Donghao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Shen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinjie Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Kim S, Graham MJ, Lee RG, Yang L, Kim S, Subramanian V, Layne JD, Cai L, Temel RE, Shih D, Lusis AJ, Berliner JA, Lee S. Heparin-binding EGF-like growth factor (HB-EGF) antisense oligonucleotide protected against hyperlipidemia-associated atherosclerosis. Nutr Metab Cardiovasc Dis 2019; 29:306-315. [PMID: 30738642 PMCID: PMC6452438 DOI: 10.1016/j.numecd.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/24/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Heparin-binding EGF-like growth factor (HB-EGF) is a representative EGF family member that interacts with EGFR under diverse stress environment. Previously, we reported that the HB-EGF-targeting using antisense oligonucleotide (ASO) effectively suppressed an aortic aneurysm in the vessel wall and circulatory lipid levels. In this study, we further examined the effects of the HB-EGF ASO administration on the development of hyperlipidemia-associated atherosclerosis using an atherogenic mouse model. METHODS AND RESULTS The male and female LDLR deficient mice under Western diet containing 21% fat and 0.2% cholesterol content were cotreated with control and HB-EGF ASOs for 12 weeks. We observed that the HB-EGF ASO administration effectively downregulated circulatory VLDL- and LDL-associated lipid levels in circulation; concordantly, the HB-EGF targeting effectively suppressed the development of atherosclerosis in the aorta. An EGFR blocker BIBX1382 administration suppressed the hepatic TG secretion rate, suggesting a positive role of the HB-EGF signaling for the hepatic VLDL production. We newly observed that there was a significant improvement of the insulin sensitivity by the HB-EGF ASO administration in a mouse model under the Western diet as demonstrated by the improvement of the glucose and insulin tolerances. CONCLUSION The HB-EGF ASO administration effectively downregulated circulatory lipid levels by suppressing hepatic VLDL production rate, which leads to effective protection against atherosclerosis in the vascular wall.
Collapse
Affiliation(s)
- S Kim
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - M J Graham
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - R G Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - L Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - S Kim
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - V Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - J D Layne
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - L Cai
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - R E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Shih
- Department of Medicine-Cardiology, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA
| | - A J Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA; Department of Human Genetics, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California-Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - J A Berliner
- Department of Pathology and Laboratory Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - S Lee
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|