1
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
2
|
Chen X, Yang Y, Sun S, Liu Q, Yang Y, Jiang L. CX3C chemokine: Hallmarks of fibrosis and ageing. Pharmacol Res 2024; 208:107348. [PMID: 39134186 DOI: 10.1016/j.phrs.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
Fibrosis refers to the progressive tissue lesion process characterized by excessive secretion and deposition of extracellular matrix (ECM). Abnormal fibrous tissue deposition distorts tissue architecture and leads to the progressive loss of organ function. Notably, fibrosis is one of the primary pathological appearances of many end stage illnesses, and is considered as a lethal threat to human health, especially in the elderly with ageing-related diseases. CX3C ligand 1 (CX3CL1) is the only member of chemokine CX3C and binds specifically to CX3C receptor 1 (CX3CR1). Different from other chemokines, CX3CL1 possesses both chemotactic and adhesive activity. CX3CL1/CX3CR1 axis involves in various physiological and pathological processes, and exerts a critical role in cells from the immune system, vascular system, and nervous system etc. Notably, increasing evidence has demonstrated that CX3CL1/CX3CR1 signaling pathway is closely related to the pathological process of fibrosis in multiple tissue and organs. We reviewed the crucial role of CX3CL1/CX3CR1 axis in fibrosis and ageing and systematically summarized the underlying mechanism, which offers prospective strategies of targeting CX3C for the therapy of fibrosis and ageing-related diseases.
Collapse
Affiliation(s)
- Xuanning Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai 200011, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
3
|
Heymans S, Van Linthout S, Kraus SM, Cooper LT, Ntusi NAB. Clinical Characteristics and Mechanisms of Acute Myocarditis. Circ Res 2024; 135:397-411. [PMID: 38963866 DOI: 10.1161/circresaha.124.324674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT05335928.
Collapse
Affiliation(s)
- Stephane Heymans
- Centre for Heart Failure Research, Department of Cardiology, Maastricht University, The Netherlands (S.H.)
- Department of Cardiovascular Sciences, University of Leuven, Belgium (S.H.)
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany (S.V.L.)
- German Centre for Cardiovascular Research, partner site Berlin, Germany (S.V.L.)
| | - Sarah Mignon Kraus
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, South Africa (S.M.K., N.A.B.N.)
- South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town, South Africa (S.M.K., N.A.B.N.)
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL (L.T.C.)
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, South Africa (S.M.K., N.A.B.N.)
- South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town, South Africa (S.M.K., N.A.B.N.)
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa (N.A.B.N.)
- ARUA/Guild Cluster of Research Excellence on Noncommunicable Diseases and Associated Multiborbidity, South Africa (N.A.B.N.)
| |
Collapse
|
4
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
5
|
Pei W, Zhang Y, Zhu X, Zhao C, Li X, Lü H, Lv K. Multitargeted Immunomodulatory Therapy for Viral Myocarditis by Engineered Extracellular Vesicles. ACS NANO 2024; 18:2782-2799. [PMID: 38232382 DOI: 10.1021/acsnano.3c05847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immune regulation therapies are considered promising for treating classically activated macrophage (M1)-driven viral myocarditis (VM). Alternatively, activated macrophage (M2)-derived extracellular vesicles (M2 EVs) have great immunomodulatory potential owing to their ability to reprogram macrophages, but their therapeutic efficacy is hampered by insufficient targeting capacity in vivo. Therefore, we developed cardiac-targeting peptide (CTP) and platelet membrane (PM)-engineered M2 EVs enriched with viral macrophage inflammatory protein-II (vMIP-II), termed CTP/PM-M2 EVsvMIP-II-Lamp2b, to improve the delivery of EVs "cargo" to the heart tissues. In a mouse model of VM, the intravenously injected CTP/PM-M2 EVsvMIP-II-Lamp2b could be carried into the myocardium via CTP, PM, and vMIP-II. In the inflammatory microenvironment, macrophages differentiated from circulating monocytes and macrophages residing in the heart showed enhanced endocytosis rates for CTP/PM-M2 EVsvMIP-II-Lamp2b. Subsequently, CTP/PM-M2 EVsvMIP-II-Lamp2b successfully released functional M2 EVsvMIP-II-Lamp2b into the cytosol, which facilitated the reprogramming of inflammatory M1 macrophages to reparative M2 macrophages. vMIP-II not only helps to increase the targeting ability of M2 EVs but also collaborates with M2 EVs to regulate M1 macrophages in the inflammatory microenvironment and downregulate the levels of multiple chemokine receptors. Finally, the cardiac immune microenvironment was protectively regulated to achieve cardiac repair. Taken together, our findings suggest that CTP-and-PM-engineered M2 EVsvMIP-II-Lamp2b represent an effective means for treating VM and show promise for clinical applications.
Collapse
Affiliation(s)
- Weiya Pei
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Yingying Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, P.R. China
| | - Xiaolong Zhu
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Chen Zhao
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215163, P.R. China
| | - Xueqin Li
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu 233030, P.R. China
| | - Kun Lv
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| |
Collapse
|
6
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
7
|
Stoffers B, Wolf H, Bacmeister L, Kupsch S, Vico T, Marchini T, Brehm MA, Yan I, Becher PM, Ardeshirdavani A, Escher F, Kim SV, Klingel K, Kirchhof P, Blankenberg S, Zeller T, Wolf D, Hilgendorf I, Westermann D, Lindner D. GPR15-mediated T cell recruitment during acute viral myocarditis facilitated virus elimination and improved outcome. NATURE CARDIOVASCULAR RESEARCH 2024; 3:76-93. [PMID: 39195892 PMCID: PMC11357984 DOI: 10.1038/s44161-023-00401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/27/2023] [Indexed: 08/29/2024]
Abstract
Viral myocarditis is characterized by infiltration of mononuclear cells essential for virus elimination. GPR15 has been identified as a homing receptor for regulatory T cells in inflammatory intestine diseases, but its role in inflammatory heart diseases is still elusive. Here we show that GPR15 deficiency impairs coxsackievirus B3 elimination, leading to adverse cardiac remodeling and dysfunction. Delayed recruitment of regulatory T cells in GPR15-deficient mice was accompanied by prolonged persistence of cytotoxic and regulatory T cells. In addition, RNA sequencing revealed prolonged inflammatory response and altered chemotaxis in knockout mice. In line, we identified GPR15 and its ligand GPR15L as an important chemokine receptor-ligand pair for the recruitment of regulatory and cytotoxic T cells. In summary, the insufficient virus elimination might be caused by a delayed recruitment of T cells as well as delayed interferon-γ expression, resulting in a prolonged inflammatory response and an adverse outcome in GPR15-deficient mice.
Collapse
MESH Headings
- Animals
- Myocarditis/immunology
- Myocarditis/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/immunology
- Mice, Knockout
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/genetics
- Disease Models, Animal
- Enterovirus B, Human/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- Acute Disease
- Interferon-gamma/metabolism
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Male
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Myocardium/metabolism
- Myocardium/immunology
- Myocardium/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Bastian Stoffers
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hanna Wolf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Kupsch
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamara Vico
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria A Brehm
- Department Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Siegen, Germany
| | - Isabell Yan
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - P Moritz Becher
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Ardeshirdavani
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Escher
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Institute for Cardiac Diagnostics and Therapy, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow Klinikum, Berlin, Germany
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karin Klingel
- Cardiopathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Paulus Kirchhof
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
8
|
Blum SM, Zlotoff DA, Smith NP, Kernin IJ, Ramesh S, Zubiri L, Caplin J, Samanta N, Martin SC, Tirard A, Sen P, Song Y, Barth J, Slowikowski K, Nasrallah M, Tantivit J, Manakongtreecheep K, Arnold BY, McGuire J, Pinto CJ, McLoughlin D, Jackson M, Chan P, Lawless A, Sharova T, Nieman LT, Gainor JF, Juric D, Mino-Kenudsen M, Sullivan RJ, Boland GM, Stone JR, Thomas MF, Neilan TG, Reynolds KL, Villani AC. Immune Responses in Checkpoint Myocarditis Across Heart, Blood, and Tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557794. [PMID: 37790460 PMCID: PMC10542127 DOI: 10.1101/2023.09.15.557794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are widely used anti-cancer therapies that can cause morbid and potentially fatal immune-related adverse events (irAEs). ICI-related myocarditis (irMyocarditis) is uncommon but has the highest mortality of any irAE. The pathogenesis of irMyocarditis and its relationship to anti-tumor immunity remain poorly understood. We sought to define immune responses in heart, tumor, and blood during irMyocarditis and identify biomarkers of clinical severity by leveraging single-cell (sc)RNA-seq coupled with T cell receptor (TCR) sequencing, microscopy, and proteomics analysis of 28 irMyocarditis patients and 23 controls. Our analysis of 284,360 cells from heart and blood specimens identified cytotoxic T cells, inflammatory macrophages, conventional dendritic cells (cDCs), and fibroblasts enriched in irMyocarditis heart tissue. Additionally, potentially targetable, pro-inflammatory transcriptional programs were upregulated across multiple cell types. TCR clones enriched in heart and paired tumor tissue were largely non-overlapping, suggesting distinct T cell responses within these tissues. We also identify the presence of cardiac-expanded TCRs in a circulating, cycling CD8 T cell population as a novel peripheral biomarker of fatality. Collectively, these findings highlight critical biology driving irMyocarditis and putative biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Steven M. Blum
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel A. Zlotoff
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Leyre Zubiri
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Joshua Caplin
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sidney C. Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant and Immunocompromised Host Program, Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital
| | - Yuhui Song
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
| | - Jaimie Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mazen Nasrallah
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y. Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John McGuire
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Christopher J. Pinto
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel McLoughlin
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Jackson
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha Lawless
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Linda T. Nieman
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
| | - Justin F. Gainor
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dejan Juric
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudsen
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J. Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Genevieve M. Boland
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James R. Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F. Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tomas G. Neilan
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry L. Reynolds
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Pappritz K, Puhl SL, Matz I, Brauer E, Shia YX, El-Shafeey M, Koch SE, Miteva K, Mucha C, Duda GN, Petersen A, Steffens S, Tschöpe C, Van Linthout S. Sex- and age-related differences in the inflammatory properties of cardiac fibroblasts: impact on the cardiosplenic axis and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1117419. [PMID: 38054090 PMCID: PMC10694208 DOI: 10.3389/fcvm.2023.1117419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Background Age and sex are prominent risk factors for heart failure and determinants of structural and functional changes of the heart. Cardiac fibroblasts (cFB) are beyond their task as extracellular matrix-producing cells further recognized as inflammation-supporting cells. The present study aimed to evaluate the impact of sex and age on the inflammatory potential of cFB and its impact on the cardiosplenic axis and cardiac fibrosis. Materials Left ventricles (LV) of 3- and 12-months old male and female C57BL/6J mice were harvested for immunohistochemistry, immunofluorescence and cFB outgrowth culture and the spleen for flow cytometry. LV-derived cFB and respective supernatants were characterized. Results LV-derived cFB from 3-months old male mice exhibited a higher inflammatory capacity, as indicated by a higher gene expression of CC-chemokine ligand (CCL) 2, and CCL7 compared to cFB derived from 3-months old female mice. The resulting higher CCL2/chemokine C-X3-C motif ligand (Cx3CL1) and CCL7/Cx3CL1 protein ratio in cell culture supernatants of 3-months old male vs. female cFB was reflected by a higher migration of Ly6Chigh monocytes towards supernatant from 3-months old male vs. female cFB. In vivo a lower ratio of splenic pro-inflammatory Ly6Chigh to anti-inflammatory Ly6Clow monocytes was found in 3-months old male vs. female mice, suggesting a higher attraction of Ly6Chigh compared to Ly6Clow monocytes towards the heart in male vs. female mice. In agreement, the percentage of pro-inflammatory CD68+ CD206- macrophages was higher in the LV of male vs. female mice at this age, whereas the percentage of anti-inflammatory CD68+ CD206+ macrophages was higher in the LV of 3-months old female mice compared to age-matched male animals. In parallel, the percentage of splenic TGF-β+ cells was higher in both 3- and 12-months old female vs. male mice, as further reflected by the higher pro-fibrotic potential of female vs. male splenocytes at both ages. In addition, female mice displayed a higher total LV collagen content compared to age-matched male mice, whereby collagen content of female cFB was higher compared to male cFB at the age of 12-months. Conclusion Age- and sex-dependent differences in cardiac fibrosis and inflammation are related to age- and sex-dependent variations in the inflammatory properties of cardiac fibroblasts.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sarah-Lena Puhl
- Comprehensive Heart Failure Center, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Isabel Matz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Erik Brauer
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Yi Xuan Shia
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Muhammad El-Shafeey
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Suzanne E. Koch
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christin Mucha
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Ansgar Petersen
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department Cardiology, Angiology, and Intensive Medicine (CVK) at the German Heart Center of the Charite (DHZC), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
10
|
Liu T, Fu Y, Shi J, He S, Chen D, Li W, Chen Y, Zhang L, Lv Q, Yang Y, Jin Q, Wang J, Xie M. Noninvasive ultrasound stimulation to treat myocarditis through splenic neuro-immune regulation. J Neuroinflammation 2023; 20:94. [PMID: 37069636 PMCID: PMC10108488 DOI: 10.1186/s12974-023-02773-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) has been widely studied to modulate the immune response. Current stimulating strategies are invasive or imprecise. Noninvasive low-intensity pulsed ultrasound (LIPUS) has become increasingly appreciated for targeted neuronal modulation. However, its mechanisms and physiological role on myocarditis remain poorly defined. METHODS The mouse model of experimental autoimmune myocarditis was established. Low-intensity pulsed ultrasound was targeted at the spleen to stimulate the spleen nerve. Under different ultrasound parameters, histological tests and molecular biology were performed to observe inflammatory lesions and changes in immune cell subsets in the spleen and heart. In addition, we evaluated the dependence of the spleen nerve and cholinergic anti-inflammatory pathway of low-intensity pulsed ultrasound in treating autoimmune myocarditis in mice through different control groups. RESULTS The echocardiography and flow cytometry of splenic or heart infiltrating immune cells revealed that splenic ultrasound could alleviate the immune response, regulate the proportion and function of CD4+ Treg and macrophages by activating cholinergic anti-inflammatory pathway, and finally reduce heart inflammatory injury and improve cardiac remodeling, which is as effective as an acetylcholine receptor agonists GTS-21. Transcriptome sequencing showed significant differential expressed genes due to ultrasound modulation. CONCLUSIONS It is worth noting that the ultrasound therapeutic efficacy depends greatly on acoustic pressure and exposure duration, and the effective targeting organ was the spleen but not the heart. This study provides novel insight into the therapeutic potentials of LIPUS, which are essential for its future application.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Dandan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
11
|
Lu Z, Zhang A, Dai Y. CX3CL1 deficiency ameliorates inflammation, apoptosis and accelerates osteogenic differentiation, mineralization in LPS-treated MC3T3-E1 cells via its receptor CX3CR1. Ann Anat 2023; 246:152036. [PMID: 36436718 DOI: 10.1016/j.aanat.2022.152036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Osteoporosis is a devastating skeletal disease responsible for bone fragility and fracture. CX3C chemokine ligand 1 (CX3CL1) is an inflammatory chemokine which has been identified to possess increased expression in the serum of postmenopausal osteoporotic patients. This paper was to illuminate the impacts of CX3CL1 on inflammation, apoptosis and osteogenic differentiation, mineralization in LPS-treated osteoblasts and investigate the regulatory mechanism. METHODS The viability of MC3T3-E1 cells exposed to elevating doses of LPS was detected by CCK-8 assay. CX3CL1 and C-X3-C motif chemokine receptor 1 (CX3CR1) expression were detected by RT-qPCR and western blot. CX3CR1 expression was examined again following CX3CL1 depletion. The binding of CX3CL1 with CX3CR1 was testified through Co-IP assay. In MC3T3-E1 cells co-transduced with CX3CL1 interference and CX3CR1 overexpression plasmids following LPS exposure, cell activity and inflammation were separately estimated via CCK-8 assay and RT-qPCR. Apoptosis was measured by TUNEL assay and western blot. Osteoblast differentiation was evaluated by ALP activity assay, RT-qPCR and western blot. Osteoblast mineralization was assessed by ARS staining, RT-qPCR and western blot. Results The experimental data presented that LPS attenuated the viability and enhanced CX3CL1 and CX3CR1 expression in MC3T3-E1 cells in a dose-dependent manner. CX3CR1 interacted with CX3CL1 and was positively modulated by CX3CL1. The suppressive role of CX3CL1 absence in LPS-evoked viability decrease, inflammation and apoptosis in MC3T3-E1 cells was reversed by CX3CR1 elevation. Besides, CX3CR1 reversed the promoted osteoblast differentiation and mineralization imposed by CX3CL1 interference. CONCLUSIONS CX3CL1 knockdown eased inflammation, apoptosis and promoted osteogenic differentiation, mineralization in MC3T3-E1 cells upon LPS exposure through down-regulating CX3CR1.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical school, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Aihua Zhang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yan Dai
- Medical research center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
12
|
Pappritz K, Lin J, El-Shafeey M, Fechner H, Kühl U, Alogna A, Spillmann F, Elsanhoury A, Schulz R, Tschöpe C, Van Linthout S. Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Fail 2022; 9:925-941. [PMID: 35178861 PMCID: PMC8934990 DOI: 10.1002/ehf2.13845] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
Aim The acute phase of a coxsackievirus 3 (CVB3)‐induced myocarditis involves direct toxic cardiac effects and the systemic activation of the immune system, including the cardiosplenic axis. Consequently, the nucleotide‐binding oligomerization domain‐like receptor pyrin domain‐containing‐3 (NLRP3) inflammasome pathway is activated, which plays a role in disease pathogenesis and progression. The anti‐inflammatory drug colchicine exerts its effects, in part, via reducing NLRP3 activity, and has been shown to improve several cardiac diseases, including acute coronary syndrome and pericarditis. The aim of the present study was to evaluate the potential of colchicine to improve experimental CVB3‐induced myocarditis. Methods and results C57BL6/j mice were intraperitoneally injected with 1 × 105 plaque forming units of CVB3. After 24 h, mice were treated with colchicine (5 μmol/kg body weight) or phosphate‐buffered saline (PBS) via oral gavage (p.o.). Seven days post infection, cardiac function was haemodynamically characterized via conductance catheter measurements. Blood, the left ventricle (LV) and spleen were harvested for subsequent analyses. In vitro experiments on LV‐derived fibroblasts (FB) and HL‐1 cells were performed to further evaluate the anti‐(fibro)inflammatory and anti‐apoptotic effects of colchicine via gene expression analysis, Sirius Red assay, and flow cytometry. CVB3 + colchicine mice displayed improved LV function compared with CVB3 + PBS mice, paralleled by a 4.7‐fold (P < 0.01) and 1.7‐fold (P < 0.001) reduction in LV CVB3 gene expression and cardiac troponin‐I levels in the serum, respectively. Evaluation of components of the NLRP3 inflammasome revealed an increased percentage of apoptosis‐associated speck‐like protein containing a CARD domain (ASC)‐expressing, caspase‐1‐expressing, and interleukin‐1β‐expressing cells in the myocardium and in the spleen of CVB3 + PBS vs. control mice, which was reduced in CVB3 + colchicine compared with CVB3 + PBS mice. This was accompanied by 1.4‐fold (P < 0.0001), 1.7‐fold (P < 0.0001), and 1.7‐fold (P < 0.0001) lower numbers of cardiac dendritic cells, natural killer cells, and macrophages, respectively, in CVB3 + colchicine compared with CVB3 + PBS mice. A 1.9‐fold (P < 0.05) and 4.6‐fold (P < 0.001) reduced cardiac gene expression of the fibrotic markers, Col1a1 and lysyl oxidase, respectively, was detected in CVB3 + colchicine mice compared with CVB3 + PBS animals, and reflected by a 2.2‐fold (P < 0.05) decreased Collagen I/III protein ratio. Colchicine further reduced Col3a1 mRNA and collagen protein expression in CVB3‐infected FB and lowered apoptosis and viral progeny release in CVB3‐infected HL‐1 cells. In both CVB3 FB and HL‐1 cells, colchicine down‐regulated the NLRP3 inflammasome‐related components ASC, caspase‐1, and IL‐1β. Conclusions Colchicine improves LV function in CVB3‐induced myocarditis, involving a decrease in cardiac and splenic NLRP3 inflammasome activity, without exacerbation of CVB3 load.
Collapse
Affiliation(s)
- Kathleen Pappritz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Universitätmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Jie Lin
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Muhammad El-Shafeey
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Universitätmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Physiologisches Institut, Fachbereich Medizin der Justus-Liebig-Universität, Giessen, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Henry Fechner
- Department of Applied Biochemistry, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Uwe Kühl
- Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Alessio Alogna
- Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Frank Spillmann
- Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Ahmed Elsanhoury
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Universitätmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Physiologisches Institut, Fachbereich Medizin der Justus-Liebig-Universität, Giessen, Germany
| | - Carsten Tschöpe
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Universitätmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Universitätmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
13
|
Flamant M, Mougenot N, Balse E, Le Fèvre L, Atassi F, Gautier EL, Le Goff W, Keck M, Nadaud S, Combadière C, Boissonnas A, Pavoine C. Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure. Sci Rep 2021; 11:17982. [PMID: 34504250 PMCID: PMC8429682 DOI: 10.1038/s41598-021-97493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
We recently highlighted a novel potential protective paracrine role of cardiac myeloid CD11b/c cells improving resistance of adult hypertrophied cardiomyocytes to oxidative stress and potentially delaying evolution towards heart failure (HF) in response to early β-adrenergic stimulation. Here we characterized macrophages (Mφ) in hearts early infused with isoproterenol as compared to control and failing hearts and evaluated the role of upregulated CX3CL1 in cardiac remodeling. Flow cytometry, immunohistology and Mφ-depletion experiments evidenced a transient increase in Mφ number in isoproterenol-infused hearts, proportional to early concentric hypertrophy (ECH) remodeling and limiting HF. Combining transcriptomic and secretomic approaches we characterized Mφ-enriched CD45+ cells from ECH hearts as CX3CL1- and TNFα-secreting cells. In-vivo experiments, using intramyocardial injection in ECH hearts of either Cx3cl1 or Cx3cr1 siRNA, or Cx3cr1−/− knockout mice, identified the CX3CL1/CX3CR1 axis as a protective pathway delaying transition to HF. In-vitro results showed that CX3CL1 not only enhanced ECH Mφ proliferation and expansion but also supported adult cardiomyocyte hypertrophy via a synergistic action with TNFα. Our data underscore the in-vivo transient protective role of the CX3CL1/CX3CR1 axis in ECH remodeling and suggest the participation of CX3CL1-secreting Mφ and their crosstalk with CX3CR1-expressing cardiomyocytes to delay HF.
Collapse
Affiliation(s)
- M Flamant
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - N Mougenot
- Sorbonne Université, UMS28, Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux (PECMV), 75013, Paris, France
| | - E Balse
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - L Le Fèvre
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.,Medical and Infectious Intensive Care Unit, Bichat hospital, APHP, 46 rue Henri Huchard, 75018, Paris, France
| | - F Atassi
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - E L Gautier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S ICAN 1166 Team 5, 75013, Paris, France
| | - W Le Goff
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S ICAN 1166 Team 4, 75013, Paris, France
| | - M Keck
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.,Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - S Nadaud
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - C Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 75013, Paris, France
| | - A Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 75013, Paris, France
| | - C Pavoine
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.
| |
Collapse
|
14
|
CX3CR1 Depletion Promotes the Formation of Platelet-Neutrophil Complexes and Aggravates Acute Peritonitis. Shock 2021; 56:287-297. [PMID: 33481549 DOI: 10.1097/shk.0000000000001733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peritonitis is a life-threatening condition on intensive care units. Inflammatory cytokines and their receptors drive inflammation, cause the formation of platelet-neutrophil complexes (PNCs) and therefore the migration of polymorphonuclear neutrophils (PMNs) into the inflamed tissue. CX3CL1 and its receptor CX3CR1 are expressed in various cells, and promote inflammation. The shedding of CX3CL1 is mediated by a disintegrin and metalloprotease (ADAM) 17. The role of the CX3CL1-CX3CR1 axis in acute peritonitis remains elusive. METHODS In zymosan-induced peritonitis, we determined the formation of PNCs in the blood and the expression of PNC-related molecules on PNCs. PMN migration into the peritoneal lavage was evaluated in wild-type (WT) and CX3CR1-/- animals by flow cytometry. CX3CL1, ADAM17, and the expression of various inflammatory cytokines were detected. Further, we determined the inflammation-associated activation of the intracellular transcription factor extracellular signal-regulated kinase 1/2 (ERK1/2) by Western blot. RESULTS The PMN accumulation in the peritoneal lavage and the PNC formation in the circulation were significantly raised in CX3CR1-/- compared with WT animals. The expression of PNC-related selectins on PNCs was significantly increased in the blood of CX3CR1-/- animals, as well as cytokine levels. Further, we observed an increased activation of ERK1/2 and elevated ADAM17 expression in CX3CR1-/- during acute inflammation. Selective ERK1/2 inhibition ameliorated inflammation-related increased ADAM17 expression. CONCLUSIONS A CX3CR1 deficiency raised the release of inflammatory cytokines and increased the PNC formation respectively PMN migration via an elevated ERK1/2 activation during acute peritonitis. Further, we observed a link between the ERK1/2 activation and an elevated ADAM17 expression on PNC-related platelets and PMNs during inflammation. Our data thus illustrate a crucial role of CX3CR1 on the formation of PNCs and regulating inflammation in acute peritonitis.
Collapse
|
15
|
Abstract
Several members of the chemokine family are involved in regulation of fibrosis. This review manuscript discusses the role of the chemokines in the pathogenesis of myocardial fibrosis. The CC chemokine CCL2 exerts fibrogenic actions through recruitment and activation of monocytes and macrophages expressing its receptor, CCR2. Other CC chemokines may also contribute to fibrotic remodeling by recruiting subsets of fibrogenic macrophages. CXC chemokines containing the ELR motif may exert pro-fibrotic actions, through recruitment of activated neutrophils and subsequent formation of neutrophil extracellular traps (NETs), or via activation of fibrogenic monocytes. CXCL12 has also been suggested to exert fibrogenic actions through effects on fibroblasts and immune cells. In contrast, the CXCR3 ligand CXCL10 was found to reduce cardiac fibrosis, inhibiting fibroblast migration. Chemokines are critical links between inflammation and fibrosis in myocardial disease and may be promising therapeutic targets for patients with heart failure accompanied by prominent inflammation and fibrosis.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
16
|
Pappritz K, Van Linthout S. Opioid-Induced Immunomodulation: Consequences for the Experimental Coxsackievirus B3-Induced Myocarditis Model. BIOLOGY 2020; 9:biology9100335. [PMID: 33066118 PMCID: PMC7650777 DOI: 10.3390/biology9100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023]
Abstract
Simple Summary Myocarditis is an inflammatory disorder of the heart mainly caused by viruses. To investigate viral myocarditis, the Coxsackievirus B3 (CVB3)-induced myocarditis model is the experimental model used since more than sixty years. In the pathogeneses of viral myocarditis, the subtle balance between pro-and anti-inflammatory immune responses is of great importance for disease manifestation. Parallel to the infection of the heart, experimental CVB3-induced myocarditis results in an infection of the pancreas, causing a severe burden for the challenged animals. In frame of animal welfare, application of analgesics is mandatory. So far, positive as well as negative effects of opioids on the immune system have been described. However, the impact of opioid application on the pathogenesis of experimental CVB3-induced myocarditis has not been investigated yet. Since examinations on disease pathways and new treatment options rely on established models to generate reproducible data, applicability of opioids in experimental CVB3-induced myocarditis needs to be carefully evaluated. For this purpose, we summarized published studies for 13 different opioids and discussed their potential impact on the CVB3-induced myocarditis model. Abstract Myocarditis is an inflammatory disorder of the heart predominantly caused by infectious agents. Since more than sixty years, the Coxsackievirus B3 (CVB3)-induced myocarditis mouse model is the experimental model used to investigate viral myocarditis. The pathogenesis of viral myocarditis is conceptually a multiphase process, initiated by the infection of cardiomyocytes, followed by activation of the immune system, and resulting in myocardial fibrosis and left ventricular dysfunction. In parallel to the direct infection of the heart, CVB3 replicates in lymphatic organs such as the pancreas. Due to infection of the pancreas, the model of experimental CVB3-induced myocarditis is estimated as a severe burden for the challenged animals. Application of analgesics in frame of the animal welfare act (European directive 2010/63/EU) is more and more becoming a matter of debate. For this purpose, we summarized published studies for 13 different opioids and discussed their potential impact on CVB3-induced myocarditis. In addition, with this summary we also want to provide guidance for researchers beyond the myocarditis field to estimate the impact of opioids on the immune system for their specific model. In the literature, both immunosuppressive as well as immune-activating effects of opioids have been described, but examinations in experimental CVB3-induced myocarditis have still not been reported so far. Based on the existing publications, administration of opioids in experimental CVB3-induced myocarditis might result in more severe disease progression, including higher mortality, or a less pronounced myocarditis model, failing to be used for the establishment of new treatment options. Taken together, the applicability of opioids in experimental CVB3-induced myocarditis and in inflammatory models in general needs to be carefully evaluated and further investigated.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Campus Virchow Klinikum (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450539509
| | - Sophie Van Linthout
- Campus Virchow Klinikum (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10115 Berlin, Germany
| |
Collapse
|
17
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
18
|
Daba TM, Zhao Y, Pan Z. Advancement of Mechanisms of Coxsackie Virus B3-Induced Myocarditis Pathogenesis and the Potential Therapeutic Targets. Curr Drug Targets 2020; 20:1461-1473. [PMID: 31215390 DOI: 10.2174/1389450120666190618124722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Viral myocarditis is a cardiac disease caused by Group B Coxsackie virus of Enterovirus genus in the Picorna viridae family. It causes heart failure in children, young and adults. Ten Percent (10%) of acute heart failure and 12% of sudden deaths in young and adults who are less than 40 years is due to this viral myocarditis. If treatment action is not taken earlier, the viral disease can develop into chronic myocarditis and Dilated Cardiomyopathy which lead to congestive heart failure. And these eventually result in a reduced cardiac function which finally brings the victim to death. The only treatment option of the disease is heart transplantation once the acute stage of disease develops to chronic and Dilated Cardiomyopathy. Currently, there is a limitation in daily clinical treatments and even some available treatment options are ineffective. Therefore, focusing on search for treatment options through investigation is imperative. Recent studies have reported that biological molecules show a promising role. But their mechanism of pathogenesis is still unclear. A detailed study on identifying the role of biological molecules involved in Coxsackie B3 virus induced myocarditis and their mechanisms of pathogenesis; compiling and disseminating the findings of the investigation to the scientific communities contribute one step forward to the solution. Therefore, this review is aimed at compiling information from findings of current studies on the potential therapeutic role of micro RNA, cytokines and chemokines on the mechanism of pathogenesis of Coxsackie virus B3- induced myocarditis to give brief information for scholars to conduct a detailed study in the area.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Department of Biology, College of Natural and Computational Sciences, Bule Hora University, Bule Hora, Ethiopia
| | - Yue Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Tschöpe C, Van Linthout S, Jäger S, Arndt R, Trippel T, Müller I, Elsanhoury A, Rutschow S, Anker SD, Schultheiss HP, Pauschinger M, Spillmann F, Pappritz K. Modulation of the acute defence reaction by eplerenone prevents cardiac disease progression in viral myocarditis. ESC Heart Fail 2020; 7:2838-2852. [PMID: 32662949 PMCID: PMC7405199 DOI: 10.1002/ehf2.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Aims Left ventricular (LV) dysfunction in viral myocarditis is attributed to myocardial inflammation and fibrosis, inducing acute and long‐time cardiac damage. Interventions are not established. On the basis of the link between inflammation, fibrosis, aldosterone, and extracellular matrix regulation, we aimed to investigate the effect of an early intervention with the mineralocorticoid receptor antagonist (MRA) eplerenone on cardiac remodelling in a murine model of persistent coxsackievirus B3 (CVB3)‐induced myocarditis. Methods and results SWR/J mice were infected with 5 × 104 plaque‐forming units of CVB3 (Nancy strain) and daily treated either with eplerenone (200 mg/kg body weight) or with placebo starting from Day 1. At Day 8 or 28 post infection, mice were haemodynamically characterized and subsequently sacrificed for immunohistological and molecular biology analyses. Eplerenone did not influence CVB3 load. Already at Day 8, 1.8‐fold (P < 0.05), 1.4‐fold (P < 0.05), 3.2‐fold (P < 0.01), and 2.1‐fold (P < 0.001) reduction in LV intercellular adhesion molecule 1 expression, presence of monocytes/macrophages, oxidative stress, and apoptosis, respectively, was observed in eplerenone‐treated vs. untreated CVB3‐infected mice. In vitro, eplerenone led to 1.4‐fold (P < 0.01) and 1.2‐fold (P < 0.01) less CVB3‐induced cardiomyocyte oxidative stress and apoptosis. Furthermore, collagen production was 1.1‐fold (P < 0.05) decreased in cardiac fibroblasts cultured with medium of eplerenone‐treated vs. untreated CVB3‐infected HL‐1 cardiomyocytes. These ameliorations were in vivo translated into prevention of cardiac fibrosis, as shown by 1.4‐fold (P < 0.01) and 2.1‐fold (P < 0.001) lower collagen content in the LV of eplerenone‐treated vs. untreated CVB3‐infected mice at Days 8 and 28, respectively. This resulted in an early and long‐lasting improvement of LV dimension and function, as indicated by reduced LV end‐systolic volume and end‐diastolic volume, and an increase in LV contractility (dP/dtmax) and LV relaxation (dP/dtmin), respectively (P < 0.05). Conclusions Early intervention with the MRA eplerenone modulates the acute host and defence reaction and prevents cardiac disease progression in experimental CVB3‐induced myocarditis without aggravation of viral load. The findings advocate for an initiation of therapy of viral myocarditis as early as possible, even before the onset of inflammation‐induced myocardial dysfunction. This may also have implications for coronavirus disease‐19 therapy.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Sebastian Jäger
- Department of Cardiology, Alexianer Hospital Hedwigshöhe, Berlin, Germany
| | - Robert Arndt
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Tobias Trippel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Irene Müller
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Ahmed Elsanhoury
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Susanne Rutschow
- Department of Cardiology, Angiology Johanniter-Kliniken, Stendal, Germany
| | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | | | - Matthias Pauschinger
- Department of Cardiology, Paracelsus University, Klinikum Nürnberg, Nürnberg, Germany
| | - Frank Spillmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Kathleen Pappritz
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
20
|
Wang Y, Zhao S, Chen Y, Wang Y, Wang T, Wo X, Dong Y, Zhang J, Xu W, Qu C, Feng X, Wu X, Wang Y, Zhong Z, Zhao W. N-Acetyl cysteine effectively alleviates Coxsackievirus B-Induced myocarditis through suppressing viral replication and inflammatory response. Antiviral Res 2020; 179:104699. [DOI: 10.1016/j.antiviral.2019.104699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
|
21
|
Elsanhoury A, Tschöpe C, Van Linthout S. A Toolbox of Potential Immune-Related Therapies for Inflammatory Cardiomyopathy. J Cardiovasc Transl Res 2020; 14:75-87. [PMID: 32440911 PMCID: PMC7892499 DOI: 10.1007/s12265-020-10025-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Myocarditis is a multifactorial disorder, characterized by an inflammatory reaction in the myocardium, predominantly triggered by infectious agents, but also by antigen mimicry or autoimmunity in susceptible individuals. Unless spontaneously resolved, a chronic inflammatory course concludes with cardiac muscle dysfunction portrayed by ventricular dilatation, clinically termed inflammatory cardiomyopathy (Infl-CM). Treatment strategies aim to resolve chronic inflammation and preserve cardiac function. Beside standard heart failure treatments, which only play a supportive role in this condition, systemic immunosuppressants are used to diminish inflammatory cell function at the cost of noxious side effects. To date, the treatment protocols are expert-based without large clinical evidence. This review describes concept and contemporary strategies to alleviate myocardial inflammation and sheds light on potential inflammatory targets in an evidence-based order.
Collapse
Affiliation(s)
- Ahmed Elsanhoury
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
23
|
Bouin A, Semler BL. Picornavirus Cellular Remodeling: Doubling Down in Response to Viral-Induced Inflammation. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:31-37. [PMID: 32704466 PMCID: PMC7377643 DOI: 10.1007/s40588-020-00138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose of Review To highlight recent findings on how picornavirus infections of the airways and cardiac tissues impact cellular inflammation and remodeling events. Recent Findings Recent published work has revealed that although many picornavirus infections appear to be initially asymptomatic, there are significant disease sequelae that result from chronic or persistent infections and the long-term, pathogenic effects on host tissues. Summary Because many acute picornavirus infections are asymptomatic, it is difficult to diagnose these pathologies at the early stages of disease. As a result, we must rely on preventative measures (i.e., vaccination) or discover novel treatments to reverse tissue damage and remodeling in affected individuals. Both of these strategies will require a comprehensive knowledge of virus-and cell-specific replication determinants and how these processes induce pathogenic effects in infected cells and tissues.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| |
Collapse
|
24
|
Abstract
Myocarditis is generally a mild and self-limited consequence of systemic infection of cardiotropic viruses. However, patients can develop a temporary or permanent impairment of cardiac function including acute cardiomyopathy with hemodynamic compromise or severe arrhythmias. In this setting, specific causes of inflammation are associated with variable risks of death and transplantation. Recent translational studies suggest that treatments tailored to specific causes of myocarditis may impact clinical outcomes when added to guideline-directed medical care. This review summarizes recent advances in translational research that influence the utility of endomyocardial biopsy for the management of inflammatory cardiomyopathies. Emerging therapies for myocarditis based on these mechanistic hypotheses are entering clinical trials and may add to the benefits of established heart failure treatment.
Collapse
Affiliation(s)
- Carsten Tschöpe
- From the Charité, University Medicine Berlin, Campus Virchow Klinikum (CVK), Department of Cardiology, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin-Brandenburg Centrum für Regenerative Therapien, Germany (C.T., S.V.L.).,Deutsches Zentrum für Herz Kreislauf Forschung (DZHK)-Standort Berlin/Charité, Germany (C.T., S.V.L.)
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL (L.T.C.)
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (G.T.-A.).,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico (G.T.-A.)
| | - Sophie Van Linthout
- From the Charité, University Medicine Berlin, Campus Virchow Klinikum (CVK), Department of Cardiology, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin-Brandenburg Centrum für Regenerative Therapien, Germany (C.T., S.V.L.).,Deutsches Zentrum für Herz Kreislauf Forschung (DZHK)-Standort Berlin/Charité, Germany (C.T., S.V.L.)
| |
Collapse
|
25
|
Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 2019; 72:2213-2230. [PMID: 30360829 DOI: 10.1016/j.jacc.2018.08.2149] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.
Collapse
Affiliation(s)
- Kory J Lavine
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Benjamin J Kopecky
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Godwin
- The Jackson Laboratory, Bar Harbor, Maine; Mt. Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
26
|
Abstract
Purpose of review Myocarditis is an inflammatory disease of the cardiac muscle mainly caused by viral infection. Due to the diverse clinical presentation of myocarditis, accurate diagnosis demands simultaneous histologic, immunohistochemical and molecular biological workup of endomyocardial biopsies (EMBs) as defined by the position statement of the Working Group on Myocardial and Pericardial Diseases of the European Society of Cardiology on myocarditis. Recent findings Endomyocardial biopsy-based analysis of viral transcriptional activity, mRNA expression, epigenetics and region-specific protein expression analysis via imaging mass spectrometry have led to the identification of novel potential diagnostic criteria, markers with prognostic value and therapeutic targets for the treatment of viral myocarditis, opening new avenues for novel therapies, including cell therapies, as well as the use of established treatment options, be it from other indications. Summary Under certain clinical scenarios EMB-based analysis is required to come to a tailored individualized therapy that improves symptoms and prognosis of patients with acute and chronic viral-driven cardiac inflammation.
Collapse
|
27
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
28
|
Tschöpe C, Van Linthout S, Klein O, Mairinger T, Krackhardt F, Potapov EV, Schmidt G, Burkhoff D, Pieske B, Spillmann F. Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts. J Cardiovasc Transl Res 2018; 12:116-123. [PMID: 30084076 PMCID: PMC6497621 DOI: 10.1007/s12265-018-9820-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Mechanical circulatory support (MCS) is often required to stabilize patients with acute fulminant myocarditis with cardiogenic shock. This review gives an overview of the successful use of left-sided Impella in the setting of fulminant myocarditis and cardiogenic shock as the sole means of MCS as well as in combination with right ventricular (RV) support devices including extracorporeal life support (ECLS) (ECMELLA) or an Impella RP (BI-PELLA). It further provides evidence from endomyocardial biopsies that in addition to giving adequate support, LV unloading by Impella exhibits disease-modifying effects important for myocardial recovery (i.e., bridge-to-recovery) achieved by this newly termed “prolonged Impella” (PROPELLA) concept in which LV-IMPELLA 5.0, implanted via an axillary approach, provides support in awake, mobilized patients for several weeks. Finally, this review addresses the question of how to define the appropriate time point for weaning strategies and for changing or discontinuing unloading in fulminant myocarditis.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany.
- Charité, University Medicine Berlin, Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Campus Virchow Klinikum, Berlin, Germany.
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany.
| | - Sophie Van Linthout
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité, University Medicine Berlin, Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Campus Virchow Klinikum, Berlin, Germany
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany
| | - Oliver Klein
- Charité, University Medicine Berlin, Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Campus Virchow Klinikum, Berlin, Germany
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany
| | | | - Florian Krackhardt
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany
| | - Evgenij V Potapov
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Gunther Schmidt
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany
| | | | - Burkert Pieske
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany
- Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Frank Spillmann
- Charité, University Medicine Berlin, Department of Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Deutsches Zentrum für Herz Kreislauf Forschung (DZHK) - Standort Berlin/Charité, Berlin, Germany
| |
Collapse
|
29
|
Pappritz K, Savvatis K, Miteva K, Kerim B, Dong F, Fechner H, Müller I, Brandt C, Lopez B, González A, Ravassa S, Klingel K, Diez J, Reinke P, Volk HD, Van Linthout S, Tschöpe C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J 2018; 32:fj201701408R. [PMID: 29863913 DOI: 10.1096/fj.201701408r] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulatory T (Treg) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic Treg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic Treg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + Treg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6ChighCCR2highCx3Cr1low monocytes and higher retention of proinflammatory Ly6CmidCCR2highCx3Cr1low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + Treg compared with CVB3 + PBS mice. Coculture of Treg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of Treg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6ClowCCR2lowCx3Cr1high subset. Treg-mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + Treg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + Treg mice compared with CVB3 + PBS mice. In summary, adoptive Treg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Bahtiyar Kerim
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Christine Brandt
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Begoña Lopez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Arantxa González
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Susana Ravassa
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Javier Diez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Department of Nephrology and Intensive Medicine, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
30
|
Pappritz K, Savvatis K, Koschel A, Miteva K, Tschöpe C, Van Linthout S. Cardiac (myo)fibroblasts modulate the migration of monocyte subsets. Sci Rep 2018; 8:5575. [PMID: 29615815 PMCID: PMC5882911 DOI: 10.1038/s41598-018-23881-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Cardiac fibroblasts play an important role in the regulation of the extracellular matrix and are newly recognized as inflammatory supporter cells. Interferon (IFN)-γ is known to counteract transforming growth factor (TGF)-ß1-induced myofibroblast differentiation. This study aims at investigating in vitro how IFN-γ affects TGF-ß1-induced monocyte attraction. Therefore, C4 fibroblasts and fibroblasts obtained by outgrowth culture from the left ventricle (LV) of male C57BL6/j mice were stimulated with TGF-β1, IFN-γ and TGF-β1 + IFN-γ. Confirming previous studies, IFN-γ decreased the TGF-ß1-induced myofibroblast differentiation, as obviated by lower collagen I, III, α-smooth muscle actin (α-SMA), lysyl oxidase (Lox)-1 and lysyl oxidase-like (LoxL)-2 levels in TGF-β1 + IFN-γ- versus TGF-ß1-stimulated cardiac fibroblasts. TGF-β1 + IFN-γ-stimulated C4 and cardiac fibroblasts displayed a higher CC-chemokine ligand (CCL) 2, CCL7 and chemokine C-X3-C motif ligand (Cx3CL1) release versus sole TGF-ß1-stimulated fibroblasts. Analysis of migrated monocyte subsets towards the different conditioned media further revealed that sole TGF-β1- and IFN-γ-conditioned media particularly attracted Ly6Clow and Ly6Chigh monocytes, respectively, as compared to control media. In line with theses findings, TGF-β1 + IFN-γ-conditioned media led to a lower Ly6Clow/Ly6Chigh monocyte migration ratio compared to sole TGF-ß1 treatment. These differences in monocyte migration reflect the complex interplay of pro-inflammatory cytokines and pro-fibrotic factors in cardiac remodelling and inflammation.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, UK.,William Harvey Research Institute, Queen Mary University London, London, UK
| | - Annika Koschel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Kapka Miteva
- Department of Biomedical Sciences, Humanitas University; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center Pieve Building, Rozzano, Milano, Italy
| | - Carsten Tschöpe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Sophie Van Linthout
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany.
| |
Collapse
|
31
|
Müller I, Vogl T, Pappritz K, Miteva K, Savvatis K, Rohde D, Most P, Lassner D, Pieske B, Kühl U, Van Linthout S, Tschöpe C. Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004125. [PMID: 29158436 DOI: 10.1161/circheartfailure.117.004125] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/23/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The alarmins S100A8 and S100A9 are damage-associated molecular patterns, which play a pivotal role in cardiovascular diseases, inflammation, and viral infections. We aimed to investigate their role in Coxsackievirus B3 (CVB3)-induced myocarditis. METHODS AND RESULTS S100A8 and S100A9 mRNA expression was 13.0-fold (P=0.012) and 5.1-fold (P=0.038) higher in endomyocardial biopsies from patients with CVB3-positive myocarditis compared with controls, respectively. Elimination of CVB3 led to a downregulation of these alarmins. CVB3-infected mice developed an impaired left ventricular function and displayed an increased left ventricular S100A8 and S100A9 protein expression versus controls. In contrast, CVB3-infected S100A9 knockout mice, which are also a complete knockout for S100A8 on protein level, showed an improved left ventricular function, which was associated with a reduced cardiac inflammatory and oxidative response, and lower CVB3 copy number compared with wild-type CVB3 mice. Exogenous application of S100A8 to S100A9 knockout CVB3 mice induced a severe myocarditis similar to wild-type CVB3 mice. In CVB3-infected HL-1 cells, S100A8 and S100A9 enhanced oxidative stress and CVB3 copy number compared with unstimulated infected cells. In CVB3-infected RAW macrophages, both alarmins increased MIP-2 (macrophage inflammatory protein-2) chemokine expression, which was reduced in CVB3 S100A8 knockdown versus scrambled siRNA CVB3 cells. CONCLUSIONS S100A8 and S100A9 aggravate CVB3-induced myocarditis and might serve as therapeutic targets in inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- Irene Müller
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Thomas Vogl
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kathleen Pappritz
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kapka Miteva
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Konstantinos Savvatis
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - David Rohde
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Patrick Most
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Dirk Lassner
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Burkert Pieske
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Uwe Kühl
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Sophie Van Linthout
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Carsten Tschöpe
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.).
| |
Collapse
|