1
|
Collins M, Pearce B. Mitochondrial DNA variation and intervertebral disc degeneration: a genotypic analysis in a South African cohort. Mol Biol Rep 2025; 52:288. [PMID: 40053230 PMCID: PMC11889028 DOI: 10.1007/s11033-025-10394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Non-communicable diseases are multifactorial in that they can be caused by genetic factors, age, sex and poor lifestyle choices. They are estimated to account for 71% of deaths globally with 80% of these deaths occurring in low- and middle-income countries. This is particularly true for Intervertebral Disc Degeneration associated with mitochondrial dysfunction. Interestingly, mitochondrial dysfunction can arise from mutations in both the nuclear and the mitochondrial genomes. The present study, therefore, aimed to determine if there is an association between mitochondrial DNA mutations associated with mitochondrial dysfunction and disc degeneration in a South African cohort, and in addition, generate genetic data for understudied mutations in African populations. METHODS AND RESULTS Mutations were selected using a systematic literature review. DNA was collected using buccal swabs and extracted using a standard salt-lysis protocol. Mass-array genotyping was done for previously reported as well as novel mutations. GenAlEx (version 6.5), RStudio and SHEsis were used for statistical analyses. Although no significant associations were found, the identified polymorphic mutations C16223T, A10398G and A8536G were found to have higher mutant allele frequencies in case individuals indicating that had a larger cohort been used, significance may have been observed. CONCLUSIONS This study was able to generate genotypic information for a South African cohort for both reported and understudied mutations. Furthermore, the identification of higher mutant allele frequencies for C16223T, A10398G and A8536G highlights the importance of considering these mutations in future studies using a larger cohort.
Collapse
Affiliation(s)
- Megan Collins
- Genetics Department, Faculty of Agriscience, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa
| | - Brendon Pearce
- Genetics Department, Faculty of Agriscience, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
2
|
Tachi R, Ohi K, Nishizawa D, Soda M, Fujikane D, Hasegawa J, Kuramitsu A, Takai K, Muto Y, Sugiyama S, Kitaichi K, Hashimoto R, Ikeda K, Shioiri T. Mitochondrial genetic variants associated with bipolar disorder and Schizophrenia in a Japanese population. Int J Bipolar Disord 2023; 11:26. [PMID: 37477801 PMCID: PMC10361950 DOI: 10.1186/s40345-023-00307-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are complex psychotic disorders (PSY), with both environmental and genetic factors including possible maternal inheritance playing a role. Some studies have investigated whether genetic variants in the mitochondrial chromosome are associated with BD and SZ. However, the genetic variants identified as being associated are not identical among studies, and the participants were limited to individuals of European ancestry. Here, we investigate associations of genome-wide genetic variants in the mitochondrial chromosome with BD, SZ, and PSY in a Japanese population. METHODS After performing quality control for individuals and genetic variants, we investigated whether mitochondrial genetic variants [minor allele frequency (MAF) > 0.01, n = 45 variants) are associated with BD, SZ, and PSY in 420 Japanese individuals consisting of patients with BD (n = 51), patients with SZ (n = 172), and healthy controls (HCs, n = 197). RESULTS Of mitochondrial genetic variants, three (rs200478835, rs200044200 and rs28359178 on or near NADH dehydrogenase) and one (rs200478835) were significantly associated with BD and PSY, respectively, even after correcting for multiple comparisons (PGC=0.045-4.9 × 10- 3). In particular, individuals with the minor G-allele of rs200044200, a missense variant, were only observed among patients with BD (MAF = 0.059) but not HCs (MAF = 0) (odds ratio=∞). Three patients commonly had neuropsychiatric family histories. CONCLUSIONS We suggest that mitochondrial genetic variants in NADH dehydrogenase-related genes may contribute to the pathogenesis of BD and PSY in the Japanese population through dysfunction of energy production.
Collapse
Affiliation(s)
- Ryobu Tachi
- School of Medicine, Gifu University, Gifu, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan.
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
3
|
Association between mitochondria-related genes and cognitive performance in the PsyCourse Study. J Affect Disord 2023; 325:1-6. [PMID: 36621676 DOI: 10.1016/j.jad.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mitochondria generate energy through oxidative phosphorylation (OXPHOS). The function of key OXPHOS proteins can be altered by variation in mitochondria-related genes, which may increase the risk of mental illness. We investigated the association of mitochondria-related genes and their genetic risk burden with cognitive performance. METHODS We leveraged cross-sectional data from 1320 individuals with a severe psychiatric disorder and 466 neurotypical individuals from the PsyCourse Study. The cognitive tests analyzed were the Trail-Making Test, Verbal Digit Span Test, Digit-Symbol Test, and Multiple Choice Vocabulary Intelligence Test. Association analyses between the cognitive tests, and single-nucleotide polymorphisms (SNPs) mapped to mitochondria-related genes, and their polygenic risk score (PRS) for schizophrenia (SCZ) were performed with PLINK 1.9 and R program. RESULTS We found a significant association (FDR-adjusted p < 0.05) in the Cytochrome C Oxidase Assembly Factor 8 (COA8) gene locus of the OXPHOS pathway with the Verbal Digit Span (forward) test. Mitochondrial PRS was not significantly associated with any of the cognitive tests. LIMITATIONS Moderate statistical power due to relatively small sample size. CONCLUSIONS COA8 encodes a poorly characterized mitochondrial protein involved in apoptosis. Here, this gene was associated with the Verbal Digit Span (forward) test, which evaluates short-term memory. Our results warrant replication and may lead to better understanding of cognitive impairment in mental disorders.
Collapse
|
4
|
Yue WQ, Sun ML, Han F, Li JJ, Rigzin T, Dhondup T, Liu HB, Li DY, Li X, Xu YM, Li XN. Investigation of control region sequences of mtDNA in Naqu Tibetan population from Northwestern China. Ann Hum Biol 2021; 48:70-77. [PMID: 33461338 DOI: 10.1080/03014460.2021.1877351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The sequence polymorphisms of mitochondrial DNA (mtDNA) are valuable in forensic medicine and anthropological genetics. AIM We analysed the sequences of the mtDNA control region in 207 unrelated Tibetan individuals from the Naqu region, Tibet Autonomous Region in the People's Republic of China, and investigated the population structure of the region by population comparison with other groups. SUBJECTS AND METHODS Genomic DNA was extracted and hypervariable regions (HVS-I and HVS-II) were amplified and sequenced. Subsequently, sequences were aligned and compared with the revised Cambridge sequence. Moreover, population comparison was performed between the Naqu Tibetan group and the other groups. CONCLUSION Our study provided available data for exploring the mtDNA haplotype of the Tibetan population in the Naqu region, and population comparisons found that the Naqu Tibetan population has its own unique structure.
Collapse
Affiliation(s)
- Wen-Qing Yue
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Mao-Ling Sun
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Feng Han
- Medical Department, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Jiu-Jun Li
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Tsewang Rigzin
- Department of Internal Medicine, Naqu People's Hospital in Tibet, Naqu, China
| | - Tashi Dhondup
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China.,Saijo Township Health Center, Naqu, China
| | - Hai-Bo Liu
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Dong-Yue Li
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xuan Li
- School of Innovation, China Medical University, Shenyang, China
| | - Yan-Ming Xu
- School of Innovation, China Medical University, Shenyang, China
| | - Xiao-Na Li
- School of Fundamental Sciences, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Lalrohlui F, Zohmingthanga J, Hruaii V, Kumar NS. Genomic profiling of mitochondrial DNA reveals novel complex gene mutations in familial type 2 diabetes mellitus individuals from Mizo ethnic population, Northeast India. Mitochondrion 2019; 51:7-14. [PMID: 31862415 DOI: 10.1016/j.mito.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
The variants reported for mitochondrial DNA (mtDNA) and type 2 diabetes (T2D) may not be accountable for the disease in certain other populations and the risk depends upon numerous factors which may include genetics, environment as well as ethnicity. This leads to a challenge in identifying, exploring and comparing the variants between diabetic cases and healthy controls in a remote unexplored tribal population. To study the possible contribution of mtDNA variants, we sequenced the entire mitochondrial genomes and the frequencies of mtSNPs, their association with familial T2D and the potential impact of non-synonymous substitutions on protein functions were determined. The mtSNP 8584 G > A (ATP6: A20T) was detected in 14.28% of the diabetic patients and none in the control groups. The mitochondrial ND3 variant 10398A > G was found to be significantly associated with the risk of T2D (OR = 9.489, 95% CI = 1.161-77.54, P value = 0.036). A novel Frame-shift substitution ND5: 81_81ins A at position 12,417 was observed in 53.57% of diabetic individuals. Majority of the variants lie in tRNA-Phe in the non-protein coding region of mtDNA for both diabetic cases and common cases. We concluded that mutations in the coding (synonymous or non-synonymous) and noncoding regions of the mitochondria might have contribution towards the development of T2D. Our study is the first to report the distinct mitochondrial variants which may be attributed to the susceptibility as well as development of type 2 diabetes in an ethnic tribe from northeast India.
Collapse
Affiliation(s)
- Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vanlal Hruaii
- Department of Medicine, Zoram Medical College, Aizawl 796005, Mizoram, India
| | | |
Collapse
|
6
|
Wang BJ, Xu FL, Ding M, Yao J, Wu X, Xing JX, Xuan JF, Xia X. Analysis and interpretation of mixture DNA using AS-PCR of mtDNA. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Xu FL, Ding M, Xia X, Wu X, Zhang JJ, Xing JX, Xuan JF, Yao J, Wang BJ. Analysis and interpretation of mixture DNA using AS-PCR of mtDNA. Electrophoresis 2019; 40:1591-1599. [PMID: 30740746 DOI: 10.1002/elps.201800432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/30/2018] [Accepted: 02/03/2019] [Indexed: 11/11/2022]
Abstract
Semi-nested PCR with allele-specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP-STR markers were available to identify the minor DNA component using AS-PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP-STR markers. Five pairs of allele-specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS-PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (∼30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS-PCR combined with semi-nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.
Collapse
Affiliation(s)
- Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Jing-Jing Zhang
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, P. R. China
| |
Collapse
|
8
|
Liu YP, Ding M, Zhang XC, Liu Y, Xuan JF, Xing JX, Xia X, Yao J, Wang BJ. Association between polymorphisms in the GRIN1 gene 5' regulatory region and schizophrenia in a northern Han Chinese population and haplotype effects on protein expression in vitro. BMC MEDICAL GENETICS 2019; 20:26. [PMID: 30704411 PMCID: PMC6357472 DOI: 10.1186/s12881-019-0757-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. Abnormal glutamate ionotropic N-methyl-D-aspartate receptor (NMDA) type subunit 1 (NR1) may be a potential cause of schizophrenia. METHODS We conducted a case-control study to investigate the association between the GRIN1 gene, which encodes the NR1 subunit, and the risk of schizophrenia in a northern Chinese Han population using Sanger DNA sequencing. The dual luciferase reporter assay was used to detect the influence of two different haplotypes on GRIN1 gene expression. RESULTS Seven SNPs (single nucleotide polymorphisms), including rs112421622 (- 2019 T/C), rs138961287 (- 1962--1961insT), rs117783907 (-1945G/T), rs181682830 (-1934G/A), rs7032504 (-1742C/T), rs144123109 (-1140G/A), and rs11146020 (-855G/C) were detected in the study population. Rs117783907 (-1945G/T) was associated with the occurrence of schizophrenia as a protective factor. The genotype frequencies of rs138961287 (- 1962--1961insT) and rs11146020 (-855G/C) were statistically different between cases and controls (p < 0.0083). The other four variations were not shown to be associated with the disease. Two haplotypes were composed of the seven SNPs, and distribution of T-del-G-G-C-G-G was significantly different between the case and control groups. However, the dual luciferase reporter assay showed that neither of the haplotypes affected luciferase expression in HEK-293 and SK-N-SH cell lines. CONCLUSIONS The GRIN1 gene may be related to the occurrence of schizophrenia. Additional research will be needed to fully ascertain the role of GRIN1 in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Yong-ping Liu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Xi-cen Zhang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Yi Liu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Jin-feng Xuan
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Jia-xin Xing
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110,122 Shenbei New District China
| |
Collapse
|
9
|
Gonçalves VF, Giamberardino SN, Crowley JJ, Vawter MP, Saxena R, Bulik CM, Yilmaz Z, Hultman CM, Sklar P, Kennedy JL, Sullivan PF, Knight J. Examining the role of common and rare mitochondrial variants in schizophrenia. PLoS One 2018; 13:e0191153. [PMID: 29370225 PMCID: PMC5784966 DOI: 10.1371/journal.pone.0191153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative phosphorylation within mitochondria is the main source of aerobic energy for neuronal functioning, and the key genes are located in mitochondrial DNA. Deficits in oxidative phosphorylation functioning have been reported for schizophrenia, but efforts in the identification of genetic markers within the mitochondrial DNA that predispose to schizophrenia have been limited. We genotyped a set of mitochondrial SNPs using Illumina HumanExome arrays and tested for association in the Swedish schizophrenia sample (N> 10,000). We developed a novel approach for mitochondrial DNA imputation in order to increase the number of common SNPs available for association analysis. The most significant findings were for the mitochondrial SNPs C15452A (GRCh38.p10; rs527236209; p = 0.007; gene MT-CYB; defining haplogroup JT); A11251G (rs869096886; p = 0.007; gene MT-ND4; defining haplogroup JT), and T4216C (rs1599988; p = 0.008, gene MT-ND1, defining haplogroup R2'JT). We also conducted rare variant burden analyses and obtained a p-value of 0.007. For multimarker haplotypes analysis, the most significant finding was for the J group (OR: 0.86, p = 0.02). We conducted the largest association study of mitochondrial DNA variants and schizophrenia but did not find an association that survived multiple testing correction. Analysis of a larger sample is required and will allow a better understanding of the role of mitochondria in schizophrenia.
Collapse
Affiliation(s)
- Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- * E-mail:
| | | | - James J. Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States of America
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Cynthia M. Bulik
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States of America
| | - Christina M. Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Sklar
- Division of Psychiatric Genomics, Department of Psychiatry, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - James L. Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jo Knight
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Data Science Institute and Medical School, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
10
|
Xu FL, Wu X, Zhang JJ, Wang BJ, Yao J. A meta-analysis of data associating DRD4 gene polymorphisms with schizophrenia. Neuropsychiatr Dis Treat 2018; 14:153-164. [PMID: 29379288 PMCID: PMC5757990 DOI: 10.2147/ndt.s156479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To explore the association between DRD4 polymorphisms and schizophrenia risk, a meta-analysis was carried out with 41 case-control articles. Specifically, we included 28 articles (5,735 cases and 5,278 controls) that pertained to the 48 bp variable number tandem repeat (VNTR) polymorphism, nine articles (1,517 cases and 1,746 controls) that corresponded to the 12 bp tandem repeat (TR), six articles (1,912 cases and 1,836 controls) that addressed the 120 bp TR, 10 articles (2,927 cases and 2,938 controls) that entailed the -521 C>T polymorphism, six articles (1,735 cases and 1,724 controls) that pertained to the -616 C>G polymorphism, and four articles (1,191 cases and 1,215 controls) that involved the -376 C>T polymorphism. Pooled analysis, subgroup analysis, and sensitivity analysis were performed, and the data were visualized by means of forest and funnel plots. Results of pooled analysis indicated that the -521 CC variant (Pz=0.009, odds ratio [OR] =1.218, 95% confidence interval [CI] =1.050-1.413) and genotype L/L (ie, long allele) of the 120 bp TR were risk factors of schizophrenia (Pz=0.004, OR =1.275, 95% CI =1.081-1.504). The 48 bp VNTR, the 12 bp TR, the -616 C>G polymorphism, and the -376 C>T polymorphism were not associated with schizophrenia. Additional research is warranted to explore the association between polymorphisms of DRD4 and schizophrenia risk.
Collapse
Affiliation(s)
- Feng-ling Xu
- Department of Forensic, Genetic and Biology Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- Department of Forensic, Genetic and Biology Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jing-jing Zhang
- Department of Forensic, Genetic and Biology Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-jie Wang
- Department of Forensic, Genetic and Biology Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- Department of Forensic, Genetic and Biology Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|