1
|
Kuligowski J, Moreno-Torres M, Quintás G. Improving insights from metabolomic functional analysis combining multivariate tools. Anal Chim Acta 2024; 1323:343062. [PMID: 39182979 DOI: 10.1016/j.aca.2024.343062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Metabolomics is a scientific field that relies on the comprehensive analysis of metabolites to provide direct insights into functional processes in biological systems. Metabolomic data provides valuable insights into the functional processes of biological systems, often analyzed through univariate and multivariate approaches, and well as with functional or pathway analysis using different methods such as mummichog. Yet, the integration of results from these sources to aid the interpretation of their biological significance remains challenging. This represents a significant bottleneck limiting the applicability of multivariate analysis of metabolomic data, despite its potential for providing deep biological insights. RESULTS In this work we propose two straightforward methods to facilitate the interpretation of results from multivariate analysis and functional metabolic analysis using: i) p-values from multivariate tests as input in functional analysis, and ii) cluster-CV to assess the impact on the predictive performance of a multivariate model at the pathway level. Four simulated data sets were analyzed including a data set with no class separation, and three data sets with a statistically significant discrimination between classes by including either univariate, multivariate, or both types of discriminant effects. The data sets were analyzed using univariate tests and OPLS-DA. Furthermore, p-values for each feature estimated by univariate analysis and OPLS-DA were used as input for functional analysis in mummichog. Cluster-CV was then used to assess the effect of detected metabolic pathways on the class separation observed by OPLS-DA. SIGNIFICANCE Through simulated data, we show how these approaches enhance the interpretation of biological effects driving multivariate models and support the identification of altered pathways not detected by univariate analysis. By providing a deeper understanding of metabolic phenotypes, these methods might improve the biological insights derived from statistical and functional analysis of future or previous studies.
Collapse
Affiliation(s)
- Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Moreno-Torres
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain; Unit for Experimental Hepatology, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Quintás
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Health and Biomedicine Department, Leitat Technological Center, Barcelona, Spain.
| |
Collapse
|
2
|
Yang J, Wu S, Yang J, Zhang Q, Dong X. Amyloid beta-correlated plasma metabolite dysregulation in Alzheimer's disease: an untargeted metabolism exploration using high-resolution mass spectrometry toward future clinical diagnosis. Front Aging Neurosci 2023; 15:1189659. [PMID: 37455936 PMCID: PMC10338932 DOI: 10.3389/fnagi.2023.1189659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a leading cause of dementia, and it has rapidly become an increasingly burdensome and fatal disease in society. Despite medical research advances, accurate recognition of AD remains challenging. Epidemiological evidence suggests that metabolic abnormalities are tied to higher AD risk. Methods This study utilized case-control analyses with plasma samples and identified a panel of 27 metabolites using high-resolution mass spectrometry in both the Alzheimer's disease (AD) and cognitively normal (CN) groups. All identified variables were confirmed using MS/MS with detected fragmented ions and public metabolite databases. To understand the expression of amyloid beta proteins in plasma, ELISA assays were performed for both amyloid beta 42 (Aβ42) and amyloid beta 40 (Aβ40). Results The levels of plasma metabolites PAGln and L-arginine were found to significantly fluctuate in the peripheral blood of AD patients. In addition, ELISA results showed a significant increase in amyloid beta 42 (Aβ42) in AD patients compared to those who were cognitively normal (CN), while amyloid beta 40 (Aβ40) did not show any significant changes between the groups. Furthermore, positive correlations were observed between Aβ42/Aβ40 and PAGln or L-arginine, suggesting that both metabolites could play a role in the pathology of amyloid beta proteins. Binary regression analysis with these two metabolites resulted in an optimal model of the ROC (AUC = 0.95, p < 0.001) to effectively discriminate between AD and CN. Discussion This study highlights the potential of advanced high-resolution mass spectrometry (HRMS) technology for novel plasma metabolite discovery with high stability and sensitivity, thus paving the way for future clinical studies. The results of this study suggest that the combination of PAGln and L-arginine holds significant potential for improving the diagnosis of Alzheimer's disease (AD) in clinical settings. Overall, these findings have important implications for advancing our understanding of AD and developing effective approaches for its future clinical diagnosis.
Collapse
Affiliation(s)
- Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Shuo Wu
- Neurology Department, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jun Yang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Qun Zhang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Suzhou Innovation Center of Shanghai University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Recent metabolomic developments for antimalarial drug discovery. Parasitol Res 2022; 121:3351-3380. [PMID: 36194273 DOI: 10.1007/s00436-022-07673-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 10/10/2022]
Abstract
Malaria is a parasitic disease that remains a global health issue, responsible for a significant death and morbidity toll. Various factors have impacted the use and delayed the development of antimalarial therapies, such as the associated financial cost and parasitic resistance. In order to discover new drugs and validate parasitic targets, a powerful omics tool, metabolomics, emerged as a reliable approach. However, as a fairly recent method in malaria, new findings are timely and original practices emerge frequently. This review aims to discuss recent research towards the development of new metabolomic methods in the context of uncovering antiplasmodial mechanisms of action in vitro and to point out innovative metabolic pathways that can revitalize the antimalarial pipeline.
Collapse
|
4
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
5
|
Aggarwal S, Peng WK, Srivastava S. Multi-Omics Advancements towards Plasmodium vivax Malaria Diagnosis. Diagnostics (Basel) 2021; 11:2222. [PMID: 34943459 PMCID: PMC8700291 DOI: 10.3390/diagnostics11122222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax malaria is one of the most lethal infectious diseases, with 7 million infections annually. One of the roadblocks to global malaria elimination is the lack of highly sensitive, specific, and accurate diagnostic tools. The absence of diagnostic tools in particular has led to poor differentiation among parasite species, poor prognosis, and delayed treatment. The improvement necessary in diagnostic tools can be broadly grouped into two categories: technologies-driven and omics-driven progress over time. This article discusses the recent advancement in omics-based malaria for identifying the next generation biomarkers for a highly sensitive and specific assay with a rapid and antecedent prognosis of the disease. We summarize the state-of-the-art diagnostic technologies, the key challenges, opportunities, and emerging prospects of multi-omics-based sensors.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India;
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China
- Precision Medicine-Engineering Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India;
| |
Collapse
|
6
|
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol 2021; 11:626183. [PMID: 33505389 PMCID: PMC7829456 DOI: 10.3389/fmicb.2020.626183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.
Collapse
Affiliation(s)
- Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Medical College of Soochow University, Suzhou, China
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Qingfeng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Uppal K. Models of Metabolomic Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Affiliation(s)
- Heather N. Colvin
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
10
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Evans ED, Duvallet C, Chu ND, Oberst MK, Murphy MA, Rockafellow I, Sontag D, Alm EJ. Predicting human health from biofluid-based metabolomics using machine learning. Sci Rep 2020; 10:17635. [PMID: 33077825 PMCID: PMC7572502 DOI: 10.1038/s41598-020-74823-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Biofluid-based metabolomics has the potential to provide highly accurate, minimally invasive diagnostics. Metabolomics studies using mass spectrometry typically reduce the high-dimensional data to only a small number of statistically significant features, that are often chemically identified—where each feature corresponds to a mass-to-charge ratio, retention time, and intensity. This practice may remove a substantial amount of predictive signal. To test the utility of the complete feature set, we train machine learning models for health state-prediction in 35 human metabolomics studies, representing 148 individual data sets. Models trained with all features outperform those using only significant features and frequently provide high predictive performance across nine health state categories, despite disparate experimental and disease contexts. Using only non-significant features it is still often possible to train models and achieve high predictive performance, suggesting useful predictive signal. This work highlights the potential for health state diagnostics using all metabolomics features with data-driven analysis.
Collapse
Affiliation(s)
- Ethan D Evans
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claire Duvallet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Biobot Analytics, Somerville, MA, 02143, USA
| | - Nathaniel D Chu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael K Oberst
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Murphy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,CSAIL, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isaac Rockafellow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Superpedestrian, Cambridge, MA, 02139, USA
| | - David Sontag
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Hajjar I, Liu C, Jones DP, Uppal K. Untargeted metabolomics reveal dysregulations in sugar, methionine, and tyrosine pathways in the prodromal state of AD. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12064. [PMID: 32793799 PMCID: PMC7418891 DOI: 10.1002/dad2.12064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Altered metabolism may occur years before clinical manifestations of Alzheimer's disease (AD). We used untargeted metabolomics on the cerebrospinal fluid of patients with mild cognitive impairment (MCI) to uncover metabolomic derangements. METHODS CSF from 92 normal controls and 93 MCI underwent untargeted metabolomics using high-resolution mass spectrometry with liquid chromatography. Partial least squares discriminant analysis was used followed by metabolite annotation and pathway enrichment analysis (PES). Significant features were correlated with disease phenotypes. RESULTS We identified 294 features differentially expressed between the two groups and 94 were annotated. PES showed that sugar regulation (N-glycan, P = .0007; sialic acid, P = .0014; aminosugars, P = .0042; galactose, P = .0054), methionine regulation (P = .0081), and tyrosine metabolism (P = .019) pathways were differentially activated and significant features within these pathways correlated with multiple disease phenotypes. CONCLUSION There is a metabolic signature characterized by impairments in sugars, methionine, and tyrosine regulation in MCI. Targeting these pathways may offer new therapeutic approaches to AD.
Collapse
Affiliation(s)
- Ihab Hajjar
- Medicine and NeurologyDepartment of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Chang Liu
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Dean P. Jones
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Karan Uppal
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
13
|
Joice Cordy R. Mining the Human Host Metabolome Toward an Improved Understanding of Malaria Transmission. Front Microbiol 2020; 11:164. [PMID: 32117175 PMCID: PMC7033509 DOI: 10.3389/fmicb.2020.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
The big data movement has led to major advances in our ability to assess vast and complex datasets related to the host and parasite during malaria infection. While host and parasite genomics and transcriptomics are often the focus of many computational efforts in malaria research, metabolomics represents another big data type that has great promise for aiding our understanding of complex host-parasite interactions that lead to the transmission of malaria. Recent analyses of the complement of metabolites present in human blood, skin and breath suggest that host metabolites play a critical role in the transmission cycle of malaria. Volatile compounds released through breath and skin serve as attractants to mosquitoes, with malaria-infected hosts appearing to have unique profiles that further increase host attractiveness. Inside the host, fluctuations in the levels of certain metabolites in blood may trigger increased production of transmission-competent sexual stages (gametocytes), setting the stage for enhanced transmission of malaria from human to mosquito. Together, these recent discoveries suggest that metabolites of human blood, skin and breath play critical roles in malaria transmission. This review discusses recent advances in this area, with a focus on metabolites that have been identified to play a role in malaria transmission and methods that may lead to an improved understanding of malaria transmission.
Collapse
Affiliation(s)
- Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
14
|
Sumarriva K, Uppal K, Ma C, Herren DJ, Wang Y, Chocron IM, Warden C, Mitchell SL, Burgess LG, Goodale MP, Osborn MP, Ferreira AJ, Law JC, Cherney EF, Jones DP, Brantley MA. Arginine and Carnitine Metabolites Are Altered in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:3119-3126. [PMID: 31323682 PMCID: PMC6645705 DOI: 10.1167/iovs.19-27321] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine plasma metabolite and metabolic pathway differences between patients with type 2 diabetes with diabetic retinopathy (DR) and without retinopathy (diabetic controls), and between patients with proliferative DR (PDR) and nonproliferative DR (NPDR). Methods Using high-resolution mass spectrometry with liquid chromatography, untargeted metabolomics was performed on plasma samples from 83 DR patients and 90 diabetic controls. Discriminatory metabolic features were identified through partial least squares discriminant analysis, and linear regression was used to adjust for age, sex, diabetes duration, and hemoglobin A1c. Pathway analysis was performed using Mummichog 2.0. Results In the adjusted analysis, 126 metabolic features differed significantly between DR patients and diabetic controls. Pathway analysis revealed alterations in the metabolism of amino acids, leukotrienes, niacin, pyrimidine, and purine. Arginine, citrulline, glutamic γ-semialdehyde, and dehydroxycarnitine were key contributors to these pathway differences. A total of 151 features distinguished PDR patients from NPDR patients, and pathway analysis revealed alterations in the β-oxidation of saturated fatty acids, fatty acid metabolism, and vitamin D3 metabolism. Carnitine was a major contributor to the pathway differences. Conclusions This study demonstrates that arginine and citrulline-related pathways are dysregulated in DR, and fatty acid metabolism is altered in PDR patients compared with NPDR patients.
Collapse
Affiliation(s)
- Katherine Sumarriva
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Karan Uppal
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Chunyu Ma
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - David J Herren
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yating Wang
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Isaac M Chocron
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Cassandra Warden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sabrina L Mitchell
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - L Goodwin Burgess
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Megan P Goodale
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melissa P Osborn
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Allison J Ferreira
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janice C Law
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Edward F Cherney
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
15
|
Comparative serum metabolomics between SCID mice and BALB/c mice with or without Schistosoma japonicum infection: Clues to the abnormal growth and development of schistosome in SCID mice. Acta Trop 2019; 200:105186. [PMID: 31542371 DOI: 10.1016/j.actatropica.2019.105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.
Collapse
|
16
|
Abreu-Filho PG, Tarragô AM, Costa AG, Monteiro WM, Meielles AFG, Costa TCC, Silva JS, Zambuzi FA, Gardinassi LG, Moraes LAB, Lacerda MVG, Sorgi CA, Faccioli LH, Malheiro A. Plasma Eicosanoid Profile in Plasmodium vivax Malaria: Clinical Analysis and Impacts of Self-Medication. Front Immunol 2019; 10:2141. [PMID: 31620120 PMCID: PMC6760468 DOI: 10.3389/fimmu.2019.02141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The participation of cytokines and chemokines in Plasmodium vivax malaria (Pv-malaria) activates the immune response and thus causes the production of several inflammatory mediators. This process is already well-established, but little is known about eicosanoids in malaria physiopathology, especially in regards to inflammation and immunity. Malaria is an acute febrile syndrome similar to any other less important infectious disease and people may self-medicate with any anti-inflammatory drugs in order to cease the recurrent symptoms of the disease. Based on this information, the study describes the eicosanoid profile and its possible influence on the production of cytokines and chemokines in P. vivax infections. In addition, we investigated the influence of self-medication with anti-inflammatory drugs in this immune profile. Twenty-three patients were included in the study, with or without self-medication by anti-inflammatory drugs prior to diagnosis. A total 12 individuals were selected for the control group. Eicosanoid profiles were quantified by HPLC-MS/MS, and cytokines and chemokines by flow cytometry and ELISA. The Pv-malaria infection significantly reduces the production of several lipid mediators, and its action is increased by self-medication. We observed that the eicosanoids we found derive from the lipoxygenase and cyclooxygenase pathways, and present positive and negative correlations with chemokines and cytokines in the follow-up of patients. Our data suggest that self-medication may interfere in the immunological characteristics in P. vivax infection and may modify the follow-up of the disease.
Collapse
Affiliation(s)
- Péricles Gama Abreu-Filho
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Biociência e Biotecnologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Alyne Fávero Galvão Meielles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Programa de Pós-Graduação da Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Thainá Cristina Cardoso Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Jéssica Santos Silva
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabiana Albani Zambuzi
- Programa de Pós-Graduação em Biociência e Biotecnologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Carlos Arterio Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| |
Collapse
|
17
|
Cordy RJ, Patrapuvich R, Lili LN, Cabrera-Mora M, Chien JT, Tharp GK, Khadka M, Meyer EV, Lapp SA, Joyner CJ, Garcia A, Banton S, Tran V, Luvira V, Rungin S, Saeseu T, Rachaphaew N, Pakala SB, DeBarry JD, Kissinger JC, Ortlund EA, Bosinger SE, Barnwell JW, Jones DP, Uppal K, Li S, Sattabongkot J, Moreno A, Galinski MR. Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. JCI Insight 2019; 4:125156. [PMID: 31045574 DOI: 10.1172/jci.insight.125156] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic malaria is a major public health problem and significant challenge for disease eradication efforts. Despite its importance, the biological factors underpinning chronic malaria are not fully understood. Recent studies have shown that host metabolic state can influence malaria pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman primates with a range of parasitemias and clinical signs. In rhesus macaques infected with Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected during a high parasitemic acute phase and many of these reverted to baseline levels once a low parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum cases. In summary, distinct host-parasite metabolic environments have been uncovered that characterize acute versus chronic malaria, providing insights into the underlying host-parasite biology of malaria disease progression.
Collapse
Affiliation(s)
- Regina Joice Cordy
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Loukia N Lili
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Genetics and Genomic Sciences, Institute for Next Generation Healthcare, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jung-Ting Chien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gregory K Tharp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Manoj Khadka
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Esmeralda Vs Meyer
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chester J Joyner
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - AnaPatricia Garcia
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sophia Banton
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siriwan Rungin
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Teerawat Saeseu
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Jessica C Kissinger
- Institute of Bioinformatics.,Center for Tropical and Emerging Global Diseases, and.,Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Eric A Ortlund
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Alberto Moreno
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Fischer ST, Frederick AB, Tran V, Li S, Jones DP, Fridovich-Keil JL. Metabolic perturbations in classic galactosemia beyond the Leloir pathway: Insights from an untargeted metabolomic study. J Inherit Metab Dis 2019; 42:254-263. [PMID: 30667068 PMCID: PMC6414239 DOI: 10.1002/jimd.12007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Classic galactosemia (CG) is an autosomal recessive disorder that impacts close to 1/50000 live births in the United States, with varying prevalence in other countries. Following exposure to milk, which contains high levels of galactose, affected infants may experience rapid onset and progression of potentially lethal symptoms. With the benefit of early diagnosis, generally by newborn screening, and immediate and lifelong dietary restriction of galactose, the acute sequelae of disease can be prevented or resolved. However, long-term complications are common, and despite many decades of research, the bases of these complications remain unexplained. As a step toward defining the underlying pathophysiology of long-term outcomes in CG, we applied an untargeted metabolomic approach with mass spectrometry and dual liquid chromatography, comparing thousands of small molecules in plasma samples from 183 patients and 31 controls. All patients were on galactose-restricted diets. Using both univariate and multivariate statistical methods, we identified 252 differentially abundant features from anion exchange chromatography and 167 differentially abundant features from C18 chromatography. Mapping these discriminatory features to putative metabolites and biochemical pathways revealed 14 significantly perturbed pathways; these included multiple redox, amino acid, and mitochondrial pathways, among others. Finally, we tested whether any discriminatory features also distinguished cases with mild vs more severe long-term outcomes and found multiple candidates, of which one achieved false discovery rate-adjusted q < 0.1. These results extend substantially from prior targeted studies of metabolic perturbation in CG and offer a new approach to identifying candidate modifiers and targets for intervention.
Collapse
Affiliation(s)
- S. Taylor Fischer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Allison B. Frederick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Shuzhao Li
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Correspondence to: Judith L. Fridovich-Keil, Department of Human Genetics, Emory University School of Medicine, Rm. 325.2 Whitehead Bldg., 615 Michael St, Atlanta, GA 30322 TEL 404-727-3924, FAX 404-727-3949,
| |
Collapse
|
19
|
Ghosh S, Pathak S, Sonawat HM, Sharma S, Sengupta A. Metabolomic changes in vertebrate host during malaria disease progression. Cytokine 2018; 112:32-43. [PMID: 30057363 DOI: 10.1016/j.cyto.2018.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Haripalsingh M Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Patankar S, Sharma S, Rathod PK, Duraisingh MT. Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax. Proteomics Clin Appl 2018; 12:e1700024. [PMID: 29193853 DOI: 10.1002/prca.201700024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Plasmodium vivax is a protozoan parasite that is one of the causative agents of human malaria. Due to several occult features of its life cycle, P. vivax threatens to be a problem for the recent efforts toward elimination of malaria globally. With an emphasis on malaria elimination goals, the authors summarize the major gaps in P. vivax diagnosis and describe how proteomics technologies have begun to contribute toward the discovery of antigens that could be used for various technology platforms and applications. The authors suggest areas where, in the future, proteomics technologies could fill in gaps in P. vivax diagnosis that have proved difficult. The discovery of new parasite antigens, host responses, and immune signatures using proteomics technologies will be a key part of the global malaria elimination efforts.
Collapse
Affiliation(s)
- Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|