1
|
Moten D, Teneva I, Apostolova D, Batsalova T, Dzhambazov B. Molecular Mimicry of the Rheumatoid Arthritis-Related Immunodominant T-Cell Epitope within Type II Collagen (CII260-270) by the Bacterial L-Asparaginase. Int J Mol Sci 2022; 23:ijms23169149. [PMID: 36012429 PMCID: PMC9408948 DOI: 10.3390/ijms23169149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/01/2022] Open
Abstract
The etiology of most autoimmune diseases, including rheumatoid arthritis (RA), remains unclear. Both genetic and environmental factors are believed to be involved in pathogenesis. Molecular mimicry is considered one of the mechanisms for the occurrence of autoimmune diseases. The aim of the study was to determine whether the bacterial peptide L-ASNase67-81, which mimics the immunodominant T-cell epitope CII259-273, can induce T-cell reactivity in blood samples from RA patients and healthy subjects through molecular mimicry. Using bioinformatic molecular modeling methods, we first determined whether the L-ASNase67-81 peptide binds to the HLA-DRB1*04:01 molecule and whether the formed MHCII–peptide complex interacts with the corresponding T-cell receptor. To validate the obtained results, leukocytes isolated from early RA patients and healthy individuals were stimulated in vitro with L-ASNase67-81 and CII259-273 peptides as well as with bacterial L-asparaginase or human type II collagen (huCII). The activated T cells (CD4+CD154+) were analyzed by flow cytometry (FACS), and the levels of cytokines produced (IL-2, IL-17A/F, and IFN-γ) were measured by ELISA. Our in silico analyses showed that the bacterial peptide L-ASNase67-81 binds better to HLA-DRB1*04:01 compared to the immunodominant T-cell epitope CII259-273, mimicking its structure and localization in the binding groove of MHCII. Six contact points were involved in the molecular interaction of the peptide with the TCR. FACS data showed that after in vitro stimulation with the L-ASNase67-81 peptide, the percentage of activated T cells (CD154+CD4+) was significantly increased in both cell cultures isolated from ERA patients and those isolated from healthy individuals, as higher values were observed for the ERA group (9.92 ± 0.23 vs. 4.82 ± 0.22). Furthermore, the ELISA assays revealed that after stimulation with L-ASNase67-81, a significant increase in the production of the cytokines IL-2, IL-17A/F, and IFN-γ was detected in the group of ERA patients. Our data showed that the bacterial L-ASNase67-81 peptide can mimic the immunodominant T-cell epitope CII259-273 and activate HLA-DRB1*04:01-restricted T cells as well as induce cytokine production in cells isolated from ERA patients. These results are the first to demonstrate that a specific bacterial antigen could play a role in the pathogenesis of RA, mimicking the immunodominant T-cell epitope from type II collagen.
Collapse
|
2
|
Panax notoginseng Alleviates Sepsis-Induced Acute Kidney Injury by Reducing Inflammation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9742169. [PMID: 35698642 PMCID: PMC9188472 DOI: 10.1155/2022/9742169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Background Sepsis is defined as a host inflammatory response to infection that can result in end-organ dysfunction. One of the most common consequences of sepsis is acute kidney injury (AKI). Panax notoginseng powder (PNP) has been previously reported to protect against overactive inflammation process. However, the potential effect of PNP on septic AKI is poorly described. The current study was conducted to investigate the protective effects of PNP in septic AKI rats. Methods A model of septic AKI was established on male SD rats by using the cecal ligation and puncture procedure. PNP was administrated by gavage after the cecal ligation and puncture (CLP) procedure, and the mice were sacrificed at 6, 12, and 72 h after induction of sepsis. The serum and kidney samples were collected and assayed for biochemical tests, histopathological staining, inflammation, and apoptosis-related gene/protein expression. In addition, 15 rats in each group were used to calculate the 7-day survival rate. Results CLP-induced kidney injury was observed by the histopathological score, which markedly was attenuated by PNP treatment. Consistently, PNP intervention significantly alleviated the elevated levels of serum creatinine and blood urea nitrogen in CLP-induced sepsis rats. The CLP procedure also triggered proinflammatory cytokine production and increased the expression of various inflammation-related proteins in the kidneys. However, PNP inhibited the renal expression of IL-18, IL-1β, TNF-α, and IL-6 to substantially improve inflammatory response. Mechanistically, CLP induced the increase of the NF-κB p65 level in the injured kidneys, while PNP notably inhibited the corresponding protein expression. Conclusion PNP attenuated kidney inflammation to protect against CLP-induced septic AKI in rats via inhibiting the NF-κB signaling pathway.
Collapse
|
3
|
Hu XX, Zhang AJ, Pan WW, Xin QL, Chen JY, Zhang LL, Chang Y, Wu YJ, Wei W. An IgD-Fc-Ig fusion protein restrains the activation of T and B cells by inhibiting IgD-IgDR-Lck signaling in rheumatoid arthritis. Acta Pharmacol Sin 2022; 43:387-400. [PMID: 33864023 PMCID: PMC8791948 DOI: 10.1038/s41401-021-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/19/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovitis and the destruction of small joints. Emerging evidence shows that immunoglobulin D (IgD) stimulation induces T-cell activation, which may contribute to diseases pathogenesis in RA. In this study, we investigated the downstream signaling pathways by which IgD activated T cells as well as the possible role of IgD in the T-B interaction. Peripheral blood mononuclear cells were isolated from peripheral blood of healthy controls and RA patients. We demonstrated that IgD activated T cells through IgD receptor (IgDR)-lymphocyte-specific protein tyrosine kinase (Lck)-zeta-associated protein 70 (ZAP70)/phosphatidylinositol 3-kinase (PI3K)/nuclear factor kappa-B (NF-κB) signaling pathways; IgD-induced CD4+ T cells promoted the proliferation of CD19+ B cells in RA patients. A novel fusion protein IgD-Fc-Ig (composed of human IgD-Fc domain and IgG1 Fc domain, which specifically blocked the IgD-IgDR binding) inhibited the coexpression of IgDR and phosphorylated Lck (p-Lck) and the expression levels of p-Lck, p-ZAP70, p-PI3K on CD4+ T cells, and decreased NF-κB nuclear translocation in Jurkat cells. Meanwhile, IgD-Fc-Ig downregulated the expression levels of CD40L on CD4+ T cells as well as CD40, CD86 on CD19+ B cells in RA patients and healthy controls. It also decreased the expression levels of CD40L on CD4+ T cells and CD40 on CD19+ B cells from spleens of collagen-induced arthritis (CIA) mice and reduced IL-17A level in mouse serum. Moreover, administration of IgD-Fc-Ig (1.625-13 mg/kg, iv, twice a week for 4 weeks) in CIA mice dose-dependently decreased the protein expression levels of CD40, CD40L, and IgD in spleens. IgD-Fc-Ig restrains T-cell activation through inhibiting IgD-IgDR-Lck-ZAP70-PI3K-NF-κB signaling, thus inhibiting B-cell activation. Our data provide experimental evidences for application of IgD-Fc-Ig as a highly selective T cell-targeting treatment for RA.
Collapse
Affiliation(s)
- Xiao-xi Hu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ai-jun Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wen-wen Pan
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Qian-ling Xin
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Jing-yu Chen
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yan Chang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yu-jing Wu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| |
Collapse
|
4
|
Sun S, Li S, Du Y, Wu C, Zhang M, Li J, Zhang X. Anti-inflammatory effects of the root, stem and leaf extracts of Chloranthus serratus on adjuvant-induced arthritis in rats. PHARMACEUTICAL BIOLOGY 2020; 58:528-537. [PMID: 32503379 PMCID: PMC8641675 DOI: 10.1080/13880209.2020.1767159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Context: Chloranthus serratus [(Thunb.) Roem. et Schult, (Chloranthaceae)] is a folk medicine used for the treatment of rheumatoid arthritis.Objective: The aim of this study was to investigate anti-arthritic effects of the ethanol extracts of the roots (ER), stems (ES) and leaves (EL) of C. serratus on adjuvant arthritis rats and related mechanisms.Materials and methods: The rats were immunized by intradermal injection of complete Freund's adjuvant (CFA, 0.18 mL) into the right hind feet, and received intragastric administrations of the ER, ES and EL (2.07, 1.61 and 0.58 g/kg/d, respectively) for 14 days. The anti-arthritic activity was assessed by swelling rates, serum indicators, antioxidant capacity, histopathological and immunohistochemical analyses.Results: The LD50 of the ER, ES and EL was higher than 10.35, 8.05 and 2.90 g/kg/p.o., respectively. Extract treatments decreased swelling rates, tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), interleukin 1 beta (IL-1β), migration inhibitory factor 1 (MIF-1), immunoglobulin G (IgG) and immunoglobulin M (IgM) levels and positive expression of VEGF in the arthritic rats (p < 0.01 or p < 0.05). The ER significantly decreased NO (3.91 ± 0.61 µmol/L), IL-6 (75.67 ± 16.83 pg/mL) and malondialdehyde (MDA) (2.28 ± 0.32 nmol/mL) contents and clearly increased IFN-γ (2082 ± 220.93 pg/mL) and superoxide dismutase (SOD) (601.98 ± 38.40 U/mL) levels. The ES and EL did not reverse the changes in some indicators. All the extracts alleviated inflammatory cell infiltration and synovial cell proliferation. Among them, the ER was the most pronounced.Discussion and conclusions: ER exerts the most promising effects, as shown by inhibiting the releases of inflammatory cytokines and enhancing antioxidant capacity, which provides a scientific basis for further research on C. serratus and its clinical applications.
Collapse
Affiliation(s)
- Shuping Sun
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
- Institute of Natural Daily Chemistry, Wannan Medical College, Wuhu, Anhui, China
- CONTACT Shuping Sun College of Pharmacy, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, Anhui Province, China
| | - Shengli Li
- The Fifth People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Yunyan Du
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Chenguang Wu
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Mengyuan Zhang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Jiarong Li
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoping Zhang
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
- Xiaoping Zhang College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
5
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Pucino V, Gardner DH, Fisher BA. Rationale for CD40 pathway blockade in autoimmune rheumatic disorders. THE LANCET. RHEUMATOLOGY 2020; 2:e292-e301. [PMID: 38273474 DOI: 10.1016/s2665-9913(20)30038-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
CD40 and its ligand CD40L (CD154) belong to the tumor necrosis factor receptor superfamily and are expressed by a variety of immune and non-immune cells. CD40L plays a central role in co-stimulation and regulation of the immune response via activation of cells expressing CD40. Imbalance of the CD40-CD40L co-stimulatory pathway has been reported in many autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome, thus supporting its role in the breach of immune tolerance that is typical of these diseases. Targeting CD40-CD40L signalling might represent a novel therapeutic option for several autoimmune disorders.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David H Gardner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
7
|
The TNFA -857C/T Polymorphism: Association with Rheumatoid Arthritis and Anti-CCP Levels in a Mexican Population. J Immunol Res 2019; 2019:2637607. [PMID: 31687411 PMCID: PMC6803725 DOI: 10.1155/2019/2637607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease whose association with SNPs has led to the identification of biomarkers in different populations. To determine the association of the -857C/T SNP of the TNFA gene with RA and clinical parameters, 233 RA patients and 237 healthy controls were included in this study. The -857C/T polymorphism was determined using the TaqMan® system and clinical features were also determined. We found that the -857C/T SNP was in Hardy-Weinberg equilibrium. Our results showed no association of the -857C/T SNP with RA; however, RA patients carrying the TT genotype showed lower anti-CCP levels than other groups. Therefore, the TT genotype could be a risk factor for developing anti-CCP-negative RA. Our results suggest that the T allele of the TNFA -857C/T SNP exerts an influence on anti-CCP levels and could be a candidate marker for anti-CCP-negative RA.
Collapse
|
8
|
Targeting the CD40-CD154 Signaling Pathway for Treatment of Autoimmune Arthritis. Cells 2019; 8:cells8080927. [PMID: 31426619 PMCID: PMC6721639 DOI: 10.3390/cells8080927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Full activation of T lymphocytes requires signals from both T cell receptors and costimulatory molecules. In addition to CD28, several T cell molecules could deliver costimulatory signals, including CD154, which primarily interacts with CD40 on B-cells. CD40 is a critical molecule regulating several B-cell functions, such as antibody production, germinal center formation and cellular proliferation. Upregulated expression of CD40 and CD154 occurs in immune effector cells and non-immune cells in different autoimmune diseases. In addition, therapeutic benefits have been observed by blocking the CD40-CD154 interaction in animals with collagen-induced arthritis. Given the therapeutic success of the biologics abatacept, which blocks CD28 costimulation, and rituximab, which deletes B cells in the treatment of autoimmune arthritis, the inhibition of the CD40-CD154 axis has two advantages, namely, attenuating CD154-mediated T cell costimulation and suppressing CD40-mediated B-cell stimulation. Furthermore, blockade of the CD40-CD154 interaction drives the conversion of CD4+ T cells to regulatory T cells that mediate immunosuppression. Currently, several biological products targeting the CD40-CD154 axis have been developed and are undergoing early phase clinical trials with encouraging success in several autoimmune disorders, including autoimmune arthritis. This review addresses the roles of the CD40-CD154 axis in the pathogenesis of autoimmune arthritis and its potential as a therapeutic target.
Collapse
|
9
|
Assessment of CD40 and CD40L expression in rheumatoid arthritis patients, association with clinical features and DAS28. Clin Exp Med 2019; 19:427-437. [PMID: 31313080 DOI: 10.1007/s10238-019-00568-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
The predominance of the effector mechanisms by CD4 + T cells is a characteristic of inflammatory autoimmune diseases such as rheumatoid arthritis (RA). The CD40/CD40L costimulatory pathway contributes to these pathogenic mechanisms by promoting autoantibody production and inflammation. Aberrant expression of CD40 and CD40L in RA patients has been shown, the latter prevailing in females. However, contrasting results have emerged regarding the clinical associations of these findings. We determined the association of CD40 and CD40L expression with the clinical activity evaluated through DAS28 in RA patients. A total of 38 female RA patients and 10 age- and sex-matched control subjects were included. CD40 and CD40L mRNA expression was quantified by real-time qPCR, cell surface proteins were determined by flow cytometry, and protein soluble forms were determined by ELISA. The expansion of a CD4 + T cell subpopulation expressing CD40 was identified in the RA group. In addition, high frequencies of CD4 + CD40L + T cells expressing high levels of CD40L, increased levels of sCD40L and overexpression of CD40L mRNA were observed in these patients. Moreover, there was a gradual increase in CD40L when data were stratified according to DAS28, except for very active patients. No correlation was observed between the levels of mRNA, cell surface protein and soluble protein of CD40 and CD40L with the clinical features of RA patients. There is an altered expression of CD40L in female RA patients in association with clinical activity assessed by DAS28, these findings support the evidence that suggests CD40L as a marker of clinical activity.
Collapse
|
10
|
Visvanathan S, Daniluk S, Ptaszyński R, Müller-Ladner U, Ramanujam M, Rosenstock B, Eleftheraki AG, Vinisko R, Petříková A, Kellner H, Dokoupilova E, Kwiatkowska B, Alten R, Schwabe C, Baum P, Joseph D, Fine JS, Padula SJ, Steffgen J. Effects of BI 655064, an antagonistic anti-CD40 antibody, on clinical and biomarker variables in patients with active rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase IIa study. Ann Rheum Dis 2019; 78:754-760. [PMID: 30902820 PMCID: PMC6579552 DOI: 10.1136/annrheumdis-2018-214729] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To evaluate the safety, efficacy and therapeutic mechanism of BI 655064, an antagonistic anti-CD40 monoclonal antibody, in patients with rheumatoid arthritis (RA) and an inadequate response to methotrexate (MTX-IR). METHODS In total, 67 patients were randomised to receive weekly subcutaneous doses of 120 mg BI 655064 (n=44) or placebo (n=23) for 12 weeks. The primary endpoint was the proportion of patients who achieved 20% improvement in American College of Rheumatology criteria (ACR20) at week 12. Safety was assessed in patients who received at least one dose of study drug. RESULTS At week 12, the primary endpoint was not met, with 68.2% of patients treated with BI 655064 achieving an ACR20 vs 45.5% with placebo (p=0.064); using Bayesian analysis, the posterior probability of seeing a difference greater than 35% was 42.9%. BI 655064 was associated with greater changes in CD40-CD40L pathway-related markers, including reductions in inflammatory and bone resorption markers (interleukin-6, matrix metalloproteinase-3, receptor activator of nuclear factor-κB ligand), concentration of autoantibodies (immunoglobulin [Ig]G rheumatoid factor [RF], IgM RF, IgA RF) and CD95+ activated B-cell subsets. No serious adverse events (AEs) related to BI 655064 treatment or thromboembolic events occurred; reported AEs were mainly of mild intensity. CONCLUSION Although blockade of the CD40-CD40L pathway with BI 655064 in MTX-IR patients with RA resulted in marked changes in clinical and biological parameters, including reductions in activated B-cells, autoantibody production and inflammatory and bone resorption markers, with a favourable safety profile, clinical efficacy was not demonstrated in this small phase IIa study. TRIAL REGISTRATION NUMBER NCT01751776.
Collapse
Affiliation(s)
- Sudha Visvanathan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | | | | | | | - Meera Ramanujam
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | | | | | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | | | | | - Eva Dokoupilova
- Medical Plus, s.r.o, Uherské Hradiště, Czech Republic
- Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Brygida Kwiatkowska
- Prof. Eleonora Reicher Memorial National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | | | | | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Joseph
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | | | - Jürgen Steffgen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
11
|
Liu J, Zhang Q, Shi Z, Yang M, Lian Z, Chen H, Feng H, Du Q, Zhang Y, Miao X, Li H, Zhou H. Increased expression of the membrane-bound CD40 ligand on peripheral CD4 + T cells in the acute phase of AQP4-IgG-seropositive neuromyelitis optica spectrum disorders. J Neuroimmunol 2018; 325:64-68. [PMID: 30408708 DOI: 10.1016/j.jneuroim.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023]
Abstract
Currently, no data are available regarding the expression levels of CD40L on CD4+ T cells in patients with neuromyelitis optica spectrum disorders (NMOSD). The percentage of circulating CD40L+CD4+ T cells was measured by flow cytometry in 23 NMOSD patients and 10 healthy controls. The ratio of CD40L+CD4+ to CD4+ T cells in patients at acute phase (18.28 ± 15.56%) was significantly higher than that in healthy controls (7.23 ± 5.94%, P = .032) and was positively correlated with disease severity (r = 0.532, P = .041). Thus, our results suggest an important role of this molecule in acute attacks of NMOSD.
Collapse
Affiliation(s)
- Ju Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Huiru Feng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Du
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohui Miao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Li
- Core Facility of West China Hospital of Sichuan University, Chengdu, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Adoptive Induced Antigen-Specific Treg Cells Reverse Inflammation in Collagen-Induced Arthritis Mouse Model. Inflammation 2017; 41:485-495. [DOI: 10.1007/s10753-017-0704-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|