1
|
Asmar AJ, Abrams SR, Hsin J, Collins JC, Yazejian RM, Wu Y, Cho J, Doyle AD, Cinthala S, Simon M, van Jaarsveld RH, Beck DB, Kerosuo L, Werner A. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development. Nat Commun 2023; 14:4499. [PMID: 37495603 PMCID: PMC10371987 DOI: 10.1038/s41467-023-40223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-βPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaun R Abrams
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenny Hsin
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason C Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita M Yazejian
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youmei Wu
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Cho
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samhitha Cinthala
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - David B Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Kerosuo
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Romanowska J, Nustad HE, Page CM, Denault WRP, Lee Y, Magnus MC, Haftorn KL, Gjerdevik M, Novakovic B, Saffery R, Gjessing HK, Lyle R, Magnus P, Håberg SE, Jugessur A. The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome? Hum Genomics 2023; 17:35. [PMID: 37085889 PMCID: PMC10122315 DOI: 10.1186/s40246-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.
Collapse
Affiliation(s)
- Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- DeepInsight, 0154, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Gjerdevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Awotoye W, Comnick C, Pendleton C, Zeng E, Alade A, Mossey PA, Gowans LJJ, Eshete MA, Adeyemo WL, Naicker T, Adeleke C, Busch T, Li M, Petrin A, Olotu J, Hassan M, Pape J, Miller SE, Donkor P, Anand D, Lachke SA, Marazita ML, Adeyemo AA, Murray JC, Albokhari D, Sobreira N, Butali A. Genome-wide Gene-by-Sex Interaction Studies Identify Novel Nonsyndromic Orofacial Clefts Risk Locus. J Dent Res 2021; 101:465-472. [PMID: 34689653 DOI: 10.1177/00220345211046614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Risk loci identified through genome-wide association studies have explained about 25% of the phenotypic variations in nonsyndromic orofacial clefts (nsOFCs) on the liability scale. Despite the notable sex differences in the incidences of the different cleft types, investigation of loci for sex-specific effects has been understudied. To explore the sex-specific effects in genetic etiology of nsOFCs, we conducted a genome-wide gene × sex (GxSex) interaction study in a sub-Saharan African orofacial cleft cohort. The sample included 1,019 nonsyndromic orofacial cleft cases (814 cleft lip with or without cleft palate and 205 cleft palate only) and 2,159 controls recruited from 3 sites (Ethiopia, Ghana, and Nigeria). An additive logistic model was used to examine the joint effects of the genotype and GxSex interaction. Furthermore, we examined loci with suggestive significance (P < 1E-5) in the additive model for the effect of the GxSex interaction only. We identified a novel risk locus on chromosome 8p22 with genome-wide significant joint and GxSex interaction effects (rs2720555, p2df = 1.16E-08, pGxSex = 1.49E-09, odds ratio [OR] = 0.44, 95% CI = 0.34 to 0.57). For males, the risk of cleft lip with or without cleft palate at this locus decreases with additional copies of the minor allele (p < 0.0001, OR = 0.60, 95% CI = 0.48 to 0.74), but the effect is reversed for females (p = 0.0004, OR = 1.36, 95% CI = 1.15 to 1.60). We replicated the female-specific effect of this locus in an independent cohort (p = 0.037, OR = 1.30, 95% CI = 1.02 to 1.65), but no significant effect was found for the males (p = 0.29, OR = 0.86, 95% CI = 0.65 to 1.14). This locus is in topologically associating domain with craniofacially expressed and enriched genes during embryonic development. Rare coding mutations of some of these genes were identified in nsOFC cohorts through whole exome sequencing analysis. Our study is additional proof that genome-wide GxSex interaction analysis provides an opportunity for novel findings of loci and genes that contribute to the risk of nsOFCs.
Collapse
Affiliation(s)
- W Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - C Comnick
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - C Pendleton
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - E Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - A Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - P A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - L J J Gowans
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - M A Eshete
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - W L Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - T Naicker
- Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - C Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - T Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - M Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - A Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - J Olotu
- Department of Anatomy, University of Port Harcourt, Choba, Nigeria
| | - M Hassan
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - J Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - S E Miller
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - P Donkor
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - D Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Departments of Oral Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Adeyemo
- National Human Genomic Research Institute, Bethesda, MD, USA
| | - J C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - D Albokhari
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - N Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - A Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Martinelli M, Palmieri A, Carinci F, Scapoli L. Non-syndromic Cleft Palate: An Overview on Human Genetic and Environmental Risk Factors. Front Cell Dev Biol 2020; 8:592271. [PMID: 33195260 PMCID: PMC7606870 DOI: 10.3389/fcell.2020.592271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
The epithelial and mesenchymal cells involved in early embryonic facial development are guided by complex regulatory mechanisms. Any factor perturbing the growth, approach and fusion of the frontonasal and maxillary processes could result in orofacial clefts that represent the most common craniofacial malformations in humans. The rarest and, probably for this reason, the least studied form of cleft involves only the secondary palate, which is posterior to the incisive foramen. The etiology of cleft palate only is multifactorial and involves both genetic and environmental risk factors. The intention of this review is to give the reader an overview of the efforts made by researchers to shed light on the underlying causes of this birth defect. Most of the scientific papers suggesting potential environmental and genetic causes of non-syndromic cleft palate are summarized in this review, including genome-wide association and gene–environment interaction studies.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Xu Y, Xie B, Shi J, Li J, Zhou C, Lu W, Xu F, He F. Distinct Expression of miR-378 in Nonsyndromic Cleft Lip and/or Cleft Palate: A Cogitation of Skewed Sex Ratio in Prevalence. Cleft Palate Craniofac J 2020; 58:61-71. [PMID: 32580581 DOI: 10.1177/1055665620935364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Nonsyndromic cleft lip and/or cleft palate (NSCL/P) is an isolated phenotype of orofacial clefts with skewed sex ratio in prevalence. This study aims to identify differentially expressed genes (DEGs) and microRNAs (DEMs) of NSCL/P by integrated bioinformatics analysis, revealing mechanisms for sexual dimorphism in prevalence. MATERIALS AND METHODS First, we downloaded the expression profile data from Gene Expression Omnibus database to identify DEGs and DEMs. Second, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses performed DEGs' functions. Then, clustered DEGs were identified through protein-protein interaction networks. Combining clustered DEGs with key genes searched in GeneCards enlarged NSCL/P-related genes. Moreover, the genes were linked by transcription factors (TFs). Subsequently, connected by the above TFs, DEMs and genes were used to establish the miRNA-TF-messenger RNA (mRNA) regulatory networks. RESULTS The DEGs in sex-ignored group, female-only group, and male-only group were obtained, respectively. Among the DEMs, miR-378 was downregulated in females but upregulated in males. In female-only group, the miRNA-TF-mRNA regulatory networks showed miR-378-SP1-POLE2/CDK6/EZR regulatory axis was found to be key candidates of NSCL/P. CONCLUSIONS Our findings suggest that different expression of miR-378 is consistent with the skewed sex ratio in the prevalence of NSCL/P.
Collapse
Affiliation(s)
- Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, 56660Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Shi
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China
| | - Jia Li
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Wei Lu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China.,Department of Periodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China
| | - Fengqin Xu
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Fuming He
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Gjerdevik M, Gjessing HK, Romanowska J, Haaland ØA, Jugessur A, Czajkowski NO, Lie RT. Design efficiency in genetic association studies. Stat Med 2020; 39:1292-1310. [PMID: 31943314 DOI: 10.1002/sim.8476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/07/2022]
Abstract
Selecting the best design for genetic association studies requires careful deliberation; different study designs can be used to scan for different genetic effects, and each design has its own set of strengths and limitations. A variety of family and unrelated control configurations are amenable to genetic association analyses, including the case-control design, case-parent triads, and case-parent triads in combination with unrelated controls or control-parent triads. Ultimately, the goal is to choose the design that achieves the highest statistical power using the lowest cost. For given parameter values and genotyped individuals, designs can be compared directly by computing the power. However, a more informative and general design comparison can be achieved by studying the relative efficiency, defined as the ratio of variances of two different parameter estimators, corresponding to two separate designs. Using log-linear modeling, we derive the relative efficiency from the asymptotic variance of the parameter estimators and relate it to the concept of Pitman efficiency. The relative efficiency takes into account the fact that different designs impose different costs relative to the number of genotyped individuals. We show that while optimal efficiency for analyses of regular autosomal effects is achieved using the standard case-control design, the case-parent triad design without unrelated controls is efficient when searching for parent-of-origin effects. Due to the potential loss of efficiency, maternal genes should generally not be adjusted for in an initial genome-wide association study scan of offspring genes but instead checked post hoc. The relative efficiency calculations are implemented in our R package Haplin.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nikolai O Czajkowski
- Department of Psychology, University of Oslo, Oslo, Norway.,Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Niethamer TK, Teng T, Franco M, Du YX, Percival CJ, Bush JO. Aberrant cell segregation in the craniofacial primordium and the emergence of facial dysmorphology in craniofrontonasal syndrome. PLoS Genet 2020; 16:e1008300. [PMID: 32092051 PMCID: PMC7058351 DOI: 10.1371/journal.pgen.1008300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/05/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.
Collapse
Affiliation(s)
- Terren K. Niethamer
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng Teng
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Franco
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yu Xin Du
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (CJP); (JOB)
| | - Jeffrey O. Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (CJP); (JOB)
| |
Collapse
|
8
|
Balaton BP, Dixon-McDougall T, Peeters SB, Brown CJ. The eXceptional nature of the X chromosome. Hum Mol Genet 2019; 27:R242-R249. [PMID: 29701779 DOI: 10.1093/hmg/ddy148] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The X chromosome is unique in the genome. In this review we discuss recent advances in our understanding of the genetics and epigenetics of the X chromosome. The X chromosome shares limited conservation with its ancestral homologue the Y chromosome and the resulting difference in X-chromosome dosage between males and females is largely compensated for by X-chromosome inactivation. The process of inactivation is initiated by the long non-coding RNA X-inactive specific transcript (XIST) and achieved through interaction with multiple synergistic silencing pathways. Identification of Xist-interacting proteins has given insight into these processes yet the cascade of events from initiation to maintenance have still to be resolved. In particular, the initiation of inactivation in humans has been challenging to study as: it occurs very early in development; most human embryonic stem cell lines already have an inactive X; and the process seems to differ from mouse. Another difference between human and mouse X inactivation is the larger number of human genes that escape silencing. In humans over 20% of X-linked genes continue to be expressed from the otherwise inactive X chromosome. We are only beginning to understand how such escape occurs but there is growing recognition that escapees contribute to sexually dimorphic traits. The unique biology and epigenetics of the X chromosome have often led to its exclusion from disease studies, yet the X constitutes 5% of the genome and is an important contributor to disease, often in a sex-specific manner.
Collapse
Affiliation(s)
- Bradley P Balaton
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Dixon-McDougall
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samantha B Peeters
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn J Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Gjerdevik M, Jugessur A, Haaland ØA, Romanowska J, Lie RT, Cordell HJ, Gjessing HK. Haplin power analysis: a software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinformatics 2019; 20:165. [PMID: 30940094 PMCID: PMC6444579 DOI: 10.1186/s12859-019-2727-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 01/22/2023] Open
Abstract
Background Log-linear and multinomial modeling offer a flexible framework for genetic association analyses of offspring (child), parent-of-origin and maternal effects, based on genotype data from a variety of child-parent configurations. Although the calculation of statistical power or sample size is an important first step in the planning of any scientific study, there is currently a lack of software for genetic power calculations in family-based study designs. Here, we address this shortcoming through new implementations of power calculations in the R package Haplin, which is a flexible and robust software for genetic epidemiological analyses. Power calculations in Haplin can be performed analytically using the asymptotic variance-covariance structure of the parameter estimator, or else by a straightforward simulation approach. Haplin performs power calculations for child, parent-of-origin and maternal effects, as well as for gene-environment interactions. The power can be calculated for both single SNPs and haplotypes, either autosomal or X-linked. Moreover, Haplin enables power calculations for different child-parent configurations, including (but not limited to) case-parent triads, case-mother dyads, and case-parent triads in combination with unrelated control-parent triads. Results We compared the asymptotic power approximations to the power of analysis attained with Haplin. For external validation, the results were further compared to the power of analysis attained by the EMIM software using data simulations from Haplin. Consistency observed between Haplin and EMIM across various genetic scenarios confirms the computational accuracy of the inference methods used in both programs. The results also demonstrate that power calculations in Haplin are applicable to genetic association studies using either log-linear or multinomial modeling approaches. Conclusions Haplin provides a robust and reliable framework for power calculations in genetic association analyses for a wide range of genetic effects and etiologic scenarios, based on genotype data from a variety of child-parent configurations. Electronic supplementary material The online version of this article (10.1186/s12859-019-2727-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway. .,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Green T, Flash S, Reiss AL. Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. Neuropsychopharmacology 2019; 44:9-21. [PMID: 30127341 PMCID: PMC6235860 DOI: 10.1038/s41386-018-0153-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
The study of sexual dimorphism in psychiatric and neurodevelopmental disorders is challenging due to the complex interplay of diverse biological, psychological, and social factors. Males are more susceptible to neurodevelopmental disorders including intellectual disability, autism spectrum disorder, and attention-deficit activity disorder. Conversely, after puberty, females are more prone to major depressive disorder and anxiety disorders compared to males. One major biological factor contributing to sex differences is the sex chromosomes. First, the X and Y chromosomes have unique and specific genetic effects as well as downstream gonadal effects. Second, males have one X chromosome and one Y chromosome, while females have two X chromosomes. Thus, sex chromosome constitution also differs between the sexes. Due to this complexity, determining genetic and downstream biological influences on sexual dimorphism in humans is challenging. Sex chromosome aneuploidies, such as Turner syndrome (X0) and Klinefelter syndrome (XXY), are common genetic conditions in humans. The study of individuals with sex chromosome aneuploidies provides a promising framework for studying sexual dimorphism in neurodevelopmental and psychiatric disorders. Here we will review and contrast four syndromes caused by variation in the number of sex chromosomes: Turner syndrome, Klinefelter syndrome, XYY syndrome, and XXX syndrome. Overall we describe an increased rate of attention-deficit hyperactivity disorder and autism spectrum disorder, along with the increased rates of major depressive disorder and anxiety disorders in one or more of these conditions. In addition to contributing unique insights about sexual dimorphism in neuropsychiatric disorders, awareness of the increased risk of neurodevelopmental and psychiatric disorders in sex chromosome aneuploidies can inform appropriate management of these common genetic disorders.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Shira Flash
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Carlson JC, Nidey NL, Butali A, Buxo CJ, Christensen K, Deleyiannis FWD, Hecht JT, Field LL, Moreno-Uribe LM, Orioli IM, Poletta FA, Padilla C, Vieira AR, Weinberg SM, Wehby GL, Feingold E, Murray JC, Marazita ML, Leslie EJ. Genome-wide interaction studies identify sex-specific risk alleles for nonsyndromic orofacial clefts. Genet Epidemiol 2018; 42:664-672. [PMID: 30277614 PMCID: PMC6185762 DOI: 10.1002/gepi.22158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans and is notable for its apparent sexual dimorphism where approximately twice as many males are affected as females. The sources of this disparity are largely unknown, but interactions between genetic and sex effects are likely contributors. We examined gene-by-sex (G × S) interactions in a worldwide sample of 2,142 NSCL/P cases and 1,700 controls recruited from 13 countries. First, we performed genome-wide joint tests of the genetic (G) and G × S effects genome-wide using logistic regression assuming an additive genetic model and adjusting for 18 principal components of ancestry. We further interrogated loci with suggestive results from the joint test ( p < 1.00 × 10 -5 ) by examining the G × S effects from the same model. Out of the 133 loci with suggestive results ( p < 1.00 × 10 -5 ) for the joint test, we observed one genome-wide significant G × S effect in the 10q21 locus (rs72804706; p = 6.69 × 10 -9 ; OR = 2.62 CI [1.89, 3.62]) and 16 suggestive G × S effects. At the intergenic 10q21 locus, the risk of NSCL/P is estimated to increase with additional copies of the minor allele for females, but the opposite effect for males. Our observation that the impact of genetic variants on NSCL/P risk differs for males and females may further our understanding of the genetic architecture of NSCL/P and the sex differences underlying clefts and other birth defects.
Collapse
Affiliation(s)
- Jenna C. Carlson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nichole L. Nidey
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52246
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Carmen J. Buxo
- Dental and Craniofacial Genomics Core, School of Dental Medicine, University of Puerto Rico, San Juan, 00936, Puerto Rico
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, DK-5230, Denmark
| | - Frederic W-D Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, CO, 80045, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry UT Health at Houston, Houston, TX, 77030, USA
| | - L. Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, V6H 3N1, Canada
| | - Lina M. Moreno-Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Ieda M. Orioli
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-617, Brazil
| | - Fernando A. Poletta
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- CEMIC-CONICET: Center for Medical Education and Clinical Research “Norberto Quirno”, Buenos Aires, 1431, Argentina
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, 1000 and the Philippine Genome Center, University of the Philippines System 1101, The Philippines
| | - Alexandre R. Vieira
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa,52242, USA
| | - Mary L. Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
12
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
13
|
Skare Ø, Lie RT, Haaland ØA, Gjerdevik M, Romanowska J, Gjessing HK, Jugessur A. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2. Front Genet 2018. [PMID: 29520293 PMCID: PMC5827165 DOI: 10.3389/fgene.2018.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" (DMD, Xp21.2-p21.1), "Fibroblast growth factor 13" (FGF13, Xq26.3-q27.1) and "EGF-like domain multiple 6" (EGFL6, Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6, the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" (OFD1) and "Midline 1" (MID1)]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations with DMD, EGF16, and FGF13. Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.
Collapse
Affiliation(s)
- Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|