1
|
Li H, Li XD, Yan CH, Ni ZH, Lü MH, Zou LW, Yang L. Rational design of a near-infrared fluorescent probe for monitoring butyrylcholinesterase activity and its application in development of inhibitors. Front Bioeng Biotechnol 2024; 12:1387146. [PMID: 38638318 PMCID: PMC11024273 DOI: 10.3389/fbioe.2024.1387146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Butyrylcholinesterase (BChE) is widely expressed in multiple tissues and has a vital role in several key human disorders, such as Alzheimer's disease and tumorigenesis. However, the role of BChE in human disorders has not been investigated. Thus, to quantitatively detect and visualize dynamical variations in BChE activity is essential for exploring the biological roles of BChE in the progression of a number of human disorders. Herein, based on the substrate characteristics of BChE, we customized and synthesized three near-infrared (NIR) fluorescent probe substrates with cyanine-skeleton, and finally selected a NIR fluorescence probe substrate named CYBA. The CYBA demonstrated a significant increase in fluorescence when interacting with BChE, but mainly avoided AChE. Upon the addition of BChE, CYBA could be specifically hydrolyzed to TBO, resulting in a significant NIR fluorescence signal enhancement at 710 nm. Systematic evaluation revealed that CYBA exhibited exceptional chemical stability in complex biosamples and possessed remarkable selectivity and sensitivity towards BChE. Moreover, CYBA was successfully applied for real-time imaging of endogenous BChE activity in two types of nerve-related living cells. Additionally, CYBA demonstrated exceptional stability in the detection of complex biological samples in plasma recovery studies (97.51%-104.01%). Furthermore, CYBA was used to construct a high-throughput screening (HTS) method for BChE inhibitors using human plasma as the enzyme source. We evaluated inhibitory effects of a series of natural products and four flavonoids were identified as potent inhibitors of BChE. Collectively, CYBA can serve as a practical tool to track the changes of BChE activity in complicated biological environments due to its excellent capabilities.
Collapse
Affiliation(s)
- Hao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao-Hua Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Hua Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Wei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Niu SW, Wu CH, Chen HC, Yang CJ, Chang JM, Chang EE, Chuang HH, Chiu YW, Zhen YY, Hung CC, Hwang SJ. Proteins Secreted by Lung Cancer Cells Induce the Onset of Proteinuria via Focal Adhesion Kinase Signaling in Mice. J Transl Med 2023; 103:100156. [PMID: 37119854 DOI: 10.1016/j.labinv.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.
Collapse
Affiliation(s)
- Sheng-Wen Niu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eddy Essen Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Cancer secretome: finding out hidden messages in extracellular secretions. Clin Transl Oncol 2022; 25:1145-1155. [PMID: 36525229 DOI: 10.1007/s12094-022-03027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Secretome analysis has gained popularity recently as a very well-designed proteomic approach that is being used to study various interactions and their effects on cellular activity. This analysis is especially helpful while studying the effects of the cells on their microenvironment, paracrine and autocrine processes, their therapeutic purposes, and as a new diagnostic perspective. Cancer is a condition rather than a specific type of disease and is still yet to be fully understood. Cancer secretome is a fairly new concept that is being implemented to examine the interactions taking place in the tumor microenvironment and can help to understand the phenomena like induction of tumorigenesis, stimulation of immune cells, etc. The secretome analysis helps to gain a different perspective on the existing knowledge on cancer and its effects. The recent advances in secretome studies are directed toward secreted components as drug targets, biomarkers, and companion tools for diagnostic and prognostic purposes in cancer. This review aims to find the interactors in different types of cancer and understand the existing unstructured secretome data and its application in prognosis, diagnosis, and in biomarker study.
Collapse
|
4
|
Saad HM, Tourky GF, Al-kuraishy HM, Al-Gareeb AI, Khattab AM, Elmasry SA, Alsayegh AA, Hakami ZH, Alsulimani A, Sabatier JM, Eid MW, Shaheen HM, Mohammed AA, Batiha GES, De Waard M. The Potential Role of MUC16 (CA125) Biomarker in Lung Cancer: A Magic Biomarker but with Adversity. Diagnostics (Basel) 2022; 12:2985. [PMID: 36552994 PMCID: PMC9777200 DOI: 10.3390/diagnostics12122985] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed cancer in the world. In terms of the diagnosis of lung cancer, combination carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) detection had higher sensitivity, specificity, and diagnostic odds ratios than CEA detection alone. Most individuals with elevated serum CA125 levels had lung cancer that was either in stage 3 or stage 4. Serum CA125 levels were similarly elevated in lung cancer patients who also had pleural effusions or ascites. Furthermore, there is strong evidence that human lung cancer produces CA125 in vitro, which suggests that other clinical illnesses outside of ovarian cancer could also be responsible for the rise of CA125. MUC16 (CA125) is a natural killer cell inhibitor. As a screening test for lung and ovarian cancer diagnosis and prognosis in the early stages, CA125 has been widely used as a marker in three different clinical settings. MUC16 mRNA levels in lung cancer are increased regardless of gender. As well, increased expression of mutated MUC16 enhances lung cancer cells proliferation and growth. Additionally, the CA125 serum level is thought to be a key indicator for lung cancer metastasis to the liver. Further, CA125 could be a useful biomarker in other cancer types diagnoses like ovarian, breast, and pancreatic cancers. One of the important limitations of CA125 as a first step in such a screening technique is that up to 20% of ovarian tumors lack antigen expression. Each of the 10 possible serum markers was expressed in 29-100% of ovarian tumors with minimal or no CA125 expression. Therefore, there is a controversy regarding CA125 in the diagnosis and prognosis of lung cancer and other cancer types. In this state, preclinical and clinical studies are warranted to elucidate the clinical benefit of CA125 in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Matrouh, Egypt
| | - Ghada F. Tourky
- Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, Internal Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology, Internal Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad P.O. Box 14132, Iraq
| | - Ahmed M. Khattab
- Pharmacy College, Al-Azhar University, Cairo 11884, Cairo, Egypt
| | - Sohaila A. Elmasry
- Faculty of Science, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Zaki H. Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, MS, CT (ASCP), PhD, Jazan 45142, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, MS, CT (ASCP), PhD, Jazan 45142, Saudi Arabia
| | - Jean-Marc Sabatier
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Marwa W. Eid
- Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ali A. Mohammed
- Consultant Respiratory & General Physician, The Chest Clinic, Barts Health NHS Trust Whipps Cross University Hospital, London E11 1NR, UK
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- Université de Nice Sophia-Antipolis, LabEx «Ion Channels, Science & Therapeutics», 06560 Valbonne, France
| |
Collapse
|
5
|
Kim JY, Kim J, Lim YS, Gwak GY, Yeo I, Kim Y, Lee J, Shin D, Lee JH, Kim Y. Proteome Multimarker Panel for the Early Detection of Hepatocellular Carcinoma: Multicenter Derivation, Validation, and Comparison. ACS OMEGA 2022; 7:29934-29943. [PMID: 36061641 PMCID: PMC9434733 DOI: 10.1021/acsomega.2c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Conventional methods for the surveillance of hepatocellular carcinoma (HCC) by imaging, with and without serum tumor markers, are suboptimal with regard to accuracy. We aimed to develop and validate a reliable serum biomarker panel for the early detection of HCC using a proteomic technique. This multicenter case-control study comprised 727 patients with HCC and patients with risk factors but no HCC. We developed a multiple reaction monitoring-mass spectrometry (MRM-MS) multimarker panel using 17 proteins from the sera of 398 patients. Area under the receiver operating characteristics curve (AUROC) values of this MRM-MS panel with and without α-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II) were compared. The combination and standalone MRM-MS panels had higher AUROC values than AFP in the training (0.940 and 0.929 vs 0.775, both P < 0.05), test (0.894 and 0.893 vs 0.593, both P < 0.05), and confirmation sets (0.961 and 0.937 vs 0.806, both P < 0.05) in detecting small single HCC. The combination and standalone MRM-MS panels had significantly higher AUROC values than the GALAD score (0.945 and 0.931 vs 0.829, both P < 0.05). Our proteome 17-protein multimarker panel distinguished HCC patients from high-risk controls and had high accuracy in the early detection of HCC.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department
of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaenyeon Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Suk Lim
- Department
of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Geum-Youn Gwak
- Department
of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic
of Korea
| | - Injoon Yeo
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Yoseop Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeon Lee
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic of Korea
| | - Dongyoon Shin
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Hoon Lee
- Department
of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
7
|
Lee S, Ju S, Kim SJ, Choi JO, Kim K, Kim D, Jeon ES, Lee C. tipNrich: A Tip-Based N-Terminal Proteome Enrichment Method. Anal Chem 2021; 93:14088-14098. [PMID: 34615347 DOI: 10.1021/acs.analchem.1c01722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mass spectrometry-based analysis of protein post-translational modifications requires large amounts of sample, complicating the analysis of samples with limited amounts of proteins such as clinical biopsies. Here, we present a tip-based N-terminal analysis method, tipNrich. The entire procedure is processed in a single pipette tip to minimize sample loss, which is so highly optimized to analyze small amounts of proteins, even femtomole-scale of a single protein. With tipNrich, we investigated various single proteins purified from different organisms using a low-resolution mass spectrometer and identified several N-terminal peptides with different Nt-modifications such as ragged N-termini. Furthermore, we applied matrix-assisted laser desorption ionization time-of-flight mass spectrometry to our method for shortening the analysis time. Moreover, we showed that our method could be utilized in disease diagnosis as exemplified by the characterization of wild-type transthyretin amyloidosis patients compared to the healthy individuals based on N-terminome profiling. In summary, tipNrich will satisfy the need of identifying N-terminal peptides even with highly scarce amounts of proteins and of having faster processing time to check the quality of protein products or to characterize N-terminal proteoform-related diseases.
Collapse
Affiliation(s)
- Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 02792, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling. Sci Rep 2021; 11:17130. [PMID: 34429501 PMCID: PMC8385024 DOI: 10.1038/s41598-021-96635-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
The role of matrix metalloproteinase-2 (MMP-2) in tumor cell migration has been widely studied, however, the characteristics and effects of MMP-2 in clinical sample of metastatic colorectal cancer (CRC) remain poorly understood. Here, in order to unveil the perturbed proteomic signal during MMP-2 induced cancer progression, we analyzed plasma proteome of CRC patients according to disease progression, HCT116 cancer secretome upon MMP-2 knockdown, and publicly available CRC tissue proteome data. Collectively, the integrative analysis of multi-layered proteomes revealed that a protein cluster containing EMT (Epithelial-to-Mesenchymal Transition)-associated proteins such as CD9-integrin as well as MMP-2. The proteins of the cluster were regulated by MMP-2 perturbation and exhibited significantly increased expressions in tissue and plasma as disease progressed from TNM (Tumor, Node, and Metastasis) stage I to II. Furthermore, we also identified a plausible association between MMP-2 up-regulation and activation of focal adhesion kinase signaling in the proteogenomic analysis of CRC patient tissues. Based on these comparative and integrative analyses, we suggest that the high invasiveness in the metastatic CRC resulted from increased secretion of MMP-2 and CD9-integrin complex mediated by FAK signaling activation.
Collapse
|
9
|
Vega-Mendoza D, Cañas-Linares A, Flores-Alcantar A, Espinosa-Neira R, Melchy-Perez E, Vera-Estrella R, Auvynet C, Rosenstein Y. CD43 (sialophorin) is involved in the induction of extracellular matrix remodeling and angiogenesis by lung cancer cells. J Cell Physiol 2021; 236:6643-6656. [PMID: 33533043 DOI: 10.1002/jcp.30308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Aberrant expression of CD43 in malignant tumors of nonhematopoietic origin such as those from lung, cervix, colon, and breast has been shown to correlate with poor prognosis, providing tumor cells with enhanced motility, anchorage-independent growth, and in vivo tumor size, while protecting the cells of NK lysis and apoptosis. To further characterize the role of CD43 in cell transformation, we tested whether interfering its expression modified the capacity of the A549 non-small cell lung cancer cells to secrete molecules contributing to malignancy. The proteomic analysis of the secretome of serum-starved A549 cells revealed that cells expressing normal levels of CD43 released significantly high levels of molecules involved in extracellular matrix organization, angiogenesis, platelet degranulation, collagen degradation, and inflammation, as compared to CD43 RNAi cells. This data reveals a novel and unexpected role for CD43 in lung cancer development, mainly in remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Vega-Mendoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alicia Cañas-Linares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angel Flores-Alcantar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Roberto Espinosa-Neira
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,División de Investigación Básica, Laboratorio de Epigenética del Cáncer, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Erika Melchy-Perez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem Pharmacol 2020; 184:114365. [PMID: 33310051 DOI: 10.1016/j.bcp.2020.114365] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidases are well known antioxidant enzymes. They catalyze the reduction of hydrogen peroxide or organic hydroperoxides using glutathione. Among the reported 8 GPxs, GPx3, a highly conserved protein and a major ROS scavenger in plasma, has been well studied and confirmed to play a vital role as a tumor suppressor in most cancers. Additionally, this gene is known to be epigenetically regulated. It is downregulated either by hypermethylation or genomic deletion. In this review, we summarized the role of GPX3 in various cancers, its use as a prognostic biomarker, and a potential target for clinical intervention.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India; Registered as graduate student under Manipal Academy of Higher Education, Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India.
| |
Collapse
|
11
|
Hung CC, Zhen YY, Niu SW, Hsu JF, Lee TH, Chuang HH, Wang PH, Lee SC, Lin PC, Chiu YW, Wu CH, Huang MS, Hsiao M, Chen HC, Yang CJ. Lung Cancer Cell-Derived Secretome Mediates Paraneoplastic Inflammation and Fibrosis in Kidney in Mice. Cancers (Basel) 2020; 12:cancers12123561. [PMID: 33260558 PMCID: PMC7760555 DOI: 10.3390/cancers12123561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Paraneoplastic nephrotic syndrome is a complication arising in lung cancer patients. In the present study, we established an LLC1 cell orthotopic xenograft C57BL/6 mice model to translation paraneoplastic nephrotic syndrome (PNS). The pathological aspects of PNS were characterized in TGF-β signaling-engaged renal fibrosis, and renal inflammation with IL-6 expression in kidney. To reveal how the lung cancer cells remotely drive pathogenic progression, secretome derived from LLC1 cells and A549 cells were proteomically profiled. Additionally, the secretome profiling was subjected to diseases and biofunctions assessment by Ingenuity Pathway analysis (IPA). As matter of secretome profiling and IPA prediction, the Fibronectin, C1r, and C1s are potential of nephrotoxicity linked to paraneoplastic effects on glomerular pathogenesis in these lung cancer mice. Abstract Kidney failure is a possible but rare complication in lung cancer patients that may be caused by massive tumor lysis or a paraneoplastic effect. Clinical case reports have documented pathological characteristics of paraneoplastic syndrome in glomeruli, but are short of molecular details. When Lewis lung carcinoma 1 (LLC1) cells were implanted in mice lungs to establish lung cancer, renal failure was frequently observed two weeks post orthotopic xenograft. The high urinary albumin-to-creatinine ratio (ACR) was diagnosed as paraneoplastic nephrotic syndrome in those lung cancer mice. Profiling the secretome of the lung cancer cells revealed that the secretory proteins were potentially nephrotoxic. The nephrotoxicity of lung cancer-derived secretory proteins was tested by examining the pathogenic effects of 1 × 106, 2 × 106, and 5 × 106 LLC1 cell xenografts on the pathogenic progression in kidneys. Severe albuminuria was present in the mice that received 5 × 106 LLC1 cells implantation, whereas 106 cell and 2 × 106 cell-implanted mice have slightly increased albuminuria. Pathological examinations revealed that the glomeruli had capillary loop collapse, tumor antigen deposition in glomeruli, and renal intratubular casts. Since IL-6 and MCP-1 are pathologic markers of glomerulopathy, their distributions were examined in the kidneys of the lung cancer mice. Moderate to severe inflammation in the kidneys was correlated with increases in the number of cells implanted in the mice, which was reflected by renal IL-6 and MCP-1 levels, and urine ACR. TGF-β signaling-engaged renal fibrosis was validated in the lung cancer mice. These results indicated that lung cancer cells could provoke inflammation and activate renal fibrosis.
Collapse
Affiliation(s)
- Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
| | - Sheng-Wen Niu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Feng Hsu
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tai-Huang Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-H.L.); (H.-H.C.); (P.-H.W.)
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-H.L.); (H.-H.C.); (P.-H.W.)
| | - Pei-Hui Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-H.L.); (H.-H.C.); (P.-H.W.)
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung 83301, Taiwan, and College of Medicine, Chang-Gung University, Taoyuan 33303, Taiwan;
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.H.); (Y.-Y.Z.); (S.-W.N.); (S.-C.L.); (Y.-W.C.)
- Correspondence: (H.-C.C.); (C.-J.Y.); Tel.: +886-73121101 (ext. 7904) (H.-C.C.); +886-73-121-101 (ext. 5651) (C.-J.Y.); Fax: +886-73-165-706 (H.-C.C.)
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-H.L.); (H.-H.C.); (P.-H.W.)
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-C.C.); (C.-J.Y.); Tel.: +886-73121101 (ext. 7904) (H.-C.C.); +886-73-121-101 (ext. 5651) (C.-J.Y.); Fax: +886-73-165-706 (H.-C.C.)
| |
Collapse
|
12
|
Zengin T, Önal-Süzek T. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma. BMC Bioinformatics 2020; 21:368. [PMID: 32998690 PMCID: PMC7526001 DOI: 10.1186/s12859-020-03691-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lung cancer is the leading cause of the largest number of deaths worldwide and lung adenocarcinoma is the most common form of lung cancer. In order to understand the molecular basis of lung adenocarcinoma, integrative analysis have been performed by using genomics, transcriptomics, epigenomics, proteomics and clinical data. Besides, molecular prognostic signatures have been generated for lung adenocarcinoma by using gene expression levels in tumor samples. However, we need signatures including different types of molecular data, even cohort or patient-based biomarkers which are the candidates of molecular targeting. Results We built an R pipeline to carry out an integrated meta-analysis of the genomic alterations including single-nucleotide variations and the copy number variations, transcriptomics variations through RNA-seq and clinical data of patients with lung adenocarcinoma in The Cancer Genome Atlas project. We integrated significant genes including single-nucleotide variations or the copy number variations, differentially expressed genes and those in active subnetworks to construct a prognosis signature. Cox proportional hazards model with Lasso penalty and LOOCV was used to identify best gene signature among different gene categories. We determined a 12-gene signature (BCHE, CCNA1, CYP24A1, DEPTOR, MASP2, MGLL, MYO1A, PODXL2, RAPGEF3, SGK2, TNNI2, ZBTB16) for prognostic risk prediction based on overall survival time of the patients with lung adenocarcinoma. The patients in both training and test data were clustered into high-risk and low-risk groups by using risk scores of the patients calculated based on selected gene signature. The overall survival probability of these risk groups was highly significantly different for both training and test datasets. Conclusions This 12-gene signature could predict the prognostic risk of the patients with lung adenocarcinoma in TCGA and they are potential predictors for the survival-based risk clustering of the patients with lung adenocarcinoma. These genes can be used to cluster patients based on molecular nature and the best candidates of drugs for the patient clusters can be proposed. These genes also have a high potential for targeted cancer therapy of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Talip Zengin
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey.,Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuğba Önal-Süzek
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey. .,Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
13
|
Hu F, Zhou Y, Wang Q, Yang Z, Shi Y, Chi Q. Gene Expression Classification of Lung Adenocarcinoma into Molecular Subtypes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1187-1197. [PMID: 30892233 DOI: 10.1109/tcbb.2019.2905553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As one of the most common malignancies in the world, lung adenocarcinoma (LUAD) is currently difficult to cure. However, the advent of precision medicine provides an opportunity to improve the treatment of lung cancer. Subtyping lung cancer plays an important role in performing a specific treatment. Here, we developed a framework that combines k-means clustering, t-test, sensitivity analysis, self-organizing map (SOM) neural network, and hierarchical clustering methods to classify LUAD into four subtypes. We determined that 24 differentially expressed genes could be used as therapeutic targets, and five genes (i.e., RTKN2, ADAM6, SPINK1, COL3A1, and COL1A2) could be potential novel markers for LUAD. Multivariate analysis showed that the four subtypes could serve as prognostic subtypes. Representative genes of each subtype were also identified, which could be potentially targetable markers for the different subtypes. The function and pathway enrichment analyses of these representative genes showed that the four subtypes have different pathological mechanisms. Mutations associated with the subtypes, e.g., epidermal growth factor receptor (EGFR) mutations in subtype 4 and tumor protein p53 (TP53) mutations in subtypes 1 and 2, could serve as potential markers for drug development. The four subtypes provide a foundation for subtype-specific therapy of LUAD.
Collapse
|
14
|
Kang M, Seong Y, Mahmud J, Nguyen BT. Obscurin and Clusterin Elevation in Serum of Acute Myocardial Infarction Patients. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min‐Jung Kang
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Yunseo Seong
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Joyeta Mahmud
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Binh Thanh Nguyen
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| |
Collapse
|
15
|
Shin J, Kwon Y, Lee S, Na S, Hong EY, Ju S, Jung HG, Kaushal P, Shin S, Back JH, Choi SY, Kim EH, Lee SJ, Park YE, Ahn HS, Ahn Y, Kabir MH, Park SJ, Yang WS, Yeom J, Bang OY, Ha CW, Lee JW, Kang UB, Kim HJ, Park KS, Lee JE, Lee JE, Kim JY, Kim KP, Kim Y, Hirano H, Yi EC, Cho JY, Paek E, Lee C. Common Repository of FBS Proteins (cRFP) To Be Added to a Search Database for Mass Spectrometric Analysis of Cell Secretome. J Proteome Res 2019; 18:3800-3806. [PMID: 31475827 DOI: 10.1021/acs.jproteome.9b00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We propose to use cRFP (common Repository of FBS Proteins) in the MS (mass spectrometry) raw data search of cell secretomes. cRFP is a small supplementary sequence list of highly abundant fetal bovine serum proteins added to the reference database in use. The aim behind using cRFP is to prevent the contaminant FBS proteins from being misidentified as other proteins in the reference database, just as we would use cRAP (common Repository of Adventitious Proteins) to prevent contaminant proteins present either by accident or through unavoidable contacts from being misidentified as other proteins. We expect it to be widely used in experiments where the proteins are obtained from serum-free media after thorough washing of the cells, or from a complex media such as SILAC, or from extracellular vesicles directly.
Collapse
Affiliation(s)
- Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Advanced Medical Research Center , Yokohama City University , Kanazawa , Yokohama 236-0004 , Japan
| | - Yumi Kwon
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea
| | - Seungjin Na
- Department of Computer Science , Hanyang University , Seoul 04763 , Korea
| | - Eun Young Hong
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Hyun-Gyo Jung
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea
| | - Prashant Kaushal
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea
| | - Sungho Shin
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,KHU-KIST Department of Converging Science and Technology , Kyung Hee University , Seoul 02447 , Korea
| | - Ji Hyun Back
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Korea
| | - Seon Young Choi
- Department of Health Sciences and Technology, SAIHST , Sungkyunkwan University , Seoul 06351 , Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Korea
| | - Eun Hee Kim
- Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Korea
| | - Su Jin Lee
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Life Science, College of Natural Sciences , Ewha Womans University , Seoul 03760 , Korea
| | - Yae Eun Park
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Biochemistry, College of Life Science and Biotechnology , Yonsei University , Seoul 03722 , Korea
| | - Hee-Sung Ahn
- Asan Institute for Life Sciences , Asan Medical Center , Seoul 05505 , Korea
| | - Younghee Ahn
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | | | | | - Won Suk Yang
- R&D Center for Clinical Mass Spectrometry , Seegene Medical Foundation , Seoul 04805 , Korea
| | - Jeonghun Yeom
- Toxicological Laboratory, Department of Emergency Medicine , Asan Medical Center , Seoul 05505 , Korea
| | - Oh Young Bang
- Departments of Neurology, Samsung Medical Center , Sungkyunkwan University , Seoul 06351 , Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST , Sungkyunkwan University , Seoul 06351 , Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Korea.,Department of Orthopedic Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Un-Beom Kang
- Core Protein Resources Center , Daegu Gyeongbuk Institute of Science and Technology , Daegu 42988 , Korea
| | - Hye-Jung Kim
- New Drug Development Center , KBIO Osong Medical Innovation Foundation , Cheongju-si , Chungbuk 28160 , Korea
| | - Kang-Sik Park
- KHU-KIST Department of Converging Science and Technology , Kyung Hee University , Seoul 02447 , Korea.,Department of Physiology, School of Medicine , Kyung Hee Univeristy , Seoul 02447 , Korea
| | - J Eugene Lee
- Center for Bioanalysis , Korea Research Institute of Standards and Science , Daejeon 34113 , Korea
| | - Ji Eun Lee
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea
| | - Jin Young Kim
- Biomedical Omics Research Group , Korea Basic Research Institute , Ochang , Chungbuk 28119 , Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Gyeonggi 17104 , Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute , Kyung Hee University , Seoul 02453 , Korea
| | - Youngsoo Kim
- Department of Biomedical Engineering , Seoul National University College of Medicine , Seoul 03080 , Korea
| | - Hisashi Hirano
- Advanced Medical Research Center , Yokohama City University , Kanazawa , Yokohama 236-0004 , Japan
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences , Seoul National University , Seoul 03080 , Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine , Seoul National University , Seoul 08826 , Korea
| | - Eunok Paek
- Department of Computer Science , Hanyang University , Seoul 04763 , Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea.,KHU-KIST Department of Converging Science and Technology , Kyung Hee University , Seoul 02447 , Korea
| |
Collapse
|
16
|
Choi JY, An BC, Jung IJ, Kim JH, Lee SW. MiR-921 directly downregulates GPx3 in A549 lung cancer cells. Gene 2019; 700:163-167. [DOI: 10.1016/j.gene.2019.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
17
|
Shin J, Rhim J, Kwon Y, Choi SY, Shin S, Ha CW, Lee C. Comparative analysis of differentially secreted proteins in serum-free and serum-containing media by using BONCAT and pulsed SILAC. Sci Rep 2019; 9:3096. [PMID: 30816242 PMCID: PMC6395664 DOI: 10.1038/s41598-019-39650-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Despite the increased interest in secretomes associated with paracrine/autocrine mechanisms, the majority of mass spectrometric cell secretome studies have been performed using serum-free medium (SFM). On the other hand, serum-containing medium (SCM) is not recommended very much because the secretome obtained with SCM is easily contaminated with fetal bovine serum (FBS) proteins. In this study, through the combination of bioorthogonal non-canonical amino acid tagging (BONCAT) and pulsed-SILAC (pSILAC), we analyzed differentially secreted proteins between SFM and SCM in a cancer-derived human cell, U87MG, and a mesenchymal stem cell derived from human Wharton’s jelly (hWJ-MSCs). In most cases, the bioinformatic tools predicted a protein to be truly secretory when the secretion level of the protein was more in SCM than in SFM. In the case of hWJ-MSCs, the amount of proteins secreted in SCM for 24 hours was larger than that of SFM (log2 fold change = 0.96), even considering different cell proliferation rates. hWJ-MSCs proteins secreted more in SCM included several positive markers of MSC paracrine factors implicated in angiogenesis, neurogenesis and osteogenesis, and upstream regulators of cell proliferation. Our study suggests the analysis of the secretome should be processed in SCM that promotes cell proliferation and secretion.
Collapse
Affiliation(s)
- Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama, 236-0004, Japan
| | - Jiheon Rhim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Yumi Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Sun Young Choi
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Sungho Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| | - Chul-Won Ha
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Korea.
| |
Collapse
|
18
|
Ahn HS, Park SJ, Jung HG, Woo SJ, Lee C. Quantification of protein markers monitoring the pre-analytical effect of blood storage time before plasma isolation using 15 N metabolically labeled recombinant proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1189-1197. [PMID: 30251292 DOI: 10.1002/jms.4294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
In the hospital, blood samples are collected to monitor patients' health states, and thus various protein-based clinical methods have been developed. However, some proteins are found to change in abundances during the process of blood collection and storage. In order to account such pre-analytical effects, we performed liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) on 15 selected proteins in plasma samples prepared by varying storage time and temperature of whole blood prior to plasma isolation. Two cytosolic proteins, profilin-1 (PFN1) and thymosin beta-4 (TMSB4X), were absolutely quantified using 15 N-labeled recombinant proteins spiked externally. The other 13 proteins were quantified in a relative way compared with the two reference proteins. Triplicated LC-MRM-MS measurements showed that the median CV of MRM peak areas was 5.7%. The amounts of PFN1 and TMSB4X increased rapidly depending on the storage time between blood collection and plasma preparation. It indicates the leakage of cellular components into the plasma fraction. Relative quantification further revealed that five proteins including PFN1, S10A8, S10A9, S10A11, and TMSB4X showed significant difference (P < 0.05). We further monitored PFN1 and TMSB4X on 40 samples collected for protein diagnostics under a typical clinical study condition. Compared with the plasma samples prepared within a day, the level of both PFN1 and TMSB4X increased in the plasma samples prepared from the blood collected the day before and kept overnight at 4°C (0.51 to 3.11 μg/mL for PFN1 and 0.98 to 5.36 μg/mL for TMSB4X in average). Our result suggests an effort of assuring plasma quality for accurate protein-based diagnosis or biomarker discovery and validation.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seong-Jun Park
- RetiMark Co. Ltd, 67 Seobinggoro #103-1502, Yonsan-gu, Seoul, 04385, Republic of Korea
| | - Hyun-Gyo Jung
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, 5 Hwarangro-14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
19
|
An BC, Choi YD, Oh IJ, Kim JH, Park JI, Lee SW. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines. PLoS One 2018; 13:e0204170. [PMID: 30260967 PMCID: PMC6160013 DOI: 10.1371/journal.pone.0204170] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3), a major scavenger of reactive oxygen species (ROS) in plasma, acts as a redox signal modulator. However, the mechanism underlying GPx3-mediated suppression of cancer cell growth is unclear. The aim of this study was to identify these mechanisms with respect to lung cancer. To enhance the redox modulating properties of GPx3, lung cancer cells were subjected to serum starvation for 12 h, resulting in ROS generation in the absence of oxidant treatment. We then investigated whether suppression of tumorigenesis under conditions of oxidative stress was dependent on GPx3. The results showed that GPx3 effectively suppressed proliferation, migration, and invasion of lung cancer cells under oxidative stress. In addition, GPx3 expression led to a significant reduction in ROS production by cancer cells and induced G2/M phase arrest. We also found that inactivation of cyclin B1 significantly suppressed by nuclear factor-κB(NF-κB) inactivation in lung cancer cells was dependent on GPx3 expression. To further elucidate the mechanism(s) underlying GPx3-medited suppression of tumor proliferation, we next examined the effect of GPx3-mediated redox signaling on the ROS-MKP3-extracellular signal-regulated kinase (Erk)-NF-κB-cyclin B1 pathway and found that GPx3 strongly suppressed activation of the Erk-NF-κB-cyclin B1 signaling cascade by protecting MKP3 (an Erk-specific phosphatase) from the effects of ROS. Thus, this study demonstrates for the first time that the GPx3 suppresses proliferation of lung cancer cells by modulating redox-mediated signals.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Anatomy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Hospital, Dong-gu, Gwangju, Korea
| | - In-Jae Oh
- Department of Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
| | - Ju Han Kim
- Department of Internal Medicine, Chonnam National University Hospital, Dong-gu, Gwangju, Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Buk-gu, Gwangju, Korea
| | - Seung-won Lee
- Department of Anatomy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
- * E-mail:
| |
Collapse
|
20
|
Gu Y, Chow MJ, Kapoor A, Mei W, Jiang Y, Yan J, De Melo J, Seliman M, Yang H, Cutz JC, Bonert M, Major P, Tang D. Biphasic Alteration of Butyrylcholinesterase (BChE) During Prostate Cancer Development. Transl Oncol 2018; 11:1012-1022. [PMID: 29966864 PMCID: PMC6031255 DOI: 10.1016/j.tranon.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Butyrylcholinesterase (BChE) is a plasma enzyme that hydrolyzes ghrelin and bioactive esters, suggesting a role in modulating metabolism. Serum BChE is reduced in cancer patients. In prostate cancer (PC), the down-regulation is associated with disease recurrence. Nonetheless, how BChE is expressed in PC and its impact on PC remain unclear. We report here the biphasic changes of BChE expression in PC. In vitro, BChE expression was decreased in more tumorigenic PC stem-like cells (PCSLCs), DU145, and PC3 cells compared to less tumorigenic non-stem PCs and LNCaP cells. On the other hand, BChE was expressed at a higher level in LNCaP cells than immortalized but non-tumorigenic prostate epithelial BPH-1 cells. In vivo, BChE expression was up-regulated in DU145 xenografts compared to LNCaP xenografts; DU145 cell-derived lung metastases displayed comparable levels of BChE as subcutaneous tumors. Furthermore, LNCaP xenografts produced in castrated mice exhibited a significant increase of BChE expression compared to xenografts generated in intact mice. In patients, BChE expression was down-regulated in PCs (n = 340) compared to prostate tissues (n = 86). In two independent PC populations MSKCC (n = 130) and TCGA Provisional (n = 490), BChE mRNA levels were reduced from World Health Organization grade group 1 (WHOGG 1) PCs to WHOGG 3 PCs, followed by a significant increase in WHOGG 5 PCs. The up-regulation was associated with a reduction in disease-free survival (P = .008). Collectively, we demonstrated for the first time a biphasic alteration of BChE, its down-regulation at early stage of PC and its up-regulation at advanced PC.
Collapse
Affiliation(s)
- Yan Gu
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Mathilda Jing Chow
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Anil Kapoor
- the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Wenjuan Mei
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada; Department of Nephrology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yanzhi Jiang
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada; Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Judy Yan
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Jason De Melo
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Maryam Seliman
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada; School of Medicine, the National University of Ireland, Galway, Ireland
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jean-Claude Cutz
- Division of Anatomical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael Bonert
- Division of Anatomical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, Ontario, Canada.
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Research Institute of St Joe's Hamilton, St. Joseph's Hospital, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|