1
|
Fesenko I, Sahakyan H, Dhyani R, Shabalina SA, Storz G, Koonin EV. The hidden bacterial microproteome. Mol Cell 2025; 85:1024-1041.e6. [PMID: 39978337 PMCID: PMC11890958 DOI: 10.1016/j.molcel.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/05/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Microproteins encoded by small open reading frames comprise the "dark matter" of proteomes. Although microproteins have been detected in diverse organisms from all three domains of life, many more remain to be identified, and only a few have been functionally characterized. In this comprehensive study of intergenic small open reading frames (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identify 67,297 clusters of ismORFs subject to purifying selection. Expression of tagged Escherichia coli microproteins is detected for 11 of the 16 tested, validating the predictions. Although the ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins, some globular folds, oligomeric structures, and possible interactions with proteins encoded by neighboring genes are predicted. Complete information on the predicted microprotein families, including evidence of transcription and translation, and structure predictions are available as an easily searchable resource for investigation of microprotein functions.
Collapse
Affiliation(s)
- Igor Fesenko
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajat Dhyani
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
2
|
Fesenko I, Sahakyan H, Shabalina SA, Koonin EV. The Cryptic Bacterial Microproteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580829. [PMID: 38903115 PMCID: PMC11188072 DOI: 10.1101/2024.02.17.580829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Microproteins encoded by small open reading frames (smORFs) comprise the "dark matter" of proteomes. Although functional microproteins were identified in diverse organisms from all three domains of life, bacterial smORFs remain poorly characterized. In this comprehensive study of intergenic smORFs (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identified 67,297 clusters of ismORFs subject to purifying selection. The ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins. Using AlphaFold Multimer, we predicted interactions of some of the predicted microproteins encoded by transcribed ismORFs with proteins encoded by neighboring genes, revealing the potential of microproteins to regulate the activity of various proteins, particularly, under stress. We compiled a catalog of predicted microprotein families with different levels of evidence from synteny analysis, structure prediction, and transcription and translation data. This study offers a resource for investigation of biological functions of microproteins.
Collapse
Affiliation(s)
- Igor Fesenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Fuchs S, Engelmann S. Small proteins in bacteria - Big challenges in prediction and identification. Proteomics 2023; 23:e2200421. [PMID: 37609810 DOI: 10.1002/pmic.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Proteins with up to 100 amino acids have been largely overlooked due to the challenges associated with predicting and identifying them using traditional methods. Recent advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-seq technologies, and mass spectrometry (MS) have greatly facilitated the detection and characterisation of these elusive proteins in recent years. This has revealed their crucial role in various cellular processes including regulation, signalling and transport, as toxins and as folding helpers for protein complexes. Consequently, the systematic identification and characterisation of these proteins in bacteria have emerged as a prominent field of interest within the microbial research community. This review provides an overview of different strategies for predicting and identifying these proteins on a large scale, leveraging the power of these advanced technologies. Furthermore, the review offers insights into the future developments that may be expected in this field.
Collapse
Affiliation(s)
- Stephan Fuchs
- Genome Competence Center (MF1), Department MFI, Robert-Koch-Institut, Berlin, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
- Microbial Proteomics, Helmholtzzentrum für Infektionsforschung GmbH, Braunschweig, Germany
| |
Collapse
|
4
|
Simoens L, Fijalkowski I, Van Damme P. Exposing the small protein load of bacterial life. FEMS Microbiol Rev 2023; 47:fuad063. [PMID: 38012116 PMCID: PMC10723866 DOI: 10.1093/femsre/fuad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.
Collapse
Affiliation(s)
- Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Zehentner B, Scherer S, Neuhaus K. Non-canonical transcriptional start sites in E. coli O157:H7 EDL933 are regulated and appear in surprisingly high numbers. BMC Microbiol 2023; 23:243. [PMID: 37653502 PMCID: PMC10469882 DOI: 10.1186/s12866-023-02988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Analysis of genome wide transcription start sites (TSSs) revealed an unexpected complexity since not only canonical TSS of annotated genes are recognized by RNA polymerase. Non-canonical TSS were detected antisense to, or within, annotated genes as well new intergenic (orphan) TSS, not associated with known genes. Previously, it was hypothesized that many such signals represent noise or pervasive transcription, not associated with a biological function. Here, a modified Cappable-seq protocol allows determining the primary transcriptome of the enterohemorrhagic E. coli O157:H7 EDL933 (EHEC). We used four different growth media, both in exponential and stationary growth phase, replicated each thrice. This yielded 19,975 EHEC canonical and non-canonical TSS, which reproducibly occurring in three biological replicates. This questions the hypothesis of experimental noise or pervasive transcription. Accordingly, conserved promoter motifs were found upstream indicating proper TSSs. More than 50% of 5,567 canonical and between 32% and 47% of 10,355 non-canonical TSS were differentially expressed in different media and growth phases, providing evidence for a potential biological function also of non-canonical TSS. Thus, reproducible and environmentally regulated expression suggests that a substantial number of the non-canonical TSSs may be of unknown function rather than being the result of noise or pervasive transcription.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
6
|
Graf F, Zehentner B, Fellner L, Scherer S, Neuhaus K. Three Novel Antisense Overlapping Genes in E. coli O157:H7 EDL933. Microbiol Spectr 2023; 11:e0235122. [PMID: 36533921 PMCID: PMC9927249 DOI: 10.1128/spectrum.02351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated. To date, only a few examples of such genes are fully established. Using RNA sequencing and ribosome profiling, we found expression of novel overlapping open reading frames in Escherichia coli O157:H7 EDL933 (EHEC). Indeed, the overlapping candidate genes are equipped with typical structural elements required for transcription and translation, i.e., promoters, transcription start sites, as well as terminators, all of which were experimentally verified. Translationally arrested mutants, unable to produce the overlapping encoded protein, were found to have a growth disadvantage when grown competitively against the wild type. Thus, the phenotypes found imply biological functionality of the genes at the level of proteins produced. The addition of 3 more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes emphasizes the underestimated coding capacity of bacterial genomes. IMPORTANCE The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated, since such genes are not allowed in genome annotations. However, ribosome profiling catches mRNA in the moment of being template for protein production. Using this technique and subsequent experiments, we verified 3 novel overlapping genes encoded in antisense of known genes. This adds more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes.
Collapse
Affiliation(s)
- Franziska Graf
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lea Fellner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Siegfried Scherer
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
7
|
Fijalkowski I, Willems P, Jonckheere V, Simoens L, Van Damme P. Hidden in plain sight: challenges in proteomics detection of small ORF-encoded polypeptides. MICROLIFE 2022; 3:uqac005. [PMID: 37223358 PMCID: PMC10117744 DOI: 10.1093/femsml/uqac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Genomic studies of bacteria have long pointed toward widespread prevalence of small open reading frames (sORFs) encoding for short proteins, <100 amino acids in length. Despite the mounting genomic evidence of their robust expression, relatively little progress has been made in their mass spectrometry-based detection and various blanket statements have been used to explain this observed discrepancy. In this study, we provide a large-scale riboproteogenomics investigation of the challenging nature of proteomic detection of such small proteins as informed by conditional translation data. A panel of physiochemical properties alongside recently developed mass spectrometry detectability metrics was interrogated to provide a comprehensive evidence-based assessment of sORF-encoded polypeptide (SEP) detectability. Moreover, a large-scale proteomics and translatomics compendium of proteins produced by Salmonella Typhimurium (S. Typhimurium), a model human pathogen, across a panel of growth conditions is presented and used in support of our in silico SEP detectability analysis. This integrative approach is used to provide a data-driven census of small proteins expressed by S. Typhimurium across growth phases and infection-relevant conditions. Taken together, our study pinpoints current limitations in proteomics-based detection of novel small proteins currently missing from bacterial genome annotations.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Patrick Willems
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Kreitmeier M, Ardern Z, Abele M, Ludwig C, Scherer S, Neuhaus K. Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. iScience 2022; 25:103844. [PMID: 35198897 PMCID: PMC8850804 DOI: 10.1016/j.isci.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
The existence of overlapping genes (OLGs) with significant coding overlaps revolutionizes our understanding of genomic complexity. We report two exceptionally long (957 nt and 1536 nt), evolutionarily novel, translated antisense open reading frames (ORFs) embedded within annotated genes in the pathogenic Gram-negative bacterium Pseudomonas aeruginosa. Both OLG pairs show sequence features consistent with being genes and transcriptional signals in RNA sequencing. Translation of both OLGs was confirmed by ribosome profiling and mass spectrometry. Quantitative proteomics of samples taken during different phases of growth revealed regulation of protein abundances, implying biological functionality. Both OLGs are taxonomically restricted, and likely arose by overprinting within the genus. Evidence for purifying selection further supports functionality. The OLGs reported here, designated olg1 and olg2, are the longest yet proposed in prokaryotes and are among the best attested in terms of translation and evolutionary constraint. These results highlight a potentially large unexplored dimension of prokaryotic genomes.
Collapse
Affiliation(s)
- Michaela Kreitmeier
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
9
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
10
|
Watson AK, Lopez P, Bapteste E. Hundreds of out-of-frame remodelled gene families in the E. coli pangenome. Mol Biol Evol 2021; 39:6430988. [PMID: 34792602 PMCID: PMC8788219 DOI: 10.1093/molbev/msab329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All genomes include gene families with very limited taxonomic distributions that potentially represent new genes and innovations in protein-coding sequence, raising questions on the origins of such genes. Some of these genes are hypothesized to have formed de novo, from noncoding sequences, and recent work has begun to elucidate the processes by which de novo gene formation can occur. A special case of de novo gene formation, overprinting, describes the origin of new genes from noncoding alternative reading frames of existing open reading frames (ORFs). We argue that additionally, out-of-frame gene fission/fusion events of alternative reading frames of ORFs and out-of-frame lateral gene transfers could contribute to the origin of new gene families. To demonstrate this, we developed an original pattern-search in sequence similarity networks, enhancing the use of these graphs, commonly used to detect in-frame remodeled genes. We applied this approach to gene families in 524 complete genomes of Escherichia coli. We identified 767 gene families whose evolutionary history likely included at least one out-of-frame remodeling event. These genes with out-of-frame components represent ∼2.5% of all genes in the E. coli pangenome, suggesting that alternative reading frames of existing ORFs can contribute to a significant proportion of de novo genes in bacteria.
Collapse
Affiliation(s)
- Andrew K Watson
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 7, quai Saint Bernard, Paris, 75005, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 7, quai Saint Bernard, Paris, 75005, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 7, quai Saint Bernard, Paris, 75005, France
| |
Collapse
|
11
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Wang L, Wang M, Shi X, Yang J, Qian C, Liu Q, Zong L, Liu X, Zhu Z, Tang D, Zhang X. Investigation into archaeal extremophilic lifestyles through comparative proteogenomic analysis. J Biomol Struct Dyn 2020; 39:7080-7092. [PMID: 32820705 DOI: 10.1080/07391102.2020.1808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Archaea are a group of primary life forms on Earth and could thrive in many unique environments. Their successful colonization of extreme niches requires corresponding adaptations at proteogenomic level in order to maintain stable cellular structures and active physiological functions. Although some studies have already investigated the extremophilic lifestyles of archaeal species based on genomic features and protein structures, there is a lack of comparative proteogenomic analysis in a large scale. In this study, we explored 686 high-quality archaeal genomes (proteomes) sourced from the Pathosystems Resource Integration Center (PATRIC) database. General patterns of genomic features such as genome size, coding capacity (coding genes and non-coding regions), and G + C contents were re-confirmed. Protein domain distribution patterns were then identified across archaeal species. Domains with unknown functions (DUFs) and mini proteins were investigated in terms of their distributions due to their importance in archaeal physiological functions. In addition, physicochemical properties of protein sequences, such as stability, hydrophobicity, isoelectric point, aromaticity and amino acid compositions in corresponding archaeal groups were compared. Unique features associated with extremophilic lifestyles were observed, which suggested that evolutionary adaptations to different extreme environments had intrinsic impacts on archaeal protein features. Taken together, this systematic study facilitates a better understanding of the mechanisms behind the extremophilic lifestyles of archaeal species, which will further contribute to the evolutionary explorations of archaeal adaptations both experimentally and theoretically in the future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengmeng Wang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyi Shi
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianye Yang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenlu Qian
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghua Liu
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lixin Zong
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daoquan Tang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Computer Science, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional? Front Mol Biosci 2020; 7:187. [PMID: 32923454 PMCID: PMC7457138 DOI: 10.3389/fmolb.2020.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.
Collapse
Affiliation(s)
- Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
14
|
Glaub A, Huptas C, Neuhaus K, Ardern Z. Recommendations for bacterial ribosome profiling experiments based on bioinformatic evaluation of published data. J Biol Chem 2020; 295:8999-9011. [PMID: 32385111 PMCID: PMC7335797 DOI: 10.1074/jbc.ra119.012161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.
Collapse
Affiliation(s)
- Alina Glaub
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Christopher Huptas
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany; Core Facility Microbiome, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Zehentner B, Ardern Z, Kreitmeier M, Scherer S, Neuhaus K. A Novel pH-Regulated, Unusual 603 bp Overlapping Protein Coding Gene pop Is Encoded Antisense to ompA in Escherichia coli O157:H7 (EHEC). Front Microbiol 2020; 11:377. [PMID: 32265854 PMCID: PMC7103648 DOI: 10.3389/fmicb.2020.00377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022] Open
Abstract
Antisense transcription is well known in bacteria. However, translation of antisense RNAs is typically not considered, as the implied overlapping coding at a DNA locus is assumed to be highly improbable. Therefore, such overlapping genes are systematically excluded in prokaryotic genome annotation. Here we report an exceptional 603 bp long open reading frame completely embedded in antisense to the gene of the outer membrane protein ompA. An active σ70 promoter, transcription start site (TSS), Shine-Dalgarno motif and rho-independent terminator were experimentally validated, providing evidence that this open reading frame has all the structural features of a functional gene. Furthermore, ribosomal profiling revealed translation of the mRNA, the protein was detected in Western blots and a pH-dependent phenotype conferred by the protein was shown in competitive overexpression growth experiments of a translationally arrested mutant versus wild type. We designate this novel gene pop (pH-regulated overlapping protein-coding gene), thus adding another example to the growing list of overlapping, protein coding genes in bacteria.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Michaela Kreitmeier
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Korandla DR, Wozniak JM, Campeau A, Gonzalez DJ, Wright ES. AssessORF: combining evolutionary conservation and proteomics to assess prokaryotic gene predictions. Bioinformatics 2019; 36:1022-1029. [PMID: 31532487 PMCID: PMC7998711 DOI: 10.1093/bioinformatics/btz714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION A core task of genomics is to identify the boundaries of protein coding genes, which may cover over 90% of a prokaryote's genome. Several programs are available for gene finding, yet it is currently unclear how well these programs perform and whether any offers superior accuracy. This is in part because there is no universal benchmark for gene finding and, therefore, most developers select their own benchmarking strategy. RESULTS Here, we introduce AssessORF, a new approach for benchmarking prokaryotic gene predictions based on evidence from proteomics data and the evolutionary conservation of start and stop codons. We applied AssessORF to compare gene predictions offered by GenBank, GeneMarkS-2, Glimmer and Prodigal on genomes spanning the prokaryotic tree of life. Gene predictions were 88-95% in agreement with the available evidence, with Glimmer performing the worst but no clear winner. All programs were biased towards selecting start codons that were upstream of the actual start. Given these findings, there remains considerable room for improvement, especially in the detection of correct start sites. AVAILABILITY AND IMPLEMENTATION AssessORF is available as an R package via the Bioconductor package repository. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Deepank R Korandla
- Department of Biological Sciences, USA,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
17
|
Weaver J, Mohammad F, Buskirk AR, Storz G. Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes. mBio 2019; 10:e02819-18. [PMID: 30837344 PMCID: PMC6401488 DOI: 10.1128/mbio.02819-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 11/20/2022] Open
Abstract
Small proteins consisting of 50 or fewer amino acids have been identified as regulators of larger proteins in bacteria and eukaryotes. Despite the importance of these molecules, the total number of small proteins remains unknown because conventional annotation pipelines usually exclude small open reading frames (smORFs). We previously identified several dozen small proteins in the model organism Escherichia coli using theoretical bioinformatic approaches based on sequence conservation and matches to canonical ribosome binding sites. Here, we present an empirical approach for discovering new proteins, taking advantage of recent advances in ribosome profiling in which antibiotics are used to trap newly initiated 70S ribosomes at start codons. This approach led to the identification of many novel initiation sites in intergenic regions in E. coli We tagged 41 smORFs on the chromosome and detected protein synthesis for all but three. Not only are the corresponding genes intergenic but they are also found antisense to other genes, in operons, and overlapping other open reading frames (ORFs), some impacting the translation of larger downstream genes. These results demonstrate the utility of this method for identifying new genes, regardless of their genomic context.IMPORTANCE Proteins comprised of 50 or fewer amino acids have been shown to interact with and modulate the functions of larger proteins in a range of organisms. Despite the possible importance of small proteins, the true prevalence and capabilities of these regulators remain unknown as the small size of the proteins places serious limitations on their identification, purification, and characterization. Here, we present a ribosome profiling approach with stalled initiation complexes that led to the identification of 38 new small proteins.
Collapse
Affiliation(s)
- Jeremy Weaver
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A, Sabido E, Serrano L, Lluch-Senar M. Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 2019; 15:e8290. [PMID: 30796087 PMCID: PMC6385055 DOI: 10.15252/msb.20188290] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identification of small open reading frames (smORFs) encoding small proteins (≤ 100 amino acids; SEPs) is a challenge in the fields of genome annotation and protein discovery. Here, by combining a novel bioinformatics tool (RanSEPs) with “‐omics” approaches, we were able to describe 109 bacterial small ORFomes. Predictions were first validated by performing an exhaustive search of SEPs present in Mycoplasma pneumoniae proteome via mass spectrometry, which illustrated the limitations of shotgun approaches. Then, RanSEPs predictions were validated and compared with other tools using proteomic datasets from different bacterial species and SEPs from the literature. We found that up to 16 ± 9% of proteins in an organism could be classified as SEPs. Integration of RanSEPs predictions with transcriptomics data showed that some annotated non‐coding RNAs could in fact encode for SEPs. A functional study of SEPs highlighted an enrichment in the membrane, translation, metabolism, and nucleotide‐binding categories. Additionally, 9.7% of the SEPs included a N‐terminus predicted signal peptide. We envision RanSEPs as a tool to unmask the hidden universe of small bacterial proteins.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guadalupe Espadas-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anas Gharrab
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
19
|
The novel EHEC gene asa overlaps the TEGT transporter gene in antisense and is regulated by NaCl and growth phase. Sci Rep 2018; 8:17875. [PMID: 30552341 PMCID: PMC6294744 DOI: 10.1038/s41598-018-35756-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 12/02/2022] Open
Abstract
Only a few overlapping gene pairs are known in the best-analyzed bacterial model organism Escherichia coli. Automatic annotation programs usually annotate only one out of six reading frames at a locus, allowing only small overlaps between protein-coding sequences. However, both RNAseq and RIBOseq show signals corresponding to non-trivially overlapping reading frames in antisense to annotated genes, which may constitute protein-coding genes. The transcription and translation of the novel 264 nt gene asa, which overlaps in antisense to a putative TEGT (Testis-Enhanced Gene Transfer) transporter gene is detected in pathogenic E. coli, but not in two apathogenic E. coli strains. The gene in E. coli O157:H7 (EHEC) was further analyzed. An overexpression phenotype was identified in two stress conditions, i.e. excess in salt or arginine. For this, EHEC overexpressing asa was grown competitively against EHEC with a translationally arrested asa mutant gene. RT-qPCR revealed conditional expression dependent on growth phase, sodium chloride, and arginine. Two potential promoters were computationally identified and experimentally verified by reporter gene expression and determination of the transcription start site. The protein Asa was verified by Western blot. Close homologues of asa have not been found in protein databases, but bioinformatic analyses showed that it may be membrane associated, having a largely disordered structure.
Collapse
|
20
|
Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Scherer S, Neuhaus K. The Novel Anaerobiosis-Responsive Overlapping Gene ano Is Overlapping Antisense to the Annotated Gene ECs2385 of Escherichia coli O157:H7 Sakai. Front Microbiol 2018; 9:931. [PMID: 29867840 PMCID: PMC5960689 DOI: 10.3389/fmicb.2018.00931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Current notion presumes that only one protein is encoded at a given bacterial genetic locus. However, transcription and translation of an overlapping open reading frame (ORF) of 186 bp length were discovered by RNAseq and RIBOseq experiments. This ORF is almost completely embedded in the annotated L,D-transpeptidase gene ECs2385 of Escherichia coli O157:H7 Sakai in the antisense reading frame -3. The ORF is transcribed as part of a bicistronic mRNA, which includes the annotated upstream gene ECs2384, encoding a murein lipoprotein. The transcriptional start site of the operon resides 38 bp upstream of the ECs2384 start codon and is driven by a predicted σ70 promoter, which is constitutively active under different growth conditions. The bicistronic operon contains a ρ-independent terminator just upstream of the novel gene, significantly decreasing its transcription. The novel gene can be stably expressed as an EGFP-fusion protein and a translationally arrested mutant of ano, unable to produce the protein, shows a growth advantage in competitive growth experiments compared to the wild type under anaerobiosis. Therefore, the novel antisense overlapping gene is named ano (anaerobiosis responsive overlapping gene). A phylostratigraphic analysis indicates that ano originated very recently de novo by overprinting after the Escherichia/Shigella clade separated from other enterobacteria. Therefore, ano is one of the very rare cases of overlapping genes known in the genus Escherichia.
Collapse
Affiliation(s)
- Sarah M Hücker
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Sonja Vanderhaeghen
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | | | - Siegfried Scherer
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Core Facility Microbiome/NGS, Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
21
|
Esquirol L, Peat TS, Wilding M, Liu JW, French NG, Hartley CJ, Onagi H, Nebl T, Easton CJ, Newman J, Scott C. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. J Biol Chem 2018. [PMID: 29523689 DOI: 10.1074/jbc.ra118.001996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead it catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a previously unidentified 68-amino acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction.
Collapse
Affiliation(s)
- Lygie Esquirol
- From the Biocatalysis and Synthetic Biology Team and.,the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Matthew Wilding
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and.,CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Jian-Wei Liu
- From the Biocatalysis and Synthetic Biology Team and
| | | | | | - Hideki Onagi
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas Nebl
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Christopher J Easton
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Colin Scott
- From the Biocatalysis and Synthetic Biology Team and .,Synthetic Biology Future Science Platform, CSIRO Land and Water, Canberra, Australian Capital Territory 2601
| |
Collapse
|
22
|
Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Wecko R, Simon S, Scherer S, Neuhaus K. A novel short L-arginine responsive protein-coding gene (laoB) antiparallel overlapping to a CadC-like transcriptional regulator in Escherichia coli O157:H7 Sakai originated by overprinting. BMC Evol Biol 2018; 18:21. [PMID: 29433444 PMCID: PMC5810103 DOI: 10.1186/s12862-018-1134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Due to the DNA triplet code, it is possible that the sequences of two or more protein-coding genes overlap to a large degree. However, such non-trivial overlaps are usually excluded by genome annotation pipelines and, thus, only a few overlapping gene pairs have been described in bacteria. In contrast, transcriptome and translatome sequencing reveals many signals originated from the antisense strand of annotated genes, of which we analyzed an example gene pair in more detail. Results A small open reading frame of Escherichia coli O157:H7 strain Sakai (EHEC), designated laoB (L-arginine responsive overlapping gene), is embedded in reading frame −2 in the antisense strand of ECs5115, encoding a CadC-like transcriptional regulator. This overlapping gene shows evidence of transcription and translation in Luria-Bertani (LB) and brain-heart infusion (BHI) medium based on RNA sequencing (RNAseq) and ribosomal-footprint sequencing (RIBOseq). The transcriptional start site is 289 base pairs (bp) upstream of the start codon and transcription termination is 155 bp downstream of the stop codon. Overexpression of LaoB fused to an enhanced green fluorescent protein (EGFP) reporter was possible. The sequence upstream of the transcriptional start site displayed strong promoter activity under different conditions, whereas promoter activity was significantly decreased in the presence of L-arginine. A strand-specific translationally arrested mutant of laoB provided a significant growth advantage in competitive growth experiments in the presence of L-arginine compared to the wild type, which returned to wild type level after complementation of laoB in trans. A phylostratigraphic analysis indicated that the novel gene is restricted to the Escherichia/Shigella clade and might have originated recently by overprinting leading to the expression of part of the antisense strand of ECs5115. Conclusions Here, we present evidence of a novel small protein-coding gene laoB encoded in the antisense frame −2 of the annotated gene ECs5115. Clearly, laoB is evolutionarily young and it originated in the Escherichia/Shigella clade by overprinting, a process which may cause the de novo evolution of bacterial genes like laoB. Electronic supplementary material The online version of this article (10.1186/s12862-018-1134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Hücker
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,Fraunhofer ITEM-R, Am Biopark 9, 93053, Regensburg, Germany
| | - Sonja Vanderhaeghen
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Isabel Abellan-Schneyder
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,Core Facility Microbiome/NGS, ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Romy Wecko
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Svenja Simon
- Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|