1
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Sun WX, Zhang KH, Zhou Q, Hu SH, Lin Y, Xu W, Zhao SM, Yuan YY. Tryptophanylation of insulin receptor by WARS attenuates insulin signaling. Cell Mol Life Sci 2024; 81:25. [PMID: 38212570 PMCID: PMC11072365 DOI: 10.1007/s00018-023-05082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.
Collapse
Affiliation(s)
- Wen-Xing Sun
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Kai-Hui Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, People's Republic of China
- Children's Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, People's Republic of China
| | - Qian Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Song-Hua Hu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yan Lin
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Wei Xu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, People's Republic of China.
| | - Yi-Yuan Yuan
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Oger F, Moreno M, Derhourhi M, Thiroux B, Berberian L, Bourouh C, Durand E, Amanzougarene S, Badreddine A, Blanc E, Molendi-Coste O, Pineau L, Pasquetti G, Rolland L, Carney C, Bornaque F, Courty E, Gheeraert C, Eeckhoute J, Dombrowicz D, Kerr-Conte J, Pattou F, Staels B, Froguel P, Bonnefond A, Annicotte JS. Pharmacological HDAC inhibition impairs pancreatic β-cell function through an epigenome-wide reprogramming. iScience 2023; 26:107231. [PMID: 37496675 PMCID: PMC10366467 DOI: 10.1016/j.isci.2023.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments. We observed that TSA alters insulin secretion associated with β-cell specific transcriptome programming in both mouse and human β-cell lines, as well as on human pancreatic islets. We also demonstrated that this alternative β-cell transcriptional program in response to HDAC inhibition is related to an epigenome-wide remodeling at both promoters and enhancers. Our data indicate that HDAC activity could be required to protect against loss of β-cell identity with unsuitable expression of genes associated with alternative cell fates.
Collapse
Affiliation(s)
- Frédérik Oger
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Maeva Moreno
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Mehdi Derhourhi
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Bryan Thiroux
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Lionel Berberian
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Cyril Bourouh
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Emmanuelle Durand
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Souhila Amanzougarene
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Alaa Badreddine
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Etienne Blanc
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Olivier Molendi-Coste
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laurent Pineau
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Laure Rolland
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Charlène Carney
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Florine Bornaque
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Emilie Courty
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Céline Gheeraert
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Froguel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jean-Sébastien Annicotte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| |
Collapse
|
5
|
Yin L, Feng G, Huang C, Cai W. Proteomic Analysis of Serum Lysine Acetylation in Uyghur Patients With T2DM. Front Mol Biosci 2022; 9:787885. [PMID: 35433838 PMCID: PMC9006524 DOI: 10.3389/fmolb.2022.787885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Lysine acetylation is a reversible modification process after protein translation, which plays a key regulatory role in various metabolic diseases such as diabetes. The prevalence of type 2 diabetes mellitus (T2DM) in the Uyghur population is high, but the acetylation status of proteomics in Uyghur with T2DM is still unclear. Herein, we performed a quantitative proteomic study of lysine acetylation in T2DM patients using Tandem Mass Tags (TMTs) labeling, acetylation enrichment techniques, and high-resolution liquid chromatography-tandem mass spectrometry. We quantified 422 acetylation sites on 120 proteins, of which 347 sites of 103 proteins contained quantitative information. Compared with the control, we found that a total of eight acetylated sites within proteins were significantly differentially expressed with three upregulated and five downregulated, including histones H4 and H3.3C. Meanwhile, we completed bioinformatics analysis, including protein annotation, functional classification, functional enrichment, and cluster analysis, based on functional enrichment. In addition, the mRNA (ApoB-100, histones H4 and H3.3C) and protein (histones H4 and H3.3C) levels were verified through 60 samples. Besides, we also performed histone H4 chromatin immunoprecipitation analysis at the level of INS-1 cells. These could be potentially useful markers for the prediction of prediabetes and also provided a basis for the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology and Metabolism, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Gang Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Chun Huang
- Department of Endocrinology and Metabolism, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Chun Huang, ; Weijuan Cai,
| | - Weijuan Cai
- Clinical Research Institute, Affiliated Zhanjiang Central People’s Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Chun Huang, ; Weijuan Cai,
| |
Collapse
|
6
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
7
|
Uto A, Miyashita K, Endo S, Sato M, Ryuzaki M, Kinouchi K, Mitsuishi M, Meguro S, Itoh H. Transient Dexamethasone Loading Induces Prolonged Hyperglycemia in Male Mice With Histone Acetylation in Dpp-4 Promoter. Endocrinology 2021; 162:6364113. [PMID: 34480538 PMCID: PMC8475716 DOI: 10.1210/endocr/bqab193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Glucocorticoid causes hyperglycemia, which is common in patients with or without diabetes. Prolonged hyperglycemia can be experienced even after the discontinuation of glucocorticoid use. In the present study, we examined the time course of blood glucose level in hospital patients who received transient glucocorticoid treatment. In addition, the mechanism of prolonged hyperglycemia was investigated by using dexamethasone (Dexa)-treated mice and cultured cells. The blood glucose level in glucose tolerance tests, level of insulin and glucagon-like peptide 1 (GLP-1), and the activity of dipeptidyl peptidase 4 (DPP-4) were examined during and after Dexa loading in mice, with histone acetylation level of the promoter region. Mice showed prolonged hyperglycemia during and after transient Dexa loading accompanied by persistently lower blood GLP-1 level and higher activity of DPP-4. The expression level of Dpp-4 was increased in the mononuclear cells and the promoter region of Dpp-4 was hyperacetylated during and after the transient Dexa treatment. In vitro experiments also indicated development of histone hyperacetylation in the Dpp-4 promoter region during and after Dexa treatment. The upregulation of Dpp-4 in cultured cells was significantly inhibited by a histone acetyltransferase inhibitor. Moreover, the histone hyperacetylation induced by Dexa was reversible by treatment with a sirtuin histone deacetylase activator, nicotinamide mononucleotide. We identified persistent reduction in blood GLP-1 level with hyperglycemia during and after Dexa treatment in mice, associated with histone hyperacetylation of promoter region of Dpp-4. The results unveil a novel mechanism of glucocorticoid-induced hyperglycemia, and suggest therapeutic intervention through epigenetic modification of Dpp-4.
Collapse
Affiliation(s)
- Asuka Uto
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Kazutoshi Miyashita
- Correspondence: Kazutoshi Miyashita, MD, Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Sho Endo
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masaaki Sato
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Ryuzaki
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masanori Mitsuishi
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
8
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
9
|
Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int J Mol Sci 2021; 22:ijms22042121. [PMID: 33672754 PMCID: PMC7924631 DOI: 10.3390/ijms22042121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity.
Collapse
|
10
|
Lien YC, Won KJ, Simmons RA. Transcriptomic and Quantitative Proteomic Profiling Reveals Signaling Pathways Critical for Pancreatic Islet Maturation. Endocrinology 2020; 161:5923720. [PMID: 33053583 PMCID: PMC7668240 DOI: 10.1210/endocr/bqaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic β-cell dysfunction and reduced insulin secretion play a key role in the pathogenesis of diabetes. Fetal and neonatal islets are functionally immature and have blunted glucose responsiveness and decreased insulin secretion in response to stimuli and are far more proliferative. However, the mechanisms underlying functional immaturity are not well understood. Pancreatic islets are composed of a mixture of different cell types, and the microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. RNA sequencing and quantitative proteomic data from intact islets isolated from fetal (embryonic day 19) and 2-week-old Sprague-Dawley rats were integrated to compare their gene and protein expression profiles. Ingenuity Pathway Analysis (IPA) was also applied to elucidate pathways and upstream regulators modulating functional maturation of islets. By integrating transcriptome and proteomic data, 917 differentially expressed genes/proteins were identified with a false discovery rate of less than 0.05. A total of 411 and 506 of them were upregulated and downregulated in the 2-week-old islets, respectively. IPA revealed novel critical pathways associated with functional maturation of islets, such as AMPK (adenosine monophosphate-activated protein kinase) and aryl hydrocarbon receptor signaling, as well as the importance of lipid homeostasis/signaling and neuronal function. Furthermore, we also identified many proteins enriched either in fetal or 2-week-old islets related to extracellular matrix and cell communication, suggesting that these pathways play critical roles in islet maturation. Our present study identified novel pathways for mature islet function in addition to confirming previously reported mechanisms, and provided new mechanistic insights for future research on diabetes prevention and treatment.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|
11
|
Xu F, Liu J, Na L, Chen L. Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic β-Cells. Front Cell Dev Biol 2020; 8:748. [PMID: 32984307 PMCID: PMC7484512 DOI: 10.3389/fcell.2020.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a metabolic disease with multiple causes characterized by high blood sugar, has become a public health problem. Hyperglycaemia is caused by deficiencies in insulin secretion, impairment of insulin function, or both. The insulin secreted by pancreatic β cells is the only hormone in the body that lowers blood glucose levels and plays vital roles in maintaining glucose homeostasis. Therefore, investigation of the molecular mechanisms of pancreatic β cell differentiation and function is necessary to elucidate the processes involved in the onset of diabetes. Although numerous studies have shown that transcriptional regulation is essential for the differentiation and function of pancreatic β cells, increasing evidence indicates that epigenetic mechanisms participate in controlling the fate and regulation of these cells. Epigenetics involves heritable alterations in gene expression caused by DNA methylation, histone modification and non-coding RNA activity that does not result in DNA nucleotide sequence alterations. Recent research has revealed that a variety of epigenetic modifications play an important role in the development of diabetes. Here, we review the mechanisms by which epigenetic regulation affects β cell differentiation and function.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Liu
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Effects of Tributyrin Supplementation on Growth Performance, Insulin, Blood Metabolites and Gut Microbiota in Weaned Piglets. Animals (Basel) 2020; 10:ani10040726. [PMID: 32331306 PMCID: PMC7222802 DOI: 10.3390/ani10040726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In animal farming, alternatives to antibiotics are required due to the increase of antimicrobial resistance. In this contest, tributyrin showed the ability to promote gut health, to modulate gut microbiota and to improve protein digestibility, leading also to higher growth performance. However, although the mode of action of tributyrin on the intestinal epithelial cells has been partially explained, its effects on lipid and protein metabolism needs to be investigated. This paper provides information about the influence of tributyrin on production traits, blood parameters, faecal microbiota and faecal protein excretion in weaned piglets. Abstract The aim of this study was to investigate the effects of tributyrin supplementation on the production traits, the main metabolic parameters and gut microbiota in weaned piglets. One hundred and twenty crossbred piglets (Large White × Landrace) were randomly divided into two experimental groups (six pens each; 10 piglets per pen): the control group (CTRL), that received a basal diet, and the tributyrin group (TRIB) that received the basal diet supplemented with 0.2% tributyrin. The experimental period lasted 40 days. Production traits were measured at days 14, 28 and 40. A subset composed of 48 animals (n = 4 for each pen; n = 24 per group) was considered for the evaluation of serum metabolic parameters and hair cortisol by enzyme-linked immunosorbent assay (ELISA), and faecal microbiota by real-time polymerase chain reaction (PCR). Our results showed that the treatment significantly increased body weight (BW) at day 28 and day 40 (p = 0.0279 and p = 0.0006, respectively) and average daily gain (ADG) from day 28 to day 40 (p = 0.046). Gain to feed ratio (G:F) was significantly higher throughout the experimental period (p = 0.049). Even if the serum parameters were in the physiological range, albumin, albumin/globulin (A/G) ratio, glucose and high-density lipoproteins (HDL) fraction were significantly higher in the TRIB group. On the contrary, tributyrin significantly decreased the urea blood concentration (p = 0.0026), which was correlated with lean gain and feed efficiency. Moreover, serum insulin concentration, which has a regulatory effect on protein and lipid metabolism, was significantly higher in the TRIB group (p = 0.0187). In conclusion, this study demonstrated that tributyrin can be considered as a valid feed additive for weaned piglets.
Collapse
|
13
|
Makkar R, Behl T, Arora S. Role of HDAC inhibitors in diabetes mellitus. Curr Res Transl Med 2020; 68:45-50. [DOI: 10.1016/j.retram.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
|
14
|
Li Z, Yu Z, Gao P, Yin D. Multigenerational effects of perfluorooctanoic acid on lipid metabolism of Caenorhabditis elegans and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134762. [PMID: 31761367 DOI: 10.1016/j.scitotenv.2019.134762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 05/15/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), have been showed to induce obesogenic effects which may last over generations. However, the underlying mechanisms are not yet clear. In the present study, wild-type N2 Caenorhabditis elegans and the daf-2 mutant were exposed to PFOA for 4 consecutive generations (F0 to F3) at 1.0 ng/L. Effects on fat content and fat metabolism in the directly exposed F0 to F3 generations, the offspring of F0 (T1 to T3) and also those of F3 (T1' to T3'). Results showed that PFOA significantly stimulated the fat contents in F0 (with the percentage of the control as 184.1%), T1 (189.5%), F1 (167.3%), F2 (238.0%), T2' (193.9%) and T3' (159.4%) while inhibited them in T3 (70%). The changes of fat contents over generations were accompanied with significant changes in enzymes facilitating fatty acid synthesis (e.g., acetyl-CoA carboxylase, fatty acid synthase and desaturase, and glycerol phosphate acyltransferase) and those in fatty acid consumption (e.g., acetyl CoA synthetase, fatty acid transport protein, acyl-CoA oxidase and carnitine palmitoyl transferase). Furthermore, RNA-Seq analysis was performed on F0, F3 and T3 generations. Based on the KEGG analysis of differential genes, PFOA exposure affected lipid metabolism signaling pathways including MAPK, fatty acid degradation, TGF-β signaling pathways. Notably, PFOA exposure provoked significantly different effects in daf-2 nematodes on fat contents, lipid metabolizing enzymes and even different signaling pathways. The overall results demonstrated that the obesogenic effects of PFOA were resulted from a complex combination of various enzymes and pathways with essential involvement of insulin signaling pathway.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China.
| | - Pin Gao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
15
|
Ziegler N, Raichur S, Brunner B, Hemmann U, Stolte M, Schwahn U, Prochnow HP, Metz-Weidmann C, Tennagels N, Margerie D, Wohlfart P, Bielohuby M. Liver-Specific Knockdown of Class IIa HDACs Has Limited Efficacy on Glucose Metabolism but Entails Severe Organ Side Effects in Mice. Front Endocrinol (Lausanne) 2020; 11:598. [PMID: 32982982 PMCID: PMC7485437 DOI: 10.3389/fendo.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment +of metabolic diseases. For that, siRNAs selectively targeting HDAC4, 5 and 7 were selected and used to achieve a combinatorial knockdown of these three class IIa HDAC isoforms. Subsequently, the hepatocellular effects as well as the impact on glucose and lipid metabolism were analyzed in vitro and in vivo. The triple knockdown resulted in a statistically significant decrease of gluconeogenic gene expression in murine and human hepatocyte cell models. A similar HDAC-induced downregulation of hepatic gluconeogenesis genes could be achieved in mice using a liver-specific lipid nanoparticle siRNA formulation. However, the efficacy on whole body glucose metabolism assessed by pyruvate-tolerance tests were only limited and did not outweigh the safety findings observed by histopathological analysis in spleen and kidney. Mechanistically, Affymetrix gene expression studies provide evidence that class IIa HDACs directly target other key factors beyond the described forkhead box (FOXP) transcription regulators, such as hepatocyte nuclear factor 4 alpha (HNF4a). Downstream of these factors several additional pathways were regulated not merely including glucose and lipid metabolism and transport. In conclusion, the liver-directed combinatorial knockdown of HDAC4, 5 and 7 by therapeutic siRNAs affected multiple pathways in vitro, leading in vivo to the downregulation of genes involved in gluconeogenesis. However, the effects on gene expression level were not paralleled by a significant reduction of gluconeogenesis in mice. Combined knockdown of HDAC isoforms was associated with severe adverse effects in vivo, challenging this approach as a treatment option for chronic metabolic disorders like type 2 diabetes.
Collapse
|
16
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20092241. [PMID: 31067680 PMCID: PMC6539010 DOI: 10.3390/ijms20092241] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022] Open
Abstract
Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. Finally, we have included examples of ongoing trials for each of the above categories of HDACis as standalone agents or in combination with immunotherapeutic approaches.
Collapse
|
18
|
Kanno A, Asahara S, Kawamura M, Furubayashi A, Tsuchiya S, Suzuki E, Takai T, Koyanagi‐Kimura M, Matsuda T, Okada Y, Ogawa W, Kido Y. Early administration of dapagliflozin preserves pancreatic β-cell mass through a legacy effect in a mouse model of type 2 diabetes. J Diabetes Investig 2019; 10:577-590. [PMID: 30290061 PMCID: PMC6497604 DOI: 10.1111/jdi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION The preservation of pancreatic β-cell mass is an essential factor in the onset and development of type 2 diabetes mellitus. Recently, sodium-glucose cotransporter 2 inhibitors have been launched as antihyperglycemic agents, and their organ-protective effects are attracting attention. They are also reported to have favorable effects on the preservation of pancreatic β-cell mass, but the appropriate timing for the administration of sodium-glucose cotransporter 2 inhibitors is obscure. MATERIALS AND METHODS In the present study, we administered a sodium-glucose cotransporter 2 inhibitor, dapagliflozin, to an animal model of type 2 diabetes mellitus, db/db mice, and investigated the adequate timing and duration for its administration. We also carried out microarray analysis using pancreatic islets from db/db mice. RESULTS We found that dapagliflozin preserved pancreatic β-cell mass depending on the duration of administration and markedly improved blood glucose levels. If the duration was the same, the earlier administration of dapagliflozin was more effective in preserving pancreatic β-cell mass, increasing serum insulin levels and improving blood glucose levels. From microarray analysis, we discovered that the expression of Agr2, Tff2 and Gkn3 was significantly upregulated after the early administration of dapagliflozin. This upregulated gene expression might provide a legacy effect for the preservation of pancreatic β-cell mass. CONCLUSIONS We expect that the early administration of dapagliflozin would provide a long-lasting effect in preserving pancreatic β-cell mass.
Collapse
Affiliation(s)
- Ayumi Kanno
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shun‐ichiro Asahara
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Mao Kawamura
- Division of Metabolism and DiseaseDepartment of BiophysicsKobe University Graduate School of Health SciencesKobeJapan
| | - Ayuko Furubayashi
- Division of Metabolism and DiseaseDepartment of BiophysicsKobe University Graduate School of Health SciencesKobeJapan
| | - Shoko Tsuchiya
- Division of Metabolism and DiseaseDepartment of BiophysicsKobe University Graduate School of Health SciencesKobeJapan
| | - Emi Suzuki
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Tomoko Takai
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Maki Koyanagi‐Kimura
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Tomokazu Matsuda
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuko Okada
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Wataru Ogawa
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiaki Kido
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
- Division of Metabolism and DiseaseDepartment of BiophysicsKobe University Graduate School of Health SciencesKobeJapan
| |
Collapse
|
19
|
Hepp P, Hutter S, Knabl J, Hofmann S, Kuhn C, Mahner S, Jeschke U. Histone H3 lysine 9 acetylation is downregulated in GDM Placentas and Calcitriol supplementation enhanced this effect. Int J Mol Sci 2018; 19:ijms19124061. [PMID: 30558244 PMCID: PMC6321349 DOI: 10.3390/ijms19124061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-rising incidence of Gestational Diabetes Mellitus (GDM) and its implications for long-term health of mothers and offspring, the underlying molecular mechanisms remain to be elucidated. To contribute to this, the present study's objectives are to conduct a sex-specific analysis of active histone modifications in placentas affected by GDM and to investigate the effect of calcitriol on trophoblast cell's transcriptional status. The expression of Histone H3 lysine 9 acetylation (H3K9ac) and Histone H3 lysine 4 trimethylation (H3K4me3) was evaluated in 40 control and 40 GDM (20 male and 20 female each) placentas using immunohistochemistry and immunofluorescence. The choriocarcinoma cell line BeWo and primary human villous trophoblast cells were treated with calcitriol (48 h). Thereafter, western blots were used to quantify concentrations of H3K9ac and the transcription factor FOXO1. H3K9ac expression was downregulated in GDM placentas, while H3K4me3 expression was not significantly different. Cell culture experiments showed a slight downregulation of H3K9ac after calcitriol stimulation at the highest concentration. FOXO1 expression showed a dose-dependent increase. Our data supports previous research suggesting that epigenetic dysregulations play a key role in gestational diabetes mellitus. Insufficient transcriptional activity may be part of its pathophysiology and this cannot be rescued by calcitriol.
Collapse
Affiliation(s)
- Paula Hepp
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Stefan Hutter
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
- Department of Obstetrics, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Simone Hofmann
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Christina Kuhn
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| |
Collapse
|
20
|
Characterization of Transplantable Insulinoma Cells. Methods Mol Biol 2018. [PMID: 30535698 DOI: 10.1007/978-1-4939-8994-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes the propagation and characterization of transplantable insulinoma cells as model of insulin-producing pancreatic islet cells in the rat. Here, the cells are propagated by transplantation into rats followed by harvesting after growth for approximately 1 month. The cells are then purified by Percoll density gradient centrifugation and characterized by pulse-chase radiolabelling and immunoprecipitation of the insulin-related peptides. The results show that the transplantable insulinoma cells produce insulin in a manner similar to that found in normal pancreatic islets.
Collapse
|
21
|
Peng J, He L. IRS posttranslational modifications in regulating insulin signaling. J Mol Endocrinol 2018; 60:R1-R8. [PMID: 29093014 PMCID: PMC5732852 DOI: 10.1530/jme-17-0151] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Abstract
Insulin resistance is the hallmark of type 2 diabetes; however, the mechanism underlying the development of insulin resistance is still not completely understood. Previous reports showed that posttranslational modifications of IRS play a critical role in insulin signaling, especially the phosphorylation of IRS by distinct kinases. While it is known that increasing Sirtuin1 deacetylase activity improves insulin sensitivity in the liver, the identity of its counterpart, an acetyl-transferase, remains unknown. Our recent study shows that elevated endotoxin (LPS) levels in the liver of obese mice lead to the induction of the acetyl-transferase P300 through the IRE1-XBP1s pathway. Subsequently, induced P300 impairs insulin signaling by acetylating IRS1 and IRS2 in the insulin signaling pathway. Therefore, the P300 acetyl-transferase activity appears to be a promising therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Jinghua Peng
- Division of Metabolism and EndocrinologyDepartments of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling He
- Division of Metabolism and EndocrinologyDepartments of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|