1
|
Shilkin ES, Petrova DV, Novikova AA, Boldinova EO, Zharkov DO, Makarova AV. Methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases. DNA Repair (Amst) 2024; 141:103712. [PMID: 38959714 DOI: 10.1016/j.dnarep.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.
Collapse
Affiliation(s)
- Evgeniy S Shilkin
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria V Petrova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia
| | - Anna A Novikova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia.
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
2
|
Boldinova EO, Baranovskiy AG, Filina YV, Miftakhova RR, Shamsutdinova YF, Tahirov TH, Makarova AV. PrimPol Variant V102A with Altered Primase and Polymerase Activities. J Mol Biol 2024; 436:168542. [PMID: 38492718 DOI: 10.1016/j.jmb.2024.168542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, 119334 Moscow, Russia
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yulia V Filina
- "Translational Oncology" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Regina R Miftakhova
- "Translational Oncology" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Yana F Shamsutdinova
- Chemotherapy Department №1, Republican Clinical Oncology Dispensary of the Ministry of Health of the Republic of Tatarstan Named After Prof. M.Z. Sigal, Sibirskiy trakt 29, 420029 Kazan, Russia
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alena V Makarova
- National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, 119334 Moscow, Russia.
| |
Collapse
|
3
|
Boldinova EO, Baranovskiy AG, Gagarinskaya DI, Manukyan A, Makarova A, Tahirov T. The role of catalytic and regulatory domains of human PrimPol in DNA binding and synthesis. Nucleic Acids Res 2023; 51:7541-7551. [PMID: 37326028 PMCID: PMC10415149 DOI: 10.1093/nar/gkad507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Human PrimPol possesses DNA primase and DNA polymerase activities and restarts stalled replication forks protecting cells against DNA damage in nuclei and mitochondria. The zinc-binding motif (ZnFn) of the C-terminal domain (CTD) of PrimPol is required for DNA primase activity but the mechanism is not clear. In this work, we biochemically demonstrate that PrimPol initiates de novo DNA synthesis in cis-orientation, when the N-terminal catalytic domain (NTD) and the CTD of the same molecule cooperate for substrates binding and catalysis. The modeling studies revealed that PrimPol uses a similar mode of initiating NTP coordination as the human primase. The ZnFn motif residue Arg417 is required for binding the 5'-triphosphate group that stabilizes the PrimPol complex with a DNA template-primer. We found that the NTD alone is able to initiate DNA synthesis, and the CTD stimulates the primase activity of NTD. The regulatory role of the RPA-binding motif in the modulation of PrimPol binding to DNA is also demonstrated.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov 34/5, 119334 Moscow, Russia
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diana I Gagarinskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna A Manukyan
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov 34/5, 119334 Moscow, Russia
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov 34/5, 119334 Moscow, Russia
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Boldinova EO, Ghodke PP, Sudhakar S, Mishra VK, Manukyan AA, Miropolskaya N, Pradeepkumar PI, Makarova AV. Translesion Synthesis across the N2-Ethyl-deoxyguanosine Adduct by Human PrimPol. ACS Chem Biol 2022; 17:3238-3250. [PMID: 36318733 DOI: 10.1021/acschembio.2c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primase-DNA polymerase (PrimPol) is involved in reinitiating DNA synthesis at stalled replication forks. PrimPol also possesses DNA translesion (TLS) activity and bypasses several endogenous nonbulky DNA lesions in vitro. Little is known about the TLS activity of PrimPol across bulky carcinogenic adducts. We analyzed the DNA polymerase activity of human PrimPol on DNA templates with seven N2-dG lesions of different steric bulkiness. In the presence of Mg2+ ions, bulky N2-isobutyl-dG, N2-benzyl-dG, N2-methyl(1-naphthyl)-dG, N2-methyl(9-anthracenyl)-dG, N2-methyl(1-pyrenyl)-dG, and N2-methyl(1,3-dimethoxyanthraquinone)-dG adducts fully blocked PrimPol activity. At the same time, PrimPol incorporated complementary deoxycytidine monophosphate (dCMP) opposite N2-ethyl-dG with moderate efficiency but did not extend DNA beyond the lesion. We also demonstrated that mutation of the Arg288 residue abrogated dCMP incorporation opposite the lesion in the presence of Mn2+ ions. When Mn2+ replaced Mg2+, PrimPol carried out DNA synthesis on all DNA templates with N2-dG adducts in standing start reactions with low efficiency and accuracy, possibly utilizing a lesion "skipping" mechanism. The TLS activity of PrimPol opposite N2-ethyl-dG but not bulkier adducts was stimulated by accessory proteins, polymerase delta-interacting protein 2 (PolDIP2), and replication protein A (RPA). Molecular dynamics studies demonstrated the absence of stable interactions with deoxycytidine triphosphate (dCTP), large reactions, and C1'-C1' distances for the N2-isobutyl-dG and N2-benzyl-dG PrimPol complexes, suggesting that the size of the adduct is a limiting factor for efficient TLS across minor groove adducts by PrimPol.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anna A Manukyan
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | | | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
5
|
Díaz-Talavera A, Montero-Conde C, Leandro-García LJ, Robledo M. PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy. Biomolecules 2022; 12:248. [PMID: 35204749 PMCID: PMC8961649 DOI: 10.3390/biom12020248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out this task. PrimPol is a primase that operates in both the nucleus and mitochondria. In contrast with conventional primases, PrimPol is a DNA primase able to initiate DNA synthesis de novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a DNA primase, elongating primers that PrimPol itself sythesizes, or as translesion synthesis (TLS) DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence for PrimPol polymerase activity in vivo suggests that PrimPol only acts as a DNA primase. Here, we provide a comprehensive review of human PrimPol covering its biochemical properties and structure, in vivo function and regulation, and the processes that take place to fill the gap-containing lesion that PrimPol leaves behind. Finally, we explore the available data on human PrimPol expression in different tissues in physiological conditions and its role in cancer.
Collapse
Affiliation(s)
- Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Biochemical analysis of DNA synthesis blockage by G-quadruplex structure and bypass facilitated by a G4-resolving helicase. Methods 2021; 204:207-214. [PMID: 34929333 PMCID: PMC9203602 DOI: 10.1016/j.ymeth.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
G-quadruplex (G4) DNA poses a unique obstacle to DNA synthesis during replication or DNA repair due to its unusual structure which deviates significantly from the conventional DNA double helix. A mechanism to overcome the G4 roadblock is provided by the action of a G4-resolving helicase that collaborates with the DNA polymerase to smoothly catalyze polynucleotide synthesis past the unwound G4. In this technique-focused paper, we describe the experimental approaches of the primer extension assay using a G4 DNA template to measure the extent and fidelity of DNA synthesis by a DNA polymerase acting in concert with a G4-resolving DNA helicase. Important parameters pertaining to reaction conditions and controls are discussed to aid in the design of experiments and interpretation of the data obtained. This methodology can be applied in multiple capacities that may depend on the DNA substrate, DNA polymerase, or DNA helicase under investigation.
Collapse
|
7
|
Calvo P, Martínez-Jiménez MI, Díaz M, Stojkovic G, Kasho K, Guerra S, Wanrooij S, Méndez J, Blanco L. Motif WFYY of human PrimPol is crucial to stabilize the incoming 3'-nucleotide during replication fork restart. Nucleic Acids Res 2021; 49:8199-8213. [PMID: 34302490 PMCID: PMC8373064 DOI: 10.1093/nar/gkab634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022] Open
Abstract
PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3′-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.
Collapse
Affiliation(s)
- Patricia A Calvo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | | | - Marcos Díaz
- Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Gorazd Stojkovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susana Guerra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Sjoerd Wanrooij
- Correspondence may also be addressed to Sjoerd Wanrooij. Tel: +46 722460309;
| | - Juan Méndez
- Correspondence may also be addressed to Juan Méndez. Tel: +34 917328000; Fax: +34 917328033;
| | - Luis Blanco
- To whom correspondence should be addressed. Tel: +34 911964685; Fax: +34 911964401;
| |
Collapse
|
8
|
Shilkin ES, Petrova DV, Poltorachenko VA, Boldinova EO, Zharkov DO, Makarova AV. Template Properties of 5-Methyl-2'-Deoxycytidine and 5-Hydroxymethyl-2'-Deoxycytidine in Reactions with Human Translesion and Reparative DNA Polymerases. Mol Biol 2021. [DOI: 10.1134/s0026893321020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kasho K, Stojkovič G, Velázquez-Ruiz C, Martínez-Jiménez MI, Doimo M, Laurent T, Berner A, Pérez-Rivera AE, Jenninger L, Blanco L, Wanrooij S. A unique arginine cluster in PolDIP2 enhances nucleotide binding and DNA synthesis by PrimPol. Nucleic Acids Res 2021; 49:2179-2191. [PMID: 33533925 PMCID: PMC7913696 DOI: 10.1093/nar/gkab049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Gorazd Stojkovič
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | | | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Timothée Laurent
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Andreas Berner
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Luis Blanco
- Centro de Biologia Molecular Severo Ochoa, E-28049 Madrid, Spain
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
10
|
Boldinova EO, Manukyan АА, Makarova АV. The DNA ligands Arg47 and Arg76 are crucial for catalysis by human PrimPol. DNA Repair (Amst) 2021; 100:103048. [PMID: 33571927 DOI: 10.1016/j.dnarep.2021.103048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 01/22/2023]
Abstract
Human primase and DNA polymerase PrimPol re-starts stalled replication forks by repriming downstream DNA lesions and protects cells against DNA damage. Structure of the catalytic core of PrimPol with DNA primer, template and incoming dATP was solved but the mechanisms of DNA polymerase and primase activities of PrimPol are not fully understood. In this work, using site-directed mutagenesis we biochemically analyzed the role of active site residues Arg47 and Arg76 contacting DNA template in DNA polymerase and primase activities of PrimPol. The substitution R47A diminished the DNA polymerase and primase activities of PrimPol whereas the single amino acid substitution R76A caused almost complete loss of catalytic activities. Both amino acid substitutions affected the spectrum of dNMPs incorporation on undamaged DNA templates and opposite 8-oxoguanine. Finally, substitutions of the Arg47 and Arg76 residues attenuated the formation of the stable PrimPol:DNA complex in the presence of ATP/dNTPs. Together, these findings suggest a key role of the Arg47 and Arg76 in DNA synthesis by PrimPol.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Moscow, 123182, Russia
| | - Аnna А Manukyan
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Moscow, 123182, Russia; D. Mendeleev University of Chemical Technology of Russia (D. Mendeleyev University, MUCTR), Moscow, 125047, Russia
| | - Аlena V Makarova
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Moscow, 123182, Russia.
| |
Collapse
|
11
|
Boldinova EO, Belousova EA, Gagarinskaya DI, Maltseva EA, Khodyreva SN, Lavrik OI, Makarova AV. Strand Displacement Activity of PrimPol. Int J Mol Sci 2020; 21:ijms21239027. [PMID: 33261049 PMCID: PMC7729601 DOI: 10.3390/ijms21239027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Human PrimPol is a unique enzyme possessing DNA/RNA primase and DNA polymerase activities. In this work, we demonstrated that PrimPol efficiently fills a 5-nt gap and possesses the conditional strand displacement activity stimulated by Mn2+ ions and accessory replicative proteins RPA and PolDIP2. The DNA displacement activity of PrimPol was found to be more efficient than the RNA displacement activity and FEN1 processed the 5′-DNA flaps generated by PrimPol in vitro.
Collapse
Affiliation(s)
- Elizaveta O. Boldinova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Diana I. Gagarinskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Alena V. Makarova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
- Correspondence:
| |
Collapse
|
12
|
Xu W, Zhao W, Morehouse N, Tree MO, Zhao L. Divalent Cations Alter the Rate-Limiting Step of PrimPol-Catalyzed DNA Elongation. J Mol Biol 2019; 431:673-686. [PMID: 30633872 DOI: 10.1016/j.jmb.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Abstract
PrimPol is the most recently discovered human DNA polymerase/primase and plays an emerging role in nuclear and mitochondrial genomic maintenance. As a member of archaeo-eukaryotic primase superfamily enzymes, PrimPol possesses DNA polymerase and primase activities that are important for replication fork progression in vitro and in cellulo. The enzymatic activities of PrimPol are critically dependent on the nucleotidyl-transfer reaction to incorporate deoxyribonucleotides successively; however, our knowledge concerning the kinetic mechanism of the reaction remains incomplete. Using enzyme kinetic analyses and computer simulations, we dissected the mechanism by which PrimPol transfers a nucleotide to a primer-template DNA, which comprises DNA binding, conformational transition, nucleotide binding, phosphoester bond formation, and dissociation steps. We obtained the rate constants of the steps by steady-state and pre-steady-state kinetic analyses and simulations. Our data demonstrate that the rate-limiting step of PrimPol-catalyzed DNA elongation depends on the metal cofactor involved. In the presence of Mn2+, a conformational transition step from non-productive to productive PrimPol:DNA complexes limits the enzymatic turnover, whereas in the presence of Mg2+, the chemical step becomes rate limiting. As evidenced from our kinetic and simulation data, PrimPol maintains the same kinetic mechanism under either millimolar or physiological micromolar Mn2+ concentration. Our study revealed the underlying mechanism by which PrimPol catalyzes nucleotide incorporation with two common metal cofactors and provides a kinetic basis for further understanding the regulatory mechanism of this functionally diverse primase-polymerase.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Wenxin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Nana Morehouse
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O Tree
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
13
|
In vitro lesion bypass by human PrimPol. DNA Repair (Amst) 2018; 70:18-24. [DOI: 10.1016/j.dnarep.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
|
14
|
The presence of rNTPs decreases the speed of mitochondrial DNA replication. PLoS Genet 2018; 14:e1007315. [PMID: 29601571 PMCID: PMC5895052 DOI: 10.1371/journal.pgen.1007315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotides (rNMPs) are frequently incorporated during replication or repair by DNA polymerases and failure to remove them leads to instability of nuclear DNA (nDNA). Conversely, rNMPs appear to be relatively well-tolerated in mitochondrial DNA (mtDNA), although the mechanisms behind the tolerance remain unclear. We here show that the human mitochondrial DNA polymerase gamma (Pol γ) bypasses single rNMPs with an unprecedentedly high fidelity and efficiency. In addition, Pol γ exhibits a strikingly low frequency of rNMP incorporation, a property, which we find is independent of its exonuclease activity. However, the physiological levels of free rNTPs partially inhibit DNA synthesis by Pol γ and render the polymerase more sensitive to imbalanced dNTP pools. The characteristics of Pol γ reported here could have implications for forms of mtDNA depletion syndrome (MDS) that are associated with imbalanced cellular dNTP pools. Our results show that at the rNTP/dNTP ratios that are expected to prevail in such disease states, Pol γ enters a polymerase/exonuclease idling mode that leads to mtDNA replication stalling. This could ultimately lead to mtDNA depletion and, consequently, to mitochondrial disease phenotypes such as those observed in MDS.
Collapse
|