1
|
Dye JA, Stewart EJ, Schladweiler MC, Nguyen HH, Grindstaff RD, Padgett WT, Fisher AA, Miller CN. Maternal Exposure to Ozone During Implantation Promotes a Feminized Transcriptomic Profile in the Male Adolescent Liver. Endocrinology 2025; 166:bqaf018. [PMID: 39865885 DOI: 10.1210/endocr/bqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Maternal exposure to ozone during implantation results in reduced fetal weight gain in rats. Offspring from ozone-exposed dams demonstrate sexually dimorphic risks to high-fat diet feeding in adolescence. To better understand the adolescent hepatic metabolic landscape following fetal growth restriction, RNA sequencing was performed to characterize the effects of ozone-induced fetal growth restriction on male and female offspring. Pregnant Long-Evans rats were exposed to filtered air or 0.8 ppm ozone for 4 hours on both gestation days 5 and 6 (n = 6/group). At approximately postnatal day 48, liver tissue was obtained for RNA sequencing from offspring. Peri-implantation exposure to ozone in the dam had greater effects on hepatic gene expression in male offspring than in the females. Interestingly, heatmaps of these differentially expressed genes suggested that male offspring from ozone-exposed dams had a transcriptomic pattern like that of female offspring. Using a filtered set of highly female-predominant genes (n = 390), 57% were upregulated in the male offspring from ozone-exposed dams. Upregulated canonical pathways included sirtuin and orexin signaling, estrogen receptor signaling, and integration of energy metabolism. Relatively few genes altered in the male offspring from ozone-exposed dams were associated with endpoints of sexual maturity, signifying the likely source of the observed feminization was not attributed to sex hormones. This study provides initial evidence that growth restriction in utero may increase the risk of hepatic feminization in male offspring. Additional work is needed to further understand the relationship between developmental undernutrition and feminization in the male liver.
Collapse
Affiliation(s)
- Janice A Dye
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Mette C Schladweiler
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Helen H Nguyen
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Rachel D Grindstaff
- Neuroendocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - William T Padgett
- Neuroendocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Anna A Fisher
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| |
Collapse
|
2
|
Bolatimi OE, Hua Y, Ekuban FA, Gripshover TC, Ekuban A, Luulay B, Watson WH, Hardesty JE, Wahlang B. Low dose exposure to dioxins alters hepatic energy metabolism and steatotic liver disease development in a sex-specific manner. ENVIRONMENT INTERNATIONAL 2024; 194:109152. [PMID: 39577358 PMCID: PMC11700233 DOI: 10.1016/j.envint.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
"Dioxins" are persistent organic pollutants (POPs) that are continuously present in the environment at appreciable levels and have been associated with increased risk of steatotic liver disease (SLD). However, current understanding of the role of sex and effects of mixtures of dioxins in SLD development is limited. Additionally, there exists debates on the levels of dioxins required to be considered dangerous as emphasis has shifted from high level exposure events to the steady state of lower-level exposures. We therefore investigated sex-dependent effects of low-level exposures to a mixture of dioxins: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and Polychlorinated biphenyl 126 (PCB126), in the context of SLD and associated metabolic dysfunction. Male and female C57BL/6J mice were fed a low-fat diet and weekly administered either vehicle control or TCDD (10 ng/kg), PeCDF (80 ng/kg) and PCB 126 (140 ng/kg) over a two-week period. Female mice generally demonstrated higher hepatic fat content compared to males. However, exposure to dioxins further elevated hepatic cholesterol levels in females, and this was accompanied by increased lipogenic gene expression (Acaca, Fasn) in the liver. In contrast, exposed males but not females displayed higher white adipose tissue weights. Furthermore, TCDD + PeCDF + PCB126 activated the AHR (hepatic Cyp1a1, Cyp1a2 induction); with Cyp1a1 induction observed only in exposed females. Notably, gene expression of hepatic albumin (Alb) was also reduced only in exposed females. Overall, exposure to the low dose dioxin mixture compromised hepatic homeostasis via metabolic perturbations, and hepatic dysregulation was more accelerated in female livers.
Collapse
Affiliation(s)
- Oluwanifemi E Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Hua
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Frederick A Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tyler C Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Abigail Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Bana Luulay
- College of Arts and Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
5
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191:135-148. [PMID: 36222588 PMCID: PMC9887712 DOI: 10.1093/toxsci/kfac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/β-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas 77840, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
8
|
Gripshover TC, Wahlang B, Head KZ, Young JL, Luo J, Mustafa MT, Kirpich IA, Cave MC. The environmental pollutant, polychlorinated biphenyl 126, alters liver function in a rodent model of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:60-75. [PMID: 36377258 PMCID: PMC9974797 DOI: 10.1111/acer.14976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology. METHODS Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model. RESULTS Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively. CONCLUSIONS Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD.
Collapse
Affiliation(s)
- Tyler C. Gripshover
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jamie L. Young
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Muhammad T. Mustafa
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Irina A. Kirpich
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The Liver Transplant Program at UofL Health - Jewish Hospital Trager Transplant Center, Louisville, KY 40202 USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
9
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Alcohol-associated fibrosis in females is mediated by female-specific activation of lysine demethylases KDM5B and KDM5C. Hepatol Commun 2022; 6:2042-2057. [PMID: 35468265 PMCID: PMC9315128 DOI: 10.1002/hep4.1967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol-associated liver disease is a major cause of alcohol-related mortality. However, the mechanisms underlying disease progression are not fully understood. Recently we found that liver molecular pathways are altered by alcohol consumption differently in males and females. We were able to associate these sex-specific pathways with two upstream regulators: H3K4-specific demethylase enzymes KDM5B and KDM5C. Mice were fed the Lieber-DeCarli alcohol liquid diet for 3 weeks or a combination of a high-fat diet with alcohol in water for 16 weeks (western diet alcohol model [WDA] model). To assess the role of histone demethylases, mice were treated with AAV-shControl, AAV-shKdm5b, and/or AAV-shKdm5c and/or AAV-shAhR vectors. Gene expression and epigenetic changes after Kdm5b/5c knockdown were assessed by RNA-sequencing and H3K4me3 chromatin immunoprecipitation analysis. We found that less than 5% of genes affected by Kdm5b/Kdm5c knockdown were common between males and females. In females, Kdm5b/Kdm5c knockdown prevented fibrosis development in mice fed the WDA alcohol diet for 16 weeks and decreased fibrosis-associated gene expression in mice fed the Lieber-DeCarli alcohol liquid diet. In contrast, fibrosis was not affected by Kdm5b/Kdm5c knockdown in males. We found that KDM5B and KDM5C promote fibrosis in females through down-regulation of the aryl hydrocarbon receptor (AhR) pathway components in hepatic stellate cells. Kdm5b/Kdm5c knockdown resulted in an up-regulation of Ahr, Arnt, and Aip in female but not in male mice, thus preventing fibrosis development. Ahr knockdown in combination with Kdm5b/Kdm5c knockdown restored profibrotic gene expression. Conclusion: KDM5 demethylases contribute to differences between males and females in the alcohol response in the liver. The KDM5/AhR axis is a female-specific mechanism of fibrosis development in alcohol-fed mice.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
- Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
10
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
Affiliation(s)
- Dustin J. Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | |
Collapse
|
11
|
Cholico GN, Nault R, Zacharewski TR. Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver. Int J Mol Sci 2022; 23:1558. [PMID: 35163483 PMCID: PMC8836158 DOI: 10.3390/ijms23031558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2-72 h) and dose-response (0.01-30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α.
Collapse
Affiliation(s)
| | | | - Tim R. Zacharewski
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; (G.N.C.); (R.N.)
| |
Collapse
|
12
|
Bey L, Coumoul X, Kim MJ. TCDD aggravates the formation of the atherosclerotic plaque in ApoE KO mice with a sexual dimorphic pattern. Biochimie 2022; 195:54-58. [DOI: 10.1016/j.biochi.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022]
|
13
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
14
|
Fling RR, Zacharewski TR. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo- p-Dioxin (TCDD) Dose-Dependently Shifts the Gut Microbiome Consistent with the Progression of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:12431. [PMID: 34830313 PMCID: PMC8625315 DOI: 10.3390/ijms222212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids, including taurolithocholic acid and deoxycholic acid (microbial modified bile acids involved in host bile acid regulation signaling pathways). To investigate the effects of TCDD on the gut microbiota, the cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and o-succinylbenzoate synthase, a menaquinone biosynthesis associated gene. Analysis of the gut microbiomes from cirrhosis patients identified an increased abundance of genes from the mevalonate-dependent IPP biosynthesis as well as several other menaquinone biosynthesis genes, including o-succinylbenzoate synthase. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.
Collapse
Affiliation(s)
- Russell R. Fling
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy R. Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Kimura E, Suzuki G, Uramaru N, Kakeyama M, Maekawa F. Liver-specific decrease in Tff3 gene expression in infant mice perinatally exposed to 2,3,7,8-tetrabromodibenzofuran or 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2021; 42:305-317. [PMID: 34254344 DOI: 10.1002/jat.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs) are byproducts of brominated flame retardants and can cause adverse health effects. Although exposure to polychlorinated (PC) DD/DFs induces toxic effects, including liver injury and neurobehavioral disorder, little is known about toxicities associated with PBDD/DF exposure. Thus, we examined effects of perinatal exposure to brominated congener on the infant mouse. Gene expression in several organs, such as the liver and brain, was analyzed in mouse offspring born to dams administered 2,3,7,8-tetrabromodibenzofuran (TBDF; 9 or 45 μg/kg body weight) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 3 μg/kg body weight) on gestational day 12.5. An increase in liver size was observed in TBDF- or TCDD-exposed offspring in infancy. Gene microarray analysis revealed that 163 and 36 genes were markedly upregulated and downregulated, respectively, in the liver of TBDF-exposed mice compared with those in vehicle-treated mice on postnatal day (PND) 5. Significant increases in Cyp1a1, Cyp1a2, Fmo3, and Pnliprp1 and decreases in Tff3, Ocstamp, Kcnk16, and Lgals2 mRNA levels in TBDF-exposed offspring on PNDs 5 and 12 were confirmed by quantitative PCR. In particular, a significant reduction in Tff3 mRNA in the liver, but not in the brain, small intestine, colon, and kidney, was observed in offspring perinatally exposed to TBDF or TCDD. Ultrasonic calls of TBDF- or TCDD-exposed offspring on PNDs 3-5 were impaired. Taken together, perinatal exposure to polyhalogenated dioxin/furan congeners disrupts gene expression patterns in the liver and ultrasonic calling during infancy. These results suggest that liver injury may contribute to neurobehavioral disorder.
Collapse
Affiliation(s)
- Eiki Kimura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Naoto Uramaru
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Masaki Kakeyama
- Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
16
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
17
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Cayir A. Environmental exposures and RNA N6-Methyladenosine modified long Non-Coding RNAs. Crit Rev Toxicol 2020; 50:641-649. [PMID: 32924714 DOI: 10.1080/10408444.2020.1812511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in the field of RNA modifications and long non-coding RNAs (lncRNAs) have provided substantial evidence on important biological functions. LncRNAs are defined as longer than 200 nucleotides which are not translated into proteins. The term "epitranscriptome" refers to all modifications in RNA types. Adenine-6 methylation (m6A) is the most common, dynamic and prominent modifications in coding and non-coding RNAs and has critical and previously unappreciated functional roles. Accumulation evidence indicated the association between RNA m6A modification and cancer and nonmalignant diseases. Recent studies reported that several lncRNAs including MALAT1, MEG3, XIST, GAS5, and KCNK15-AS1 are subject to m6A modification. It can be suggested that lncRNAs modified by m6A modification have substantive roles in diseases. Currently limited data are available regarding how environmental exposure affects m6A-modified lncRNAs. Furthermore, we do not know the interaction of environmental exposure and m6A-modified lncRNAs in development of adverse human health outcomes. Thus, in this systematic review, we aimed to present the data of the studies that reported a significant association between environmental exposure and expression/DNA methylation of m6A-modified long non-coding RNAs.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
19
|
Fling RR, Doskey CM, Fader KA, Nault R, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dysregulates hepatic one carbon metabolism during the progression of steatosis to steatohepatitis with fibrosis in mice. Sci Rep 2020; 10:14831. [PMID: 32908189 PMCID: PMC7481292 DOI: 10.1038/s41598-020-71795-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis that can progress to steatohepatitis with fibrosis, pathologies that parallel stages in the development of non-alcoholic fatty liver disease (NAFLD). Coincidently, one carbon metabolism (OCM) gene expression and metabolites are often altered during NAFLD progression. In this study, the time- and dose-dependent effects of TCDD were examined on hepatic OCM in mice. Despite AhR ChIP-seq enrichment at 2 h, OCM gene expression was not changed within 72 h following a bolus dose of TCDD. Dose-dependent repression of methionine adenosyltransferase 1A (Mat1a), adenosylhomocysteinase (Achy) and betaine-homocysteine S-methyltransferase (Bhmt) mRNA and protein levels following repeated treatments were greater at 28 days compared to 8 days. Accordingly, levels of methionine, betaine, and homocysteic acid were dose-dependently increased, while S-adenosylmethionine, S-adenosylhomocysteine, and cystathionine exhibited non-monotonic dose-dependent responses consistent with regulation by OCM intermediates and repression of glycine N-methyltransferase (Gnmt). However, the dose-dependent effects on SAM-dependent metabolism of polyamines and creatine could not be directly attributed to alterations in SAM levels. Collectively, these results demonstrate persistent AhR activation disrupts hepatic OCM metabolism at the transcript, protein and metabolite levels within context of TCDD-elicited progression of steatosis to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Russell R Fling
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Claire M Doskey
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim R Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Nault R, Fader KA, Bhattacharya S, Zacharewski TR. Single-Nuclei RNA Sequencing Assessment of the Hepatic Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Cell Mol Gastroenterol Hepatol 2020; 11:147-159. [PMID: 32791302 PMCID: PMC7674514 DOI: 10.1016/j.jcmgh.2020.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Characterization of cell specific transcriptional responses to hepatotoxicants is lost in the averages of bulk RNA-sequencing (RNA-seq). Single-cell/nuclei RNA-seq technologies enable the transcriptomes of individual cell (sub)types to be assessed within the context of in vivo models. METHODS Single-nuclei RNA-sequencing (snSeq) of frozen liver samples from male C57BL/6 mice gavaged with sesame oil vehicle or 30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days was used to demonstrate the application of snSeq for the evaluation of xenobiotics. RESULTS A total of 19,907 genes were detected across 16,015 nuclei from control and TCDD-treated livers. Eleven cell (sub)types reflected the expected cell diversity of the liver including distinct pericentral, midzonal, and periportal hepatocyte subpopulations. TCDD altered relative proportions of cell types and elicited cell-specific gene expression profiles. For example, macrophages increased from 0.5% to 24.7%, while neutrophils were only present in treated samples, consistent with histological evaluation. The number of differentially expressed genes (DEGs) in each cell type ranged from 122 (cholangiocytes) to 7625 (midcentral hepatocytes), and loosely correlated with the basal expression level of Ahr, the canonical mediator of TCDD and related compounds. In addition to the expected functions within each cell (sub)types, RAS signaling and related pathways were specifically enriched in nonparenchymal cells while metabolic process enrichment occurred primarily in hepatocytes. snSeq also identified the expansion of a Kupffer cell subtype highly expressing Gpnmb, as reported in a dietary NASH model. CONCLUSIONS We show that snSeq of frozen liver samples can be used to assess cell-specific transcriptional changes and population shifts in models of hepatotoxicity when examining freshly isolated cells is not feasible.
Collapse
Affiliation(s)
- Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kelly A Fader
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Tim R Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
21
|
Post CM, Boule LA, Burke CG, O'Dell CT, Winans B, Lawrence BP. The Ancestral Environment Shapes Antiviral CD8 + T cell Responses across Generations. iScience 2019; 20:168-183. [PMID: 31569050 PMCID: PMC6817732 DOI: 10.1016/j.isci.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Recent studies have linked health fates of children to environmental exposures of their great grandparents. However, few studies have considered whether ancestral exposures influence immune function across generations. Here, we report transgenerational inheritance of altered T cell responses resulting from maternal (F0) exposure to the aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since F0 exposure to TCDD has been linked to transgenerational transmission of reproductive problems, we asked whether maternal TCDD exposure also caused transgenerational changes in immune function. F0 exposure caused transgenerational effects on the CD8+ T cell response to influenza virus infection in females but not in males. Outcrosses showed changes were passed through both parental lineages. These data demonstrate that F0 exposure to an aryl hydrocarbon receptor (AHR) agonist causes durable changes to immune responses that can affect subsequent generations. This has broad implications for understanding how the environment of prior generations shapes susceptibility to pathogens and antiviral immunity in later generations.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Catherine G Burke
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
22
|
Jackson EN, Thatcher SE, Larian N, English V, Soman S, Morris AJ, Weng J, Stromberg A, Swanson HI, Pearson K, Cassis LA. Effects of Aryl Hydrocarbon Receptor Deficiency on PCB-77-Induced Impairment of Glucose Homeostasis during Weight Loss in Male and Female Obese Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77004. [PMID: 31306034 PMCID: PMC6794491 DOI: 10.1289/ehp4133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Lipophilic polychlorinated biphenyls (PCBs) accumulate with obesity, but during weight loss, liberated PCBs act as ligands of the aryl hydrocarbon receptor (AhR) to negatively influence health. Previous studies demonstrated that PCB-77 administration to obese male mice impaired glucose tolerance during weight loss. Recent studies indicate higher toxic equivalencies of dioxin-like PCBs in exposed females than males. OBJECTIVES We compared effects of PCB-77 on weight gain or loss and glucose homeostasis in male vs. female mice. We defined effects of AhR deficiency during weight gain or loss in male and female mice exposed to PCB-77. METHODS Study design was vehicle (VEH) or PCB-77 administration while fed a high-fat (HF) diet for 12 wk, followed by weight loss for 4 wk. The following groups were examined: male and female C57BL/6 mice administered VEH or PCB-77, female [Formula: see text] and [Formula: see text] mice administered VEH or PCB-77, and male [Formula: see text] and [Formula: see text] mice administered PCB-77. Glucose tolerance was quantified during weight gain (week 11) and loss (week 15); liver and adipose AhR and IRS2 (insulin receptor substrate 2) mRNA abundance, and PCB-77 concentrations were quantified at week 16. RESULTS PCB-77 attenuated development of obesity in females but not males. During weight loss, PCB-77 impaired glucose tolerance of males. AhR-deficient females (VEH) were resistant to diet-induced obesity. Compared with VEH-treated mice, HF-fed [Formula: see text] females treated with PCB-77 has less weight gain, and [Formula: see text] females had greater weight gain. During weight loss, [Formula: see text] females but not [Formula: see text] males treated with PCB-77 exhibited impaired glucose tolerance. In [Formula: see text] females administered PCB-77, IRS2 mRNA abundance was lower in adipose tissue compared with VEH-treated mice. CONCLUSION Male and female mice responded differently to PCB-77 and AhR deficiency in body weight (BW) regulation and glucose homeostasis. AhR deficiency reversed PCB-77-induced glucose impairment of obese males losing weight but augmented glucose intolerance of females. These results demonstrate sex differences in PCB-77-induced regulation of glucose homeostasis of mice. https://doi.org/10.1289/EHP4133.
Collapse
Affiliation(s)
- Erin N. Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sean E. Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Victoria English
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sony Soman
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J. Morris
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jiaying Weng
- Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Hollie I. Swanson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kevin Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Larian N, Ensor M, Thatcher SE, English V, Morris AJ, Stromberg A, Cassis LA. Pseudomonas aeruginosa-derived pyocyanin reduces adipocyte differentiation, body weight, and fat mass as mechanisms contributing to septic cachexia. Food Chem Toxicol 2019; 130:219-230. [PMID: 31078726 DOI: 10.1016/j.fct.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa, a leading cause of sepsis, produces pyocyanin, a blue-pigmented virulence factor. Sepsis is associated with cachexia, but mechanisms are unknown and conventional nutrition approaches are not effective treatments. Pyocyanin has affinity for the aryl hydrocarbon receptor (AhR), which is expressed on adipocytes and regulates adipocyte differentiation. The purpose of this study was to define in vitro and in vivo effects of pyocyanin on adipocyte differentiation and body weight regulation as relates to septic cachexia. In 3T3-L1 preadipocytes, pyocyanin activated AhR and its downstream marker CYP1a1, and reduced differentiation. Administration of pyocyanin to male C57BL/6J mice acutely reduced body temperature with altered locomotion, but caused sustained weight loss. Chronic pyocyanin administration to male and female C57BL/6J mice resulted in sustained reductions in body weight and fat mass, with adipose-specific AhR activation. Pyocyanin-treated male mice had decreased energy expenditure and physical activity, and increased adipose explant lipolysis. In females, pyocyanin caused robust reductions in body weight, adipose-specific AhR activation, and increased expression of inflammatory cytokines in differentiated adipocytes. These results demonstrate that pyocyanin reduces adipocyte differentiation and decreases body weight and fat mass in male and female mice, suggesting that pyocyanin may play a role in septic cachexia.
Collapse
Affiliation(s)
- Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mark Ensor
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Victoria English
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrew J Morris
- Department of Internal Medicine,University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
24
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin abolishes circadian regulation of hepatic metabolic activity in mice. Sci Rep 2019; 9:6514. [PMID: 31015483 PMCID: PMC6478849 DOI: 10.1038/s41598-019-42760-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) activation is reported to alter the hepatic expression of circadian clock regulators, however the impact on clock-controlled metabolism has not been thoroughly investigated. This study examines the effects of AhR activation on hepatic transcriptome and metabolome rhythmicity in male C57BL/6 mice orally gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. TCDD diminished the rhythmicity of several core clock regulators (e.g. Arntl, Clock, Nr1d1, Per1, Cry1, Nfil3) in a dose-dependent manner, involving either a ≥ 3.3-fold suppression in amplitude or complete loss of oscillation. Accordingly, protein levels (ARNTL, REV-ERBα, NFIL3) and genomic binding (ARNTL) of select regulators were reduced and arrhythmic following treatment. As a result, the oscillating expression of 99.6% of 5,636 clock-controlled hepatic genes was abolished including genes associated with the metabolism of lipids, glucose/glycogen, and heme. For example, TCDD flattened expression of the rate-limiting enzymes in both gluconeogenesis (Pck1) and glycogenesis (Gys2), consistent with the depletion and loss of rhythmicity in hepatic glycogen levels. Examination of polar hepatic extracts by untargeted mass spectrometry revealed that virtually all oscillating metabolites lost rhythmicity following treatment. Collectively, these results suggest TCDD disrupted circadian regulation of hepatic metabolism, altering metabolic efficiency and energy storage.
Collapse
|
25
|
Wahlang B, Jin J, Hardesty JE, Head KZ, Shi H, Falkner KC, Prough RA, Klinge CM, Cave MC. Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food Chem Toxicol 2019; 129:64-76. [PMID: 31026535 DOI: 10.1016/j.fct.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/24/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Exposures to persistent environmental pollutants like polychlorinated biphenyls (PCBs) has been associated with liver diseases such as toxicant-associated steatohepatitis (TASH). However, previously published PCB hepatotoxicity studies evaluated mostly male animal models. Moreover, epidemiologic studies on PCB-exposed cohorts evaluating sex differences are scarce. Therefore, the objective of this study was to examine hepato-toxicological responses of PCB exposures in the context of sex-dependent outcomes. Male and female C57Bl/6 mice were exposed to Aroclor 1260 (20 mg/kg), and PCB126 (20 μg/kg), by gavage for two weeks. Female mice appeared to be more sensitive to PCB-induced hepatotoxic effects as manifested by increased liver injury markers, namely, hepatic Serpine1 expression. Additionally, compared to their male counterparts, PCB-exposed females exhibited dysregulated hepatic gene expression favoring lipid accumulation rather than lipid breakdown; accompanied by dyslipidemia. Sex differences were also observed in the expression and activation of PCB targets such as the epidermal growth factor receptor (EGFR) while PCB-induced pancreatic toxicity was similar in both sexes. Importantly, PCB exposure appeared to cause pro-androgenic, anti-estrogenic along with sex-dependent thyroid hormone effects. The overall findings demonstrated that the observed PCB-mediated hepatotoxicity was sex-dependent; confirming the existence of sex differences in environmental exposure-induced markers of TASH and warrants further investigation.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; UofL Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kimberly Z Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Hongxue Shi
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; UofL Superfund Research Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
26
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
27
|
Huang P, Xiong S, Kang J, Mei J, Gui JF. Stat5b Regulates Sexually Dimorphic Gene Expression in Zebrafish Liver. Front Physiol 2018; 9:676. [PMID: 29904357 PMCID: PMC5990605 DOI: 10.3389/fphys.2018.00676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Sexual size dimorphism is an interesting phenomenon occurred in many fish species. Wildtype zebrafish exhibits a significant sexual dimorphism in body size at the adult stage. Previous studies indicated that sexual size dimorphism was eliminated in stat5b-mutated zebrafish. Herein, the comparative transcriptome analysis was conducted to observe the genes and pathways involved in sexual size dimorphism. The number of male-biased and female-biased genes was much less in the liver of stat5b mutant zebrafish than in wildtype. Gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that multiple pathways related to metabolism were affected upon loss of stat5b function. qRT-PCR results also validated that sexually dimorphic expression of a set of genes was lost when stat5b was mutated. Furthermore, the weighted correlation network analysis (WGCNA) detected many candidate genes related to the growth traits and stat5b function, such as greb1, lepr, and igf2b. Our data suggest that stat5b should regulate the sexually dimorphic gene expression in zebrafish liver and add in understanding of the molecular mechanisms underlying sexual size dimorphism in fish species.
Collapse
Affiliation(s)
- Peipei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Shuting Xiong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jingliang Kang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|