1
|
Denk A, Edinger M, Weber D, Holler E, Fante M, Meedt E, Gunes S, Poeck H, Mittermaier C, Herr W, Wolff D. Ruxolitinib for the treatment of acute graft-versus-host disease: a retrospective analysis. Ann Hematol 2024; 103:3071-3081. [PMID: 38916740 PMCID: PMC11283387 DOI: 10.1007/s00277-024-05696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 06/26/2024]
Abstract
Steroid-refractory acute graft-versus-host disease (aGvHD) is a serious complication after allogeneic hematopoietic stem cell transplantation, associated with significant mortality. Ruxolitinib was the first drug approved for aGvHD, based on results of the REACH2 trial; however, real-world data are limited. We retrospectively analyzed the safety and efficacy of ruxolitinib for treatment of aGvHD at our center from March 2016 to August 2022 and assessed biomarkers of risk. We identified 49 patients receiving ruxolitinib as second- (33/49), third- (11/49), fourth- (3/49), or fifth-line (2/49) treatment. Ruxolitinib was started on median day 11 (range, 7-21) after aGvHD onset; median duration of administration was 37 days (range, 20-86), with 10 patients continuing treatment at last follow-up. Median follow-up period was 501 days (range, 95-905). In the primary analysis at the 1-month assessment, overall response rate was 65%, and failure-free survival was 78%. Infectious complications ≥ CTCAE Grade III were observed in 10/49 patients within 1-month followup. Patients responding to ruxolitinib therapy required fewer steroids and exhibited lower levels of the serum biomarkers regenerating islet-derived protein 3-alpha, suppression of tumorigenicity 2, and the Mount Sinai Acute GVHD International Consortium algorithm probability. A univariate regression model revealed steroid-dependent aGvHD as a significant predictor of better response to ruxolitinib. Within 6-months follow-up, four patients experienced recurrence of underlying malignancy, and eight died due to treatment-related mortality. Overall, ruxolitinib was welltolerated and showed response in heavily pretreated patients, with results comparable to those of the REACH2 trial. Biomarkers may be useful predictors of response to ruxolitinib.
Collapse
Affiliation(s)
- Alexander Denk
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniela Weber
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Fante
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | - Hendrik Poeck
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Cornelia Mittermaier
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Wolff
- Dept. of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany.
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Fernandez Sanchez J, Maknojia AA, King KY. Blood and guts: how the intestinal microbiome shapes hematopoiesis and treatment of hematologic disease. Blood 2024; 143:1689-1701. [PMID: 38364184 PMCID: PMC11103099 DOI: 10.1182/blood.2023021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Collapse
Affiliation(s)
- Josaura Fernandez Sanchez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Arushana A. Maknojia
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Katherine Y. King
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Division of Infectious Diseases, Department of Pediatrics, and Center for Cell and Gene Therapy, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| |
Collapse
|
3
|
Bohn B, Chalupova M, Staley C, Holtan S, Maakaron J, Bachanova V, El Jurdi N. Temporal variation in oral microbiome composition of patients undergoing autologous hematopoietic cell transplantation with keratinocyte growth factor. BMC Microbiol 2023; 23:258. [PMID: 37704974 PMCID: PMC10500729 DOI: 10.1186/s12866-023-03000-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION Autologous hematopoietic cell transplantation (AHCT) is a well-established treatment for lymphoma. Unintended effects of this therapy include oral mucositis (OM) and gastrointestinal toxicities, resulting in poor clinical outcomes. The gut microbiome has been previously linked to transplant toxicities among allogeneic recipients, but little is known about the effects of AHCT on the oral microbiome. METHODS Seven patients with non-Hodgkin or Hodgkin lymphoma undergoing AHCT with palifermin (keratinocyte growth factor) were included. Buccal swab samples were collected at baseline and 14- and 28-days post-treatment. Oral microbial communities were characterized with 16 S rRNA amplicon sequencing. Temporal trends in community composition, alpha diversity, and beta diversity were investigated. RESULTS A significant reduction in the relative abundance of the genera Gemella and Actinomyces were observed from baseline. No significant temporal differences in alpha diversity were observed. Significant changes in beta diversity were recorded. CONCLUSION Results of this pilot study suggest treatment with AHCT and palifermin affects the oral microbiome, resulting in temporal shifts in oral microbial community composition. Future studies are warranted to confirm these trends and further investigate the effects of AHCT on the oral microbiome and how these shifts may affect health outcomes.
Collapse
Affiliation(s)
- Bruno Bohn
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, 1300 S 2nd St, Minneapolis, MN, 55455, USA.
| | - Miroslava Chalupova
- Department of Stomatology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Plzen, Czech Republic
| | - Christopher Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Shernan Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Najla El Jurdi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Weber D, Weber M, Meedt E, Ghimire S, Wolff D, Edinger M, Poeck H, Hiergeist A, Gessner A, Ayuk F, Roesler W, Wölfl M, Kraus S, Zeiser R, Bertrand H, Bader P, Ullrich E, Eder M, Gleich S, Young R, Herr W, Levine JE, Ferrara JLM, Holler E. Reg3α concentrations at day of allogeneic stem cell transplantation predict outcome and correlate with early antibiotic use. Blood Adv 2023; 7:1326-1335. [PMID: 36350750 PMCID: PMC10119595 DOI: 10.1182/bloodadvances.2022008480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 04/05/2023] Open
Abstract
Intestinal microbiome diversity plays an important role in the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GVHD) and influences the outcome of patients after allogeneic stem cell transplantation (ASCT). We analyzed clinical data and blood samples taken preconditioning and on the day of ASCT from 587 patients from 7 German centers of the Mount Sinai Acute GVHD International Consortium, dividing them into single-center test (n = 371) and multicenter validation (n = 216) cohorts. Regenerating islet-derived 3α (Reg3α) serum concentration of day 0 correlated with clinical data as well as urinary 3-indoxylsulfate (3-IS) and Clostridiales group XIVa, indicators of intestinal microbiome diversity. High Reg3α concentration at day 0 of ASCT was associated with higher 1-year transplant-related mortality (TRM) in both cohorts (P < .001). Cox regression analysis revealed high Reg3α at day 0 as an independent prognostic factor for 1-year TRM. Multivariable analysis showed an independent correlation of high Reg3α concentrations at day 0 with early systemic antibiotic (AB) treatment. Urinary 3-IS (P = .04) and Clostridiales group XIVa (P = .004) were lower in patients with high vs those with low day 0 Reg3α concentrations. In contrast, Reg3α concentrations before conditioning therapy correlated neither with TRM nor disease or treatment-related parameters. Reg3α, a known biomarker of acute GI GVHD correlates with intestinal dysbiosis, induced by early AB treatment in the period of pretransplant conditioning. Serum concentrations of Reg3α measured on the day of graft infusion are predictive of the risk for TRM of ASCT recipients.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Markus Weber
- Department of Trauma and Orthopedic Surgery, Barmherzige Brüder Hospital, Regensburg, Germany
| | - Elisabeth Meedt
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Sakhila Ghimire
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Daniel Wolff
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Matthias Edinger
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
- Department of Hematology/Oncology, RCI Regensburg Centre for Interventional Immunology, University and University Medical Centre of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation with Research Department Cell and Gene Therapy, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Wolf Roesler
- Department of Internal Medicine 5, Hematology/Oncology, Erlangen University Hospital, Erlangen, Germany
| | - Matthias Wölfl
- Pediatric Blood and Marrow Transplantation Program, Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Robert Zeiser
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Hannah Bertrand
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter Bader
- Department of Johann Wolfgang Goethe University, Experimental Immunology, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Department of Johann Wolfgang Goethe University, Experimental Immunology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sigrun Gleich
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Rachel Young
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfgang Herr
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James L. M. Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
5
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
6
|
Shouval R, Waters NR, Gomes ALC, Zuanelli Brambilla C, Fei T, Devlin SM, Nguyen CL, Markey KA, Dai A, Slingerland JB, Clurman AG, Fontana E, Amoretti LA, Wright RJ, Hohl TM, Taur Y, Sung AD, Weber D, Hashimoto D, Teshima T, Chao NJ, Holler E, Scordo M, Giralt SA, Perales MA, Peled JU, van den Brink MRM. Conditioning Regimens are Associated with Distinct Patterns of Microbiota Injury in Allogeneic Hematopoietic Cell Transplantation. Clin Cancer Res 2023; 29:165-173. [PMID: 36322005 PMCID: PMC9812902 DOI: 10.1158/1078-0432.ccr-22-1254] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The gut microbiota is subject to multiple insults in allogeneic hematopoietic cell transplantation (allo-HCT) recipients. We hypothesized that preparative conditioning regimens contribute to microbiota perturbation in allo-HCT. EXPERIMENTAL DESIGN This was a retrospective study that evaluated the relationship between conditioning regimens exposure in 1,188 allo-HCT recipients and the gut microbiome. Stool samples collected from 20 days before transplantation up to 30 days after were profiled using 16S rRNA sequencing. Microbiota injury was quantified by changes in α-diversity. RESULTS We identified distinct patterns of microbiota injury that varied by conditioning regimen. Diversity loss was graded into three levels of conditioning-associated microbiota injury (CMBI) in a multivariable model that included antibiotic exposures. High-intensity regimens, such as total body irradiation (TBI)-thiotepa-cyclophosphamide, were associated with the greatest injury (CMBI III). In contrast, the nonmyeloablative regimen fludarabine-cyclophosphamide with low-dose TBI (Flu/Cy/TBI200) had a low-grade injury (CMBI I). The risk of acute GVHD correlated with CMBI degree. Pretransplant microbial compositions were best preserved with Flu/Cy/TBI200, whereas other regimens were associated with loss of commensal bacteria and expansion of Enterococcus. CONCLUSIONS Our findings support an interaction between conditioning at the regimen level and the extent of microbiota injury.
Collapse
Affiliation(s)
- Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L. C. Gomes
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corrado Zuanelli Brambilla
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Hematology Unit, Department of Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annelie G Clurman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Fontana
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luigi A Amoretti
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberta J Wright
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Taur
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Daniela Weber
- Department of Internal Medicine, University Medical Center, University of Regensburg, Regensburg, Germany
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ernst Holler
- Department of Internal Medicine, University Medical Center, University of Regensburg, Regensburg, Germany
| | - Michael Scordo
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marcel R. M. van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Rückert T, Andrieux G, Boerries M, Hanke-Müller K, Woessner NM, Doetsch S, Schell C, Aumann K, Kolter J, Schmitt-Graeff A, Schiff M, Braun LM, Haring E, Kissel S, Siranosian BA, Bhatt AS, Nordkild P, Wehkamp J, Jensen BAH, Minguet S, Duyster J, Zeiser R, Köhler N. Human β-defensin 2 ameliorates acute GVHD by limiting ileal neutrophil infiltration and restraining T cell receptor signaling. Sci Transl Med 2022; 14:eabp9675. [PMID: 36542690 DOI: 10.1126/scitranslmed.abp9675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD), which is driven by allogeneic T cells, has a high mortality rate and limited treatment options. Human β-defensin 2 (hBD-2) is an endogenous epithelial cell-derived host-defense peptide. In addition to its antimicrobial effects, hBD-2 has immunomodulatory functions thought to be mediated by CCR2 and CCR6 in myeloid cells. In this study, we analyzed the effect of recombinant hBD-2 on aGVHD development. We found that intestinal β-defensin expression was inadequately induced in response to inflammation in two independent cohorts of patients with aGVHD and in a murine aGVHD model. Treatment of mice with hBD-2 reduced GVHD severity and mortality and modulated the intestinal microbiota composition, resulting in reduced neutrophil infiltration in the ileum. Furthermore, hBD-2 treatment decreased proliferation and proinflammatory cytokine production by allogeneic T cells in vivo while preserving the beneficial graft-versus-leukemia effect. Using transcriptome and kinome profiling, we found that hBD-2 directly dampened primary murine and human allogeneic T cell proliferation, activation, and metabolism in a CCR2- and CCR6-independent manner by reducing proximal T cell receptor signaling. Furthermore, hBD-2 treatment diminished alloreactive T cell infiltration and the expression of genes involved in T cell receptor signaling in the ilea of mice with aGVHD. Together, we found that both human and murine aGVHD were characterized by a lack of intestinal β-defensin induction and that recombinant hBD-2 represents a potential therapeutic strategy to counterbalance endogenous hBD-2 deficiency.
Collapse
Affiliation(s)
- Tamina Rückert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Kathrin Hanke-Müller
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg,79104 Freiburg, Germany
| | - Nadine M Woessner
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Doetsch
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Konrad Aumann
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Marcel Schiff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg,79104 Freiburg, Germany
| | - Sandra Kissel
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Peter Nordkild
- Defensin Therapeutics ApS, DK-2200 Copenhagen N, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Susana Minguet
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Ingham AC, Pamp SJ. Mucosal microbiotas and their role in stem cell transplantation. APMIS 2022; 130:741-750. [PMID: 35060190 PMCID: PMC9790582 DOI: 10.1111/apm.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Mucosal microbiotas and their role in stem cell transplantation. Patients with hematological disorders such as leukemia often undergo allogeneic hematopoietic stem cell transplantation, and thereby receive stem cells from a donor for curation of disease. This procedure also involves immunosuppressive and antimicrobial treatments that disturb the important interactions between the microbiota and the immune system, especially at mucosal sites. After transplantation, bacterial diversity decreases together with a depletion of Clostridia, and shifts toward predominance of Proteobacteria. Infectious and inflammatory complications, such as graft-versus-host disease, also interfere with patient recovery. This review collects and contextualizes current knowledge of the role of mucosal microbiotas at different body sites in stem cell transplantation, proposes underlying mechanisms, and discusses potential clinical value of bacterial markers for improved treatment strategies.
Collapse
Affiliation(s)
- Anna Cäcilia Ingham
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Sünje Johanna Pamp
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
9
|
Matos C, Mamilos A, Shah PN, Meedt E, Weber D, Ghimire S, Hiergeist A, Gessner A, Dickinson A, Dressel R, Walter L, Stark K, Heid IM, Poeck H, Edinger M, Wolff D, Herr W, Holler E, Kreutz M, Ghimire S. Downregulation of the vitamin D receptor expression during acute gastrointestinal graft versus host disease is associated with poor outcome after allogeneic stem cell transplantation. Front Immunol 2022; 13:1028850. [PMID: 36341397 PMCID: PMC9632171 DOI: 10.3389/fimmu.2022.1028850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The vitamin D receptor (VDR) is critical in regulating intestinal homeostasis and emerging evidence demonstrates that VDR deficiency is a critical factor in inflammatory bowel disease pathology. However, no clinical data exist regarding the intestinal expression of VDR in patients after allogeneic haematopoietic stem cell transplantation (HSCT). Analyzing intestinal biopsies from 90 patients undergoing HSCT with mortality follow-up, we demonstrated that patients with severe acute gastrointestinal graft versus host disease (GI-GvHD) showed significant downregulation of VDR gene expression compared to mild or no acute GI-GvHD patients (p = 0.007). Reduced VDR expression was already detectable at acute GI-GvHD onset compared to GvHD-free patients (p = 0.01). These results were confirmed by immunohistochemistry (IHC) where patients with severe acute GI-GvHD showed fewer VDR+ cells (p = 0.03) and a reduced VDR staining score (p = 0.02) as compared to mild or no acute GI-GvHD patients. Accordingly, low VDR gene expression was associated with a higher cumulative incidence of treatment-related mortality (TRM) (p = 1.6x10-6) but not with relapse-related mortality (RRM). A multivariate Cox regression analysis identified low VDR as an independent risk factor for TRM (p = 0.001, hazard ratio 4.14, 95% CI 1.78-9.63). Furthermore, VDR gene expression significantly correlated with anti-microbial peptides (AMPs) gene expression (DEFA5: r = 0.637, p = 7x10-5, DEFA6: r 0 0.546, p = 0.001). In conclusion, our findings suggest an essential role of the VDR in the pathogenesis of gut GvHD and the prognosis of patients undergoing HSCT.
Collapse
Affiliation(s)
- Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Mamilos
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Pranali N. Shah
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Elisabeth Meedt
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Saroj Ghimire
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anne Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Klaus Stark
- Department for Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Iris M. Heid
- Department for Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Sakhila Ghimire,
| |
Collapse
|
10
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
11
|
Docampo MD, da Silva MB, Lazrak A, Nichols KB, Lieberman SR, Slingerland AE, Armijo GK, Shono Y, Nguyen C, Monette S, Dwomoh E, Lee N, Geary CD, Perobelli SM, Smith M, Markey KA, Vardhana SA, Kousa AI, Zamir E, Greenfield I, Sun JC, Cross JR, Peled JU, Jenq RR, Stein-Thoeringer CK, van den Brink MRM. Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood 2022; 139:2392-2405. [PMID: 34653248 PMCID: PMC9012131 DOI: 10.1182/blood.2021010719] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | | | | | - Gabriel K Armijo
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Chi Nguyen
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Emmanuel Dwomoh
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Clair D Geary
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Melody Smith
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kate A Markey
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Eli Zamir
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany; and
| | | | - Joseph C Sun
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Justin R Cross
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Jonathan U Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marcel R M van den Brink
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
13
|
Masetti R, Muratore E, Leardini D, Zama D, Turroni S, Brigidi P, Esposito S, Pession A. Gut microbiome in pediatric acute leukemia: from predisposition to cure. Blood Adv 2021; 5:4619-4629. [PMID: 34610115 PMCID: PMC8759140 DOI: 10.1182/bloodadvances.2021005129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition also influences treatment-related side effects and even the efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of cancer-related death during childhood. Outcomes have improved considerably over the past 4 decades, with the current long-term survival for acute lymphoblastic leukemia being ∼90%. However, several acute toxicities and long-term sequelae are associated with the multimodal therapy protocols applied in these patients. Specific GM configurations could contribute to the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs, or alloimmune reactions, contributing to several health-related issues in AL survivors. The purpose of this article is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM toward a potentially health-promoting configuration are also highlighted.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, and
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; and
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Zama D, Bossù G, Leardini D, Muratore E, Biagi E, Prete A, Pession A, Masetti R. Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11:2040620719896961. [PMID: 32010434 PMCID: PMC6974760 DOI: 10.1177/2040620719896961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota (GM) is able to modulate the human immune system. The development of novel investigation methods has provided better characterization of the GM, increasing our knowledge of the role of GM in the context of hematopoietic stem-cell transplantation (HSCT). In particular, the GM influences the development of the major complications seen after HSCT, having an impact on overall survival. In fact, this evidence highlights the possible therapeutic implications of modulation of the GM during HSCT. Insights into the complex mechanisms and functions of the GM are essential for the rational design of these therapeutics. To date, preemptive and curative approaches have been tested. The current state of understanding of the impact of the GM on HSCT, and therapies targeting the GM balance is reviewed herein.
Collapse
Affiliation(s)
- Daniele Zama
- Pediatric Oncology and Hematology Unit ‘Lalla
Seràgnoli,’ Sant’Orsola-Malpighi Hospital, University of Bologna, Via
Massarenti 11, Bologna, 40137, Italy
| | - Gianluca Bossù
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Davide Leardini
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Edoardo Muratore
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology,
University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Riccardo Masetti
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| |
Collapse
|
15
|
Vijayvargiya P, Gonsalves W, Burton D, Hogan WJ, Miceli T, Rossini W, Taylor A, Lueke A, Donato L, Camilleri M. Increased fecal primary bile acids in multiple myeloma with engraftment syndrome diarrhea after stem cell transplant. Bone Marrow Transplant 2019; 54:1898-1907. [PMID: 31148601 DOI: 10.1038/s41409-019-0581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 11/10/2022]
Abstract
Autologous stem cell transplant (ASCT) for multiple myeloma (MM) is associated with diarrhea during the peri-transplant period. We aimed to appraise mechanisms of peri-ASCT diarrhea in a prospective, longitudinal study of patients with MM. We compared by repeated measures (RM)-ANOVA daily bowel movements (BMs) and consistency [7-point Bristol Stool Form Scale (BSFS)], fecal calprotectin (intestinal inflammation), 13C-mannitol excretion in urine 0-2 h (small intestinal permeability), fasting serum C4 (bile acid synthesis) and total and primary bile acid in stool samples during baseline, peri-transplant period (Days 5-7 after stem cell infusion), and after hematological recovery post-ASCT. The 12 (5F, 7M) patients' median age was 61 y (IQR 54.8-63.3). All participants reported increased BMs (increase of 2 and 1 per day with and without engraftment syndrome, respectively). There were no significant increases in serum C4, total fecal bile acids, or intestinal permeability. Relative to patients without engraftment syndrome, four participants with engraftment syndrome had looser stool consistency (mean 2.6 points higher BSFS compared to without engraftment syndrome), increased primary fecal bile acids relative to baseline (>33 µmol/L vs. 6 µmol/L without engraftment syndrome), and increased fecal calprotectin compared to baseline (313 μg/mL vs. 35.6 μg/mL without engraftment syndrome; p = 0.06). Engraftment syndrome post-ASCT is associated with increased fecal primary bile acids.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA
| | | | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA
| | | | - Teresa Miceli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - William Rossini
- Division of Medicine Clinical Trials Unit, Mayo Clinic, Rochester, MN, USA
| | - Ann Taylor
- Division of Medicine Clinical Trials Unit, Mayo Clinic, Rochester, MN, USA
| | - Alan Lueke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Leslie Donato
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Lewalle P, Pochon C, Michallet M, Turlure P, Brissot E, Paillard C, Puyade M, Roth-Guepin G, Yakoub-Agha I, Chantepie S. [Prophylaxis of infections post-allogeneic transplantation: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2019; 106:S23-S34. [PMID: 30616839 DOI: 10.1016/j.bulcan.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for many hematological diseases. However, this procedure causes the patient to be susceptible to infection. Prophylactic treatments are administered in clinical practice even thought the level of evidence of their effectiveness is not always high. In addition, changes in the transplantation procedures - use of reduced intensity conditioning, development of alternative graft sources - must lead to a rethinking of attitudes towards prophylaxis. Our working group based its recommendations on a review of referential articles and publications on the subject found in the literature. These recommendations concern the prophylaxis of infections caused by HSV1, HSV2, varicella zoster, and hepatitis B, as well as anti-bacterial and digestive decontamination prophylaxis, prevention of pneumocystis, toxoplasmosis, tuberculosis, as well as prophylaxis of fungal infections. Other infectious agents usually involved in infections post-allotransplant have been the subject of another set of recommendations from the French Society of Bone Marrow Transplantation and Cellular Therapy.
Collapse
Affiliation(s)
- Philippe Lewalle
- Institut Jules-Bordet, université Libre-de-Bruxelles, service d'hématologie, 1, rue Héger-Bordet, 1000 Bruxelles, Belgique
| | - Cécile Pochon
- CHU de Nancy, service d'onco-hématologie pédiatrique, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France
| | | | - Pascal Turlure
- Centre hospitalier universitaire, service d'hématologie, 87042 Limoges, France
| | - Eolia Brissot
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital Saint-Antoine, département d'hématologie, 75012 Paris, France
| | | | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, unité d'hospitalisation d'aval, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | | | - Ibrahim Yakoub-Agha
- CHRU de Lille, service des maladies du sang, 2, avenue Oscar-Lambret, 59037 Lille cedex, France; Université de Lille 2, LIRIC, Inserm U995, 59000 Lille, France
| | - Sylvain Chantepie
- Institut d'hématologie de Basse-Normandie, centre hospitalier universitaire, avenue de la Côte-de-Nacre, 14000 Caen, France.
| |
Collapse
|
17
|
Rashidi A, Shanley R, Anasetti C, Waller EK, Scott BL, Blazar BR, Weisdorf DJ. Analysis of BMT CTN-0201 and -0901 samples did not reproduce the reported association between recipient REG3A rs7588571 and chronic GVHD. Bone Marrow Transplant 2018; 54:490-493. [PMID: 30171221 DOI: 10.1038/s41409-018-0331-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Ryan Shanley
- Masonic Cancer Center Biostatistics Core, University of Minnesota, Minneapolis, MN, USA
| | | | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, University of Washington Medical Center/Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Rashidi A, Shanley R, Yohe SL, Thyagarajan B, Curtsinger J, Anasetti C, Waller EK, Scott BL, Blazar BR, Weisdorf DJ. Recipient single nucleotide polymorphisms in Paneth cell antimicrobial peptide genes and acute graft-versus-host disease: analysis of BMT CTN-0201 and -0901 samples. Br J Haematol 2018; 182:887-894. [PMID: 30004111 DOI: 10.1111/bjh.15492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
Abstract
Host genetics shape the gut microbiota, and gut dysbiosis increases the risk of acute graft-versus-host disease (aGVHD). Paneth cells and microbiota have interactions that contribute to immune regulation. α-defensin-5 (HD5) and regenerating islet-derived protein 3 alpha (Reg3A) are the most abundant Paneth cell antimicrobial peptides (AMPs). We hypothesized that single nucleotide polymorphisms (SNPs) in the genes for HD5 (DEFA5) and Reg3A (REG3A) predict aGVHD risk. We analysed pre-transplant recipient peripheral blood mononuclear cell samples from randomized Blood and Marrow Transplant Clinical Trials Network (BMT CTN) studies 0201 (94 patients with bone marrow and 93 with peripheral blood grafts) and 0901 (86 patients with myeloablative and 77 with reduced-intensity conditioning; all using peripheral blood grafts). In multivariable analysis (with a SNP × graft source interaction term in CTN-0201 and a SNP × conditioning intensity term in CTN-0901), DEFA5 rs4415345 and rs4610776 were associated with altered incidence of aGVHD grade II-IV [rs4415345 G vs. C: hazard ratio (HR) 0·58, 95% confidence interval (95% CI) 0·37-0·92, P = 0·02; rs4610776 T vs. A: HR 1·53, 95% CI 1·01-2·32, P = 0·05] in CTN-0201, but not CTN-0901, suggesting a stronger effect in bone marrow allografts. REG3A SNP was not associated with aGVHD. Host genetics may influence aGVHD risk by modulating Paneth cell function.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ryan Shanley
- Masonic Cancer Center Biostatistics Core, University of Minnesota, Minneapolis, MN, USA
| | - Sophia L Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Julie Curtsinger
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, University of Washington Medical Center/Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|