1
|
Luscombe VB, Wang P, Russell AJ, Greaves DR. Biased agonists of GPR84 and insights into biological control. Br J Pharmacol 2024; 181:1509-1523. [PMID: 38148720 DOI: 10.1111/bph.16310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
GPR84 was first identified as an open reading frame encoding an orphan Class A G protein coupled receptor in 2001. Gpr84 mRNA is expressed in a limited number of cell types with the highest levels of expression being in innate immune cells, M1 polarised macrophages and neutrophils. The first reported ligands for this receptor were medium chain fatty acids with chain lengths between 9 and 12 carbons. Subsequently, a series of synthetic agonists that signal via the GPR84 receptor were identified. Radioligand binding assays and molecular modelling with site-directed mutagenesis suggest the presence of three ligand binding sites on the receptor, but the physiological agonist(s) of the receptor remain unidentified. Here, we review the effects of GPR84 agonists on innate immune cells following a series of chemical discoveries since 2001. The development of highly biased agonists has helped to probe receptor function in vitro, and the remaining challenge is to follow the effects of biased signalling to the physiological functions of innate immune cell types. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
| | - Pinqi Wang
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Arman S, Tilley RD, Gooding JJ. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects. Analyst 2024; 149:269-289. [PMID: 38015145 DOI: 10.1039/d3an01423a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.
Collapse
Affiliation(s)
- Seyedyousef Arman
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Luscombe VB, Baena-López LA, Bataille CJR, Russell AJ, Greaves DR. Kinetic insights into agonist-dependent signalling bias at the pro-inflammatory G-protein coupled receptor GPR84. Eur J Pharmacol 2023; 956:175960. [PMID: 37543157 PMCID: PMC10804997 DOI: 10.1016/j.ejphar.2023.175960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
GPR84 is an orphan G-protein coupled receptor (GPCR) linked to inflammation. Strategies targeting GPR84 to prevent excessive inflammation in disease are hampered by a lack of understanding of its precise functional role. We have developed heterologous cell lines with low GPR84 expression levels that phenocopy the response of primary cells in a label-free cell electrical impedance (CEI) sensing system that measures cell morphology and adhesion. We then investigated the signalling profile and membrane localisation of GPR84 upon treatment with 6-OAU and DL-175, two agonists known to differentially influence immune cell function. When compared to 6-OAU, DL-175 was found to exhibit a delayed impedance response, a delayed and suppressed activation of Akt, which together correlated with an impaired ability to internalise GPR84 from the plasma membrane. The signalling differences were transient and occurred only at early time points in the low expressing cell lines, highlighting the importance of receptor number and kinetic readouts when evaluating signalling bias. Our findings open new ways to understand GPR84 signalling and evaluate the effect of newly developed agonists.
Collapse
Affiliation(s)
- Vincent B Luscombe
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom
| | - Luis Alberto Baena-López
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom
| | - Carole J R Bataille
- Department of Chemistry, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom; Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
4
|
Nosik M, Berezhnya E, Bystritskaya E, Kiseleva I, Lobach O, Kireev D, Svitich O. Female Sex Hormones Upregulate the Replication Activity of HIV-1 Sub-Subtype A6 and CRF02_AG but Not HIV-1 Subtype B. Pathogens 2023; 12:880. [PMID: 37513727 PMCID: PMC10383583 DOI: 10.3390/pathogens12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
More than 50% of all people living with HIV worldwide are women. Globally, HIV/AIDS is the leading cause of death among women aged 15 to 44. The safe and effective methods of hormonal contraception are an essential component of preventive medical care in order to reduce maternal and infant mortality. However, there is limited knowledge regarding the effect of hormones on the rate of viral replication in HIV infection, especially non-B subtypes. The goal of the present work was to study in vitro how the female hormones β-estradiol and progesterone affect the replication of the HIV-1 subtypes A6, CRF02_AG, and B. The findings show that high doses of hormones enhanced the replication of HIV-1 sub-subtype A6 by an average of 1.75 times and the recombinant variant CRF02_AG by 1.4 times but did not affect the replication of HIV-1 subtype B. No difference was detected in the expression of CCR5 and CXCR4 co-receptors on the cell surface, either in the presence or absence of hormones. However, one of the reasons for the increased viral replication could be the modulated TLRs secretion, as it was found that high doses of estradiol and progesterone upregulated, to varying degrees, the expression of TLR2 and TLR9 genes in the PBMCs of female donors infected with HIV-1 sub-subtype A6.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Elena Berezhnya
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Irina Kiseleva
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Olga Lobach
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| |
Collapse
|
5
|
Mikkelsen RB, Arora T, Trošt K, Dmytriyeva O, Jensen SK, Meijnikman AS, Olofsson LE, Lappa D, Aydin Ö, Nielsen J, Gerdes V, Moritz T, van de Laar A, de Brauw M, Nieuwdorp M, Hjorth SA, Schwartz TW, Bäckhed F. Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration. iScience 2022; 25:105683. [PMID: 36561890 PMCID: PMC9763857 DOI: 10.1016/j.isci.2022.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
Collapse
Affiliation(s)
- Randi Bonke Mikkelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sune Kjærsgaard Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Louise Elisabeth Olofsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dimitra Lappa
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurits de Brauw
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Siv Annegrethe Hjorth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thue Walter Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden,Corresponding author
| |
Collapse
|
6
|
Cellular Electrical Impedance as a Method to Decipher CCR7 Signalling and Biased Agonism. Int J Mol Sci 2022; 23:ijms23168903. [PMID: 36012168 PMCID: PMC9408853 DOI: 10.3390/ijms23168903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The human C-C chemokine receptor type 7 (CCR7) has two endogenous ligands, C-C chemokine ligand 19 (CCL19) and CCL21, displaying biased agonism reflected by a pronounced difference in the level of β-arrestin recruitment. Detecting this preferential activation generally requires the use of separate, pathway-specific label-based assays. In this study, we evaluated an alternative methodology to study CCR7 signalling. Cellular electrical impedance (CEI) is a label-free technology which yields a readout that reflects an integrated cellular response to ligand stimulation. CCR7-expressing HEK293 cells were stimulated with CCL19 or CCL21, which induced distinct impedance profiles with an apparent bias during the desensitisation phase of the response. This discrepancy was mainly modulated by differential β-arrestin recruitment, which shaped the impedance profile but did not seem to contribute to it directly. Pathway deconvolution revealed that Gαi-mediated signalling contributed most to the impedance profile, but Gαq- and Gα12/13-mediated pathways were also involved. To corroborate these results, label-based pathway-specific assays were performed. While CCL19 more potently induced β-arrestin2 recruitment and receptor internalisation than CCL21, both chemokines showed a similar level of Gαi protein activation. Altogether, these findings indicate that CEI is a powerful method to analyse receptor signalling and biased agonism.
Collapse
|
7
|
Van Loy T, De Jonghe S, Castermans K, Dheedene W, Stoop R, Verschuren L, Versele M, Chaltin P, Luttun A, Schols D. Stimulation of the atypical chemokine receptor 3 (ACKR3) by a small-molecule agonist attenuates fibrosis in a preclinical liver but not lung injury model. Cell Mol Life Sci 2022; 79:293. [PMID: 35562519 PMCID: PMC9106635 DOI: 10.1007/s00018-022-04317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
Atypical chemokine receptor 3 (ACKR3, formerly CXC chemokine receptor 7) is a G protein-coupled receptor that recruits β-arrestins, but is devoid of functional G protein signaling after receptor stimulation. In preclinical models of liver and lung fibrosis, ACKR3 was previously shown to be upregulated after acute injury in liver sinusoidal and pulmonary capillary endothelial cells, respectively. This upregulation was linked with a pro-regenerative and anti-fibrotic role for ACKR3. A recently described ACKR3-targeting small molecule agonist protected mice from isoproterenol-induced cardiac fibrosis. Here, we aimed to evaluate its protective role in preclinical models of liver and lung fibrosis. After confirming its in vitro pharmacological activity (i.e., ACKR3-mediated β-arrestin recruitment and receptor binding), in vivo administration of this ACKR3 agonist led to increased mouse CXCL12 plasma levels, indicating in vivo interaction of the agonist with ACKR3. Whereas twice daily in vivo administration of the ACKR3 agonist lacked inhibitory effect on bleomycin-induced lung fibrosis, it had a modest, but significant anti-fibrotic effect in the carbon tetrachloride (CCl4)-induced liver fibrosis model. In the latter model, ACKR3 stimulation affected the expression of several fibrosis-related genes and led to reduced collagen content as determined by picro-sirius red staining and hydroxyproline quantification. These data confirm that ACKR3 agonism, at least to some extent, attenuates fibrosis, although this effect is rather modest and heterogeneous across various tissue types. Stimulating ACKR3 alone without intervening in other signaling pathways involved in the multicellular crosstalk leading to fibrosis will, therefore, most likely not be sufficient to deliver a satisfactory clinical outcome.
Collapse
Affiliation(s)
- Tom Van Loy
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | - Wouter Dheedene
- Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Reinout Stoop
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | | | - Patrick Chaltin
- CISTIM, Gaston Geenslaan 2, 3001, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Belgium
| | - Aernout Luttun
- Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
8
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Sadras F, Monteith GR, Roberts-Thomson SJ. An Emerging Role for Calcium Signaling in Cancer-Associated Fibroblasts. Int J Mol Sci 2021; 22:ijms222111366. [PMID: 34768796 PMCID: PMC8583802 DOI: 10.3390/ijms222111366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors exist in a complex milieu where interaction with their associated microenvironment significantly contributes to disease progression. Cancer-associated fibroblasts (CAFs) are the primary component of the tumor microenvironment and participate in complex bidirectional communication with tumor cells. CAFs support the development of various hallmarks of cancer through diverse processes, including direct cell-cell contact, paracrine signaling, and remodeling and deposition of the extracellular matrix. Calcium signaling is a key second messenger in intra- and inter-cellular signaling pathways that contributes to cancer progression; however, the links between calcium signaling and CAFs are less well-explored. In this review, we put into context the role of calcium signaling in interactions between cancer cells and CAFs, with a focus on migration, proliferation, chemoresistance, and genetic instability.
Collapse
Affiliation(s)
- Francisco Sadras
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
| | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah J. Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Correspondence:
| |
Collapse
|
10
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
11
|
Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7-What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98:577-585. [PMID: 32883765 DOI: 10.1124/molpharm.120.000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
The CXCL12 system is central to the development of many organs and is further crucially engaged in pathophysiological processes underlying cancer, inflammation, and cardiovascular disorders. This disease-associated role presently focuses major interest on the two CXCL12 receptors, CXCR4 and atypical chemokine receptor 3 (ACKR3)/CXCR7, as promising therapeutic targets. Major obstacles in these ongoing efforts are confusing reports on the differential use of either ACKR3/CXCR7 and/or CXCR4 across various cells as well as on the specific function(s) of ACKR3/CXCR7. Although basically no doubts remain that CXCR4 represents a classic chemokine receptor, functions assigned to ACKR3/CXCR7 range from those of a strictly silent scavenger receptor eventually modulating CXCR4 signaling to an active and independent signaling receptor. In this review, we depict a thorough analysis of our present knowledge on different modes of organization and functions of the cellular CXCL12 system. We further highlight the potential role of ACKR3/CXCR7 as a "crosslinker" of different receptor systems. Finally, we discuss mechanisms with the potency to impinge on the cellular organization of the CXCL12 system and hence might represent additional future therapeutic targets. SIGNIFICANCE STATEMENT: Delineating the recognized functions of atypical chemokine receptor 3 and CXCR4 in CXCL12 signaling is central to the more detailed understanding of the role of the CXCL12 system in health and disease and will help to guide future research efforts.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| |
Collapse
|
12
|
Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. Int J Mol Sci 2020; 21:ijms21165696. [PMID: 32784523 PMCID: PMC7460815 DOI: 10.3390/ijms21165696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Given its pleiotropic functions, including its prominent role in inflammation, immune responses and cancer, the C-X-C chemokine receptor type 4 (CXCR4) has gained significant attention in recent years and has become a relevant target in drug development. Although the signaling properties of CXCR4 have been extensively studied, several aspects deserve deeper investigations. Mutations in the C-term tail of the CXCR4 gene cause WHIM syndrome, a rare congenital immunodeficiency associated by chronic leukopenia. Similar mutations have also been recently identified in 30% of patients affected by Waldenstrom’s macroglobulinaemia, a B-cell neoplasia with bone marrow accumulation of malignant cells. An ample body of work has been generated to define the impact of WHIM mutations on CXCR4 signaling properties and evaluate their role on pathogenesis, diagnosis, and response to therapy, although the identity of disease-causing signaling pathways and their relevance for disease development in different genetic variants are still open questions. This review discusses the current knowledge on biochemical properties of CXCR4 mutations to identify their prototypic signaling profile potentially useful to highlighting novel opportunities for therapeutic intervention.
Collapse
|
13
|
Meyrath M, Szpakowska M, Zeiner J, Massotte L, Merz MP, Benkel T, Simon K, Ohnmacht J, Turner JD, Krüger R, Seutin V, Ollert M, Kostenis E, Chevigné A. The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat Commun 2020; 11:3033. [PMID: 32561830 PMCID: PMC7305236 DOI: 10.1038/s41467-020-16664-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating opioid receptors, currently classified into four subtypes. Here we demonstrate that ACKR3/CXCR7, hitherto known as an atypical scavenger receptor for chemokines, is a broad-spectrum scavenger of opioid peptides. Phylogenetically, ACKR3 is intermediate between chemokine and opioid receptors and is present in various brain regions together with classical opioid receptors. Functionally, ACKR3 is a scavenger receptor for a wide variety of opioid peptides, especially enkephalins and dynorphins, reducing their availability for the classical opioid receptors. ACKR3 is not modulated by prescription opioids, but we show that an ACKR3-selective subnanomolar competitor peptide, LIH383, can restrain ACKR3’s negative regulatory function on opioid peptides in rat brain and potentiate their activity towards classical receptors, which may open alternative therapeutic avenues for opioid-related disorders. Altogether, our results reveal that ACKR3 is an atypical opioid receptor with cross-family ligand selectivity. Opioids modulate pain, anxiety and stress by activating four subtypes of opioid receptors. The authors show that atypical chemokine receptor 3 (ACKR3) is a scavenger for various endogenous opioid peptides regulating their availability without activating downstream signaling.
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Julian Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Laurent Massotte
- Neurophysiology Unit, GIGA Neurosciences, University of Liège, avenue de l'hopital, B-4000, Liège, Belgium
| | - Myriam P Merz
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), rue Thomas Edison 1A-B, L-1445, Strassen, Luxembourg
| | - Vincent Seutin
- Neurophysiology Unit, GIGA Neurosciences, University of Liège, avenue de l'hopital, B-4000, Liège, Belgium
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000, Odense, Denmark
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Ramakrishnan R, Peña-Martínez P, Agarwal P, Rodriguez-Zabala M, Chapellier M, Högberg C, Eriksson M, Yudovich D, Shah M, Ehinger M, Nilsson B, Larsson J, Hagström-Andersson A, Ebert BL, Bhatia R, Järås M. CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine MLL-AF9-Driven Acute Myeloid Leukemia. Cell Rep 2020; 31:107684. [PMID: 32460032 PMCID: PMC8109054 DOI: 10.1016/j.celrep.2020.107684] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is defined by an accumulation of immature myeloid blasts in the bone marrow. To identify key dependencies of AML stem cells in vivo, here we use a CRISPR-Cas9 screen targeting cell surface genes in a syngeneic MLL-AF9 AML mouse model and show that CXCR4 is a top cell surface regulator of AML cell growth and survival. Deletion of Cxcr4 in AML cells eradicates leukemia cells in vivo without impairing their homing to the bone marrow. In contrast, the CXCR4 ligand CXCL12 is dispensable for leukemia development in recipient mice. Moreover, expression of mutated Cxcr4 variants reveals that CXCR4 signaling is essential for leukemia cells. Notably, loss of CXCR4 signaling in leukemia cells leads to oxidative stress and differentiation in vivo. Taken together, our results identify CXCR4 signaling as essential for AML stem cells by protecting them from differentiation independent of CXCL12 stimulation.
Collapse
Affiliation(s)
| | | | - Puneet Agarwal
- Division of Hematology & Oncology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | | | | | - Carl Högberg
- Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Mia Eriksson
- Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - David Yudovich
- Division of Molecular Medicine and Gene Therapy, Lund University, Lund 22184, Sweden
| | - Mansi Shah
- Division of Hematology & Oncology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Mats Ehinger
- Division of Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund 22184, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Lund University, Lund 22184, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund University, Lund 22184, Sweden
| | | | - Benjamin L Ebert
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ravi Bhatia
- Division of Hematology & Oncology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Marcus Järås
- Division of Clinical Genetics, Lund University, Lund 22184, Sweden.
| |
Collapse
|
15
|
Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG. Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomater Sci Eng 2019; 5:5128-5138. [DOI: 10.1021/acsbiomaterials.9b01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina Spiller
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nydia Panitz
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Passant Morsi Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Kathrin Bellmann-Sickert
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Sebastian Koehling
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
17
|
Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413-424. [PMID: 30342023 DOI: 10.1016/j.bcp.2018.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
18
|
Ayala-Charca G, Munidasa S, Ghafar-Zadeh E, Magerowski S. A high-throughput impedimetric platform for cellular analysis: Design, Implementation and Experimental Results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4261-4264. [PMID: 30441295 DOI: 10.1109/embc.2018.8513396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high-throughput impedance spectroscopy measurement system was designed and developed for the purpose of biological analysis. This platform consists of a microchip containing a microelectrode array and a multiplexing interface system. Herein we put forward the proposed platform and demonstrate its functionality by performing impedance analysis using N2a cells and its associated medium. The early experimental results demonstrated the high-through impedimetric system to be a strong basis for future modification and development.
Collapse
|
19
|
CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochem Pharmacol 2018; 158:402-412. [PMID: 30342024 DOI: 10.1016/j.bcp.2018.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023]
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 contribute to a variety of human diseases, such as cancer. CXCR4 is also a major co-receptor facilitating HIV entry. Accordingly, CXCR4 is considered as an attractive therapeutic target. Drug side effects and poor pharmacokinetic properties have been major hurdles that have prevented the implementation of CXCR4-directed inhibitors in treatment regimes. We evaluated the activity of a new and promising class of biologics, namely CXCR4-targeting nanobodies, with the purpose of identifying nanobodies that would preferentially inhibit HIV infection, while minimally disturbing other CXCR4-related functions. All CXCR4-interacting nanobodies inhibited CXCL12 binding and receptor-mediated calcium mobilization with comparable relative potencies. Importantly, the anti-HIV-1 activity of the nanobodies did not always correlate with their ability to modulate CXCR4 signaling and function, indicating that the anti-HIV and anti-CXCR4 activity are not entirely overlapping and may be functionally separated. Three nanobodies with divergent activity profiles (VUN400, VUN401 and VUN402) were selected for in depth biological evaluation. While all three nanobodies demonstrated inhibitory activity against a wide range of HIV (X4) strains, VUN402 poorly blocked CXCL12-induced CXCR4 internalization, chemotaxis and changes in cell morphology. Each of these nanobodies recognized distinct, although partially overlapping epitopes on CXCR4, which might underlie their distinct activity profiles. Our results demonstrate the potential of CXCR4-targeting nanobody VUN402 as a novel lead and starting point for the development of a more potent and selective anti-HIV agent.
Collapse
|
20
|
CXCR7/ACKR3-targeting ligands interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 2018; 4:e00557. [PMID: 29560468 PMCID: PMC5857896 DOI: 10.1016/j.heliyon.2018.e00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. Furthermore, we uncovered anti-CXCR7 monoclonal antibodies, small molecule CXCR7 inhibitors and the natural CXCR7 chemokine ligands as potent inhibitors of CXCR7 receptor-mediated HIV entry and replication. Even though the clinical relevance of CXCR7-mediated HIV infection remains poorly understood, our data suggest that divergent HIV-1 and HIV-2 strains can quickly adapt their coreceptor usage depending on the cellular environment, which warrants further investigation.
Collapse
|