1
|
Liao X, Huang Z, Ling H, Li W, Liu J, Lao Y, Su W. Mechanism of minocycline activating Nrf2/Hmox1 pathway to prevent ferroptosis and alleviate acute compartment syndrome. J Orthop Surg Res 2024; 19:686. [PMID: 39443986 PMCID: PMC11515506 DOI: 10.1186/s13018-024-05183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Acute compartment syndrome(ACS) is a perilous consequence of trauma. Acute compartment syndrome's precise cause is yet unknown. We performed studies to confirm that acute compartment syndrome can be relieved by suppressing ferroptosis and activating the Nrf2/Hmox1 pathway. METHODS We generated an ACS rat model and we conducted next-generation sequencing(NGS) of skeletal muscle tissue and identified differentially expressed target genes. Ultimately, we performed in vivo experiments to validate the presence of ferroptosis and the Nrf2/Hmox1 pathway in ACS rats. After the minocycline intervention, the drug was evaluated for its effects on ACS by examining changes associated with ferroptosis. RESULTS The bioinformatics analysis identified that the genetic changes in the disease were mostly focused on ferroptosis, with noticeable modifications in Nrf2/Hmox1. Based on the in vivo results, it was observed that ACS rats exhibited significantly elevated levels of ferroptosis compared to the control rats. The suppression of the Nrf2/Hmox1 pathway mediated by minocycline improves outcomes in ACS and reduces tissue damage after intervention. CONCLUSION Minocycline hinders ferroptosis via stimulating the Nrf2/Hmox1 pathway, which slows down the advancement of acute compartment syndrome.
Collapse
Affiliation(s)
- Xiong Liao
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
- Department of Orthopedic Trauma, The Affiliated Changsha Central Hospital (Changsha Central Hospital), Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Zhao Huang
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
| | - He Ling
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
| | - Wencai Li
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
| | - Junjie Liu
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
| | - Yonghui Lao
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China
| | - Wei Su
- Department of Orthopedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, NO.6 ShuangYong Road, Nanning, Guangxi, 530022, China.
| |
Collapse
|
2
|
Lai C, Chen L, Zhong X, Tian X, Zhang B, Li H, Zhang G, Wang L, Sun Y, Guo L. Long-term arsenic exposure decreases mice body weight and liver lipid droplets. ENVIRONMENT INTERNATIONAL 2024; 192:109025. [PMID: 39317010 DOI: 10.1016/j.envint.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Arsenic (As) is a widespread global pollutant, and there is significant controversy surrounding its complex relationship with obesity, primarily focused on short-term exposure. Recognizing the prolonged nature of dietary arsenic exposure, this study involved feeding mice with arsenic-contained food for 14 months. The results showed that mice exposed to arsenic developed a non-alcoholic fatty liver condition, characterized by a light-yellow hue on the liver surface and various pathological alterations in the liver cells, including enlarged nuclei, cellular necrosis, inflammatory infiltration, dysfunctional mitochondria, and endoplasmic reticulum disorganization. There were also disruptions in biochemistry indices, with a significant increase in total cholesterol (TC) level and a decrease in high-density lipoprotein (HDL) level. However, some contradictory observations occurred, such as a significant decrease in body weight, triglyceride (TG) level, and the numbers of lipid droplets. Several genes related to lipid metabolism were tested, and a model was used to explain these discrepancies. Besides, examinations of the colon revealed compromised intestinal barrier function and signs of inflammation. Fecal 16S rRNA sequencing and pseudo-targeted metabolomics revealed disruptions in internal homeostasis, such as modules, nodes, connections, and lipid-related KEGG pathways. Fecal targeted metabolomics analyses of short-chain fatty acids (SCFAs) and bile acids (BAs) demonstrated a significant upregulation in three primary bile acids (CA, CDCA, TCDCA), four secondary bile acids (TUDCA, DCA, LCA, GUDCA), and total SCFAs level. Oxidative stress and inflammation were also evident. Additionally, based on correlation analysis and mediation analysis, it was assumed that changes in the microbiota (e.g., Dubosiella) can impact the liver metabolites (e.g., TGs) through alterations in fecal metabolites (e.g., LPCs). These findings provide a theoretical reference for the long-term effect of arsenic exposure on liver lipid metabolism.
Collapse
Affiliation(s)
- Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xianbing Tian
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Li
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000.China
| | - Liping Wang
- School of Nursing, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Kaiser LM, Freeborn RA, Boss AP, Jin Y, Rockwell CE. Arsenic trioxide inhibits the response of primary human B cells to influenza virus A in vitro. Toxicol In Vitro 2024; 96:105783. [PMID: 38278458 DOI: 10.1016/j.tiv.2024.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Arsenic compounds are common environmental toxicants worldwide and particularly enriched in the Northeast and the Southwestern United States, the Alps, and Bangladesh. Exposure to arsenic is linked with various detrimental health outcomes, including cancer, cognitive decline, and kidney damage. Our group has previously shown that arsenic trioxide alters T cell cytokine production. In the current study, we demonstrate that exposure to arsenic compounds alters B cell function in an in vitro influenza model. Human peripheral blood mononuclear cells (PBMCs) were isolated from blood and cultured with arsenic trioxide (As3O2) and subsequently challenged with Influenza A virus. B cells showed decreased expression of CD267, surface IgG and CD80 when treated with As3O2. Taken together, the data suggest that As3O2 affects the activation and surface antibody expression of human peripheral B cells. Overall, this suggests that As3O2 exposure could cause impaired humoral immunity.
Collapse
Affiliation(s)
- Luca M Kaiser
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Allison P Boss
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America; Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America; Applied Immunology Center for Research and Education, Michigan State University, East Lansing, United States of America.
| |
Collapse
|
4
|
Balkrishna A, Solleti SK, Singh H, Singh R, Bhattacharya K, Varshney A. Herbo-metallic ethnomedicine 'Malla Sindoor' ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115120. [PMID: 35202713 DOI: 10.1016/j.jep.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is the leading inflammatory disease of the airways with inadequate therapeutic options. 'Malla Sindoor' (MS) is a metal-based ethnomedicinal formulation that has been prescribed in the ancient traditional medicinal system for treating chronic inflammations. AIM OF THE STUDY Here, we validated the anti-inflammatory and anti-asthmatic properties of traditional metallic medicine MS in asthmatic mice model and in LPS stimulated human monocytic THP-1 cells, by examining the relevant cellular, biochemical and molecular intermediates. MATERIALS AND METHODS Scanning Electron Microscope (SEM), Electron Dispersive X-ray (EDX), and X-Ray Diffraction (XRD) were performed to characterize MS particles. Allergic asthma was induced in Balb/c mice through intraperitoneal ovalbumin (OVA) injection. Experimental groups include, normal control, disease control, Dexamethasone (2 mg/kg) and three MS treated groups: 4.3 mg/kg, 13 mg/kg, and 39 mg/kg. Quantitative PCR, inflammatory cytokines and anti-oxidant enzymes, and histological analysis were performed, in the treated mice and LPS stimulated human monocytic THP-1 cells for determining the MS efficacy. RESULTS SEM image analysis showed the MS to be heterogenous in shape with a particle size distribution between 100 nm-1 μm. Elemental composition showed the presence of mercury (Hg), arsenic (As), and sulphur (S) along with other elements in the forms of mercury sulfide, arsenic trioxide, and their alloy crystals. OVA-challenge of the Balb/c mice resulted in the development of overt pathological features for allergic asthma including smooth muscle thickening and collagen deposition. Mice receiving MS-exhibited alleviation of allergic asthma features. BAL fluid analysis showed a decrease in the total cell count and decreases in neutrophils, monocytes, lymphocytes, and eosinophils. Further, the stimulated levels of interleukin (IL)-1β, -6, and TNF-α cytokines and antioxidant levels were also reduced upon MS-treatment. At the molecular level, MS-treatment reduced stimulated mRNA expression levels for IL-4, -5, -10, -13, -33, and IFN-γ cytokines. Histological analysis following MS-treatment of OVA-stimulated mice lungs showed a reduction in mucus accumulation in airways, decreases in peribronchial collagen deposition, bronchial smooth muscle thickening, and attenuation of inflammatory cell infiltration. In addition, under in-vitro conditions, MS-treatment attenuated the LPS induced secretion of IL-1β, -6, and TNF-α from THP-1 cells. CONCLUSION Collectively, the results suggest that MS acts as an effective anti-asthmatic and anti-inflammatory agent, by regulating various cellular, biochemical and molecular intermediates.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Patanjali UK Trust, Glasgow, United Kingdom
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
5
|
Freeborn RA, Boss AP, Kaiser LM, Gardner EM, Rockwell CE. Trivalent arsenic impairs the effector response of human CD4+ and CD8+ T cells to influenza A virus ex vivo. Food Chem Toxicol 2022; 165:113122. [DOI: 10.1016/j.fct.2022.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
|
6
|
Han HJ, Lee J, Lim G, Park J, Gautam R, Jo J, Kim C, Heo Y. Metal arsenic mediated enhancement of type-2 immunity in brains with altered locomotive activities in mice with autism-like behavioral characteristics. Toxicol Res 2022; 38:27-33. [PMID: 35070938 PMCID: PMC8748561 DOI: 10.1007/s43188-021-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to metal arsenic (As) has been proposed as a risk factor for autism spectrum disorders (ASDs), which are neurodevelopmental disorders with worldwide increasing in its incidence. In the present study, BTBR T + tf/J (BTBR) mice with ASD-like behavioral characteristics and control highly social FVB mice were orally exposed to 0.1 mM arsenic(III)oxide for 4 weeks, and were compared to investigate neuroimmunological or behavioral abnormalities. IgG1:IgG2a ratios in brain tissues from BTBR mice exposed to As (BTBR-As) were significantly higher than those of BTBR-control mice (BTBR-C), but this change did not occur in FVB mice exposed to As. Levels of IL-4, IFN-γ, IL-1β, IL-17, and TNF-α in brain tissue were lowered in BTBR-As relative to BTBR-C, but this tendency was not observed with FVB mice. BTBR-As mice demonstrated decrease in relative travel distance and time spent in the center vs. the periphery of open field arena compared to BTBR-C. Sociability evaluation using three-way chamber test did not clearly demonstrate As-mediated alteration in social interaction in BTBR mice. These findings suggest the potential for As-driven predominant TH2-like reactivity profile in the brain microenvironment of BTBR mice and for As-mediated locomotive impairment probably associated with ASD.
Collapse
Affiliation(s)
- Ha-Jung Han
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - JaeHee Lee
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - GyeongDong Lim
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - JungEun Park
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - Ravi Gautam
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - JiHun Jo
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- College of Bio and Medical Sciences, Department of Occupational Health, Daegu Catholic University, 13-13 Hayang-ro, Gyeongsan-si, Gyeongbuk Province 38430 South Korea
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
7
|
Schilz JR, Dashner-Titus EJ, Luo L, Simmons KA, MacKenzie DA, Hudson LG. Co-exposure of sodium arsenite and uranyl acetate differentially alters gene expression in CD3/CD28 activated CD4+ T-cells. Toxicol Rep 2021; 8:1917-1929. [PMID: 34926170 PMCID: PMC8649082 DOI: 10.1016/j.toxrep.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Communities in the western region of the United States experience environmental exposure to metal mixtures from living in proximity to numerous unremediated abandoned uranium mines. Metals including arsenic and uranium co-occur in and around these sites at levels higher than the United States Environmental Protection Agency maximum contaminant levels. To address the potential effect of these metals on the activation of CD4+ T-cells, we used RNA sequencing methods to determine the effect of exposure to sodium arsenite (1 μM and 10 μM), uranyl acetate (3 μM and 30 μM) or a mixture of sodium arsenite and uranyl acetate (1 μM sodium arsenite + 3 μM uranyl acetate). Sodium arsenite induced a dose dependent effect on activation associated gene expression; targeting immune response genes at the lower dose. Increases in oxidative stress gene expression were observed with both sodium arsenite doses. While uranyl acetate alone did not significantly alter activation associated gene expression, the mixture of uranyl acetate with sodium arsenite demonstrated a combined effect relative to sodium arsenite alone. The results demonstrate the need to investigate metal and metalloid mixtures at environmentally relevant concentrations to better understand the toxicological impact of these mixtures on T-cell activation, function and immune dysregulation.
Collapse
Key Words
- APC, antigen presenting cell
- AUM, abandoned uranium mine
- Arsenic
- DEG, differentially expressed gene
- GCLM, glutamate-cysteine ligase
- HMOX1, heme oxygenase 1
- IFNγ, interferon gamma
- IL-2, interleukin 2
- MHC, major histone compatibility complex
- Mixture toxicology
- NQO1, NAD(P)H quinone dehydrogenase
- PCA, principal component analysis
- SOD1, super oxide dismutase 1
- T-lymphocytes
- TCR, T-cell receptor
- Th, T-helper
- Uranium
Collapse
Affiliation(s)
- Jodi R. Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Erica J. Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Li Luo
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Karen A. Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Debra A. MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
8
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
9
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
11
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Becher R, Valen H, Olderbø BP, Bølling AK, Samuelsen JT. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dent Mater 2019; 35:125-134. [DOI: 10.1016/j.dental.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
13
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Ahn H, Kim J, Kang SG, Yoon SI, Ko HJ, Kim PH, Hong EJ, An BS, Lee E, Lee GS. Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflammasome activation. Sci Rep 2018; 8:13659. [PMID: 30209319 PMCID: PMC6135747 DOI: 10.1038/s41598-018-31717-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals can cause several diseases associated with the immune system. Although the effects of heavy metals on production of inflammatory cytokines have been previously studied, the role of heavy metals in inflammasome activation remains poorly studied. The inflammasome is an intracellular multi-protein complex that detects intracellular danger signals, resulting in inflammatory responses such as cytokine maturation and pyroptosis. In this study, we elucidated the effects of four heavy metals, including cadmium (Cd), mercury (Hg), arsenic (As), and lead (Pb), on the activation of NLRP3, NLRC4, and AIM2 inflammasomes. In our results, mercury and arsenic inhibited interleukin (IL)-1β and IL-18 secretion resulting from canonical and non-canonical NLRP3 inflammasome activation in macrophages and attenuated elevation of serum IL-1β in response to LPS treatment in mice. In the mechanical studies, mercury interrupted production of mitochondrial reactive oxygen species, release of mitochondrial DNA, and activity of recombinant caspase-1, whereas arsenic down-regulated expression of promyelocytic leukemia protein. Both mercury and arsenic inhibited Asc pyroptosome formation and gasdermin D cleavage. Thus, we suggest that exposure to mercury and/or arsenic could disrupt inflammasome-mediated inflammatory responses, which might cause unexpected side effects.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterial Science, College of Natural Resources and Life Science, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040683. [PMID: 29621150 PMCID: PMC5923725 DOI: 10.3390/ijerph15040683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men’s arsenic (As), cadmium (Cd) and lead (Pb) contents in hair samples and their associations with immunological indicators, including white blood cell (WBC), lymphocyte and monocyte counts, and the immunoglobulin (Ig) levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03) ug/g] was lower than means of As [0.86 (SD = 0.16) ug/g] and Pb [0.91 (SD = 0.22) ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman’s correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.
Collapse
|