1
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice. Aging Cell 2025; 24:e14504. [PMID: 39930949 PMCID: PMC12073913 DOI: 10.1111/acel.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025] Open
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence by Ca2+ chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K3Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K3Citrate as a systemic intervention strategy to ameliorate disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
4
|
Chhimpa N, Singh N, Puri N, Kayath HP. The Novel Role of Mitochondrial Citrate Synthase and Citrate in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S453-S472. [PMID: 37393492 PMCID: PMC10473122 DOI: 10.3233/jad-220514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
Collapse
Affiliation(s)
- Neeraj Chhimpa
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
5
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
6
|
Sumi K, Hatanaka Y, Takahashi R, Wada N, Ono C, Sakamoto Y, Sone H, Iida K. Citrate Synthase Insufficiency Leads to Specific Metabolic Adaptations in the Heart and Skeletal Muscles Upon Low-Carbohydrate Diet Feeding in Mice. Front Nutr 2022; 9:925908. [PMID: 35873436 PMCID: PMC9302927 DOI: 10.3389/fnut.2022.925908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
A decrease in TCA cycle activity may lead to impaired nutrition metabolism and cellular energy shortage. Herein, we aimed to characterize the detailed metabolic changes that compensate for energy shortages in energy-consuming organs (heart and skeletal muscles) in mice with knockout of citrate synthase (CS), an important enzyme in the TCA cycle. CS hetero knockout (CS +/−) mice and wild-type mice were fed a low-carbohydrate ketogenic diet (LCKD) or high-fat, high-carbohydrate diet (HFHCD) to induce metabolic changes. Body weight, blood serum parameters, metabolic gene expression, and adenosine triphosphate (ATP) levels were measured in the heart and skeletal muscles. Glycogen content, anabolic and catabolic biomarkers, and morphological changes were also assessed in the skeletal muscles. After diet feeding, there were no differences observed in the body weight and blood serum parameters between wild-type and CS +/− mice. The cardiac expression of genes related to the utilization of fatty acids, monocarboxylates, and branched amino acids increased in LCKD-fed CS +/− mice. In contrast, no significant differences in gene expression were observed in the muscles of LCKD-fed mice or the heart and muscles of HFHCD-fed mice. ATP levels decreased only in the skeletal muscles of LCKD-fed CS +/− mice. Additionally, the decrease in glycogen content, suppression of p70 S6 kinase, and presence of type I fiber atrophy were observed in the muscles of LCKD-fed CS +/− mice. These results suggest that the energy-consuming organs with CS insufficiency may undergo tissue-specific adaption to compensate for energy shortages when the carbohydrate supply is limited.
Collapse
Affiliation(s)
- Kanako Sumi
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
| | - Yuiko Hatanaka
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
| | - Reina Takahashi
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
| | - Naoko Wada
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
| | - Chihiro Ono
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
| | - Yuri Sakamoto
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoruko Iida
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Japan
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- The Institute for Human Life Innovation, Ochanomizu University, Bunkyo, Japan
- *Correspondence: Kaoruko Iida,
| |
Collapse
|
7
|
Bachmann AM, Morel JD, El Alam G, Rodríguez-López S, Imamura de Lima T, Goeminne LJE, Benegiamo G, Loric S, Conti M, Sleiman MB, Auwerx J. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 2022; 25:104468. [PMID: 35677645 PMCID: PMC9167980 DOI: 10.1016/j.isci.2022.104468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/21/2023] Open
Abstract
The sharp increase in obesity prevalence worldwide is mainly attributable to changes in physical activity and eating behavior but the metabolic and clinical impacts of these obesogenic conditions vary between sexes and genetic backgrounds. This warrants personalized treatments of obesity and its complications, which require a thorough understanding of the diversity of metabolic responses to high-fat diet intake. By analyzing nine genetically diverse mouse strains, we show that much like humans, mice exhibit a huge variety of physiological and biochemical responses to high-fat diet. The strains exhibit various degrees of alterations in their phenotypic makeup. At the transcriptome level, we observe dysregulations of immunity, translation machinery, and mitochondrial genes. At the biochemical level, the enzymatic activity of mitochondrial complexes is affected. The diversity across mouse strains, diets, and sexes parallels that found in humans and supports the use of diverse mouse populations in future mechanistic or preclinical studies on metabolic dysfunctions. Strain- and sex-specific profile of metabolic dysfunction in mice Liver mitochondrial complex activity in vivo associates with metabolic traits Open data source for evaluating different mouse strains for metabolic disease Interactive data exploration through an online application
Collapse
Affiliation(s)
- Alexis Maximilien Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sylvain Loric
- Inserm U938 CRSA, St Antoine University Hospital, Paris, France
| | - Marc Conti
- Inserm U938 CRSA, St Antoine University Hospital, Paris, France.,Integracell, Longjumeau, France
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Li Z, Liu R, Liu Y, Zhao M, Luan J, Wang Y, Shang W, Song X, Sun Y, Han F. H55 N variation in citrate synthase leads to decrement in the enzyme activity and transport rate to mitochondria in HEI-OC1 cells. Biochem Biophys Res Commun 2022; 612:134-140. [PMID: 35525197 DOI: 10.1016/j.bbrc.2022.04.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
A/J mouse is a typical animal model of age-related deafness. Previous studies have shown that the mice suffer from progressive hearing loss and degeneration of cochlear cells, and a variation of H55 N in citrate synthase (CS) causes about 40% the hearing loss. CS is a key enzyme in the tricarboxylic acid cycle, which is transported from cytoplasm to mitochondria after synthesis, sorted by the mitochondrial targeting sequence (MTS). To explore the mechanism of CS (H55 N) variation in affecting its function, HEI-OC1 cells were infected with lentivirus particles to express CS-Flag or CS(H55 N)-Flag. The results showed that H55 N variation in CS, as purified by co-immunoprecipitation, decreased the enzyme activity by about 50%. Confocal microscope co-localization indicated that the CS (H55 N) variation led to a decrement in its mitochondrial content. Western blot also showed the amount of CS(H55 N)-Flag was more than that of CS(WT)-Flag in the cytosol. The results suggest H55 N variation in CS lead to decrement of its enzyme activity and targeting transport to mitochondria. We therefore conclude that decrement in CS activity and mitochondrial delivery contributes to the degeneration of cochlear cells and thus the hearing loss in A/J mice.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China
| | - Rongrong Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China
| | - Yingying Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Mengmeng Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China
| | - Jun Luan
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China
| | - Yan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, No. 20 East, Yuhuangding Road, Yantai, 264000, Shandong, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
9
|
Effects of fasting on skeletal muscles and body fat of adult and old C57BL/6J mice. Exp Gerontol 2021; 152:111474. [PMID: 34252523 DOI: 10.1016/j.exger.2021.111474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Fasting improves metabolic health, but is also associated with loss of lean body mass. We investigated if old mice are less resistant to fasting-induce muscle wasting than adult mice. We compared changes in skeletal muscles and fat distribution in C57BL/6J mice subjected to 48-hour fasting at adult (6-month old) or old (24-month old) age. Old mice lost less weight (11.9 ± 1.5 vs 16.9 ± 2.8%, p < 0.001) and showed less (p < 0.01) pronounced muscle wasting than adult mice. Extensor digitorum longus (EDL) muscle force decreased only in adult mice after fasting. Serum IGF-1 levels were higher (p < 0.01) and showed greater (p < 0.01) decline in adult mice compared to old mice. Phosphorylation of 4EBP1 was reduced in the gastrocnemius muscles of adult mice only. Energy expenditure was slower in old mice and showed smaller fasting-induced decline than in adult mice when adjusted for variations in physical activity. There was a loss of fat mass in both age groups, but it was more pronounced in adult mice than old mice. Our results suggest that ageing-related decrease in metabolic rate protects old mice from skeletal muscle wasting during fasting.
Collapse
|
10
|
Prunonosa Cervera I, Gabriel BM, Aldiss P, Morton NM. The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiol Rep 2021; 9:e14662. [PMID: 33433056 PMCID: PMC7802192 DOI: 10.14814/phy2.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity and type 2 diabetes has increased substantially in recent years creating a global health burden. In obesity, skeletal muscle, the main tissue responsible for insulin-mediated glucose uptake, exhibits dysregulation of insulin signaling, glucose uptake, lipid metabolism, and mitochondrial function, thus, promoting type 2 diabetes. The phospholipase A2 (PLA2) enzyme family mediates lipid signaling and membrane remodeling and may play an important role in metabolic disorders such as obesity, diabetes, hyperlipidemia, and fatty liver disease. The PLA2 family consists of 16 members clustered in four groups. PLA2s hydrolyze the sn-2 ester bond of phospholipids generating free fatty acids and lysophospholipids. Differential tissue and subcellular PLA2 expression patterns and the abundance of distinct fatty acyl groups in the target phospholipid determine the impact of individual family members on metabolic functions and, potentially, diseases. Here, we update the current knowledge of the role of the PLA2 family in skeletal muscle, with a view to their potential for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
- Iris Prunonosa Cervera
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Brendan M. Gabriel
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
- Department of Physiology and PharmacologyIntegrative PhysiologyKarolinska InstituteStockholmSweden
- Aberdeen Cardiovascular & Diabetes CentreThe Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Peter Aldiss
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicholas M. Morton
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
11
|
Xu A, Shang W, Wang Y, Sun X, Zhou B, Xie Y, Xu X, Liu T, Han F. ALA protects against ERS-mediated apoptosis in a cochlear cell model with low citrate synthase expression. Arch Biochem Biophys 2020; 688:108402. [PMID: 32418909 DOI: 10.1016/j.abb.2020.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023]
Abstract
A/J mouse is a model of age-related hearing loss (AHL). Mutation in the citrate synthase (Cs) gene of the mouse plays an important role in the hearing loss and degeneration of cochlear cells. To investigate the pathogenesis of cochlear cell damage in A/J mice resulted from Cs mutation, we downregulated the expression level of CS in HEI-OC1, a cell line of mouse cochlea, by shRNA. The results showed that low CS expression led to low ability of cell proliferation. Further study revealed an increase level of reactive oxygen species (ROS), activation of ATF6 mediated endoplasmic reticulum stress (ERS) and high expression levels of caspase12 and Bax in the cells. Moreover, the AEBSF, an ATF6 inhibitor, could reduce the expression levels of caspase-12 and Bax by inhibiting the hydrolysis of ATF6 in the cells. Finally, antioxidant alpha-lipoic acid (ALA) reduced the ROS levels and the apoptotic signals in the cell model with low CS expression. We therefore conclude that the ERS mediated apoptosis, which is triggered by ROS, may be involved in the cell degeneration in the cochleae of A/J mice.
Collapse
Affiliation(s)
- Ang Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Xiumei Sun
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Bingxin Zhou
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Xiaowen Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Tingyan Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
12
|
Shang H, Xia Z, Bai S, Zhang HE, Gu B, Wang R. Downhill Running Acutely Elicits Mitophagy in Rat Soleus Muscle. Med Sci Sports Exerc 2020; 51:1396-1403. [PMID: 30649103 DOI: 10.1249/mss.0000000000001906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate the effects of downhill treadmill running on mitochondrial structure/function and expression levels of mitophagy-related proteins in rat skeletal muscle. METHODS A total of 48 male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and an exercise group (E, n = 40). Rats in the E group were exercised on a treadmill down a 16° decline at 16 m·min for 90 min and were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48), and 72 h (E72) postexercise subgroups (n = 8 each). At each time point, the soleus muscle was collected under full anesthesia. Mitochondrial ultrastructural changes in skeletal muscle were observed by a transmission electron microscope. The content of quantitative enzyme citrate synthase and the activities of mitochondrial respiratory chain complex II and complex IV were measured by enzyme-linked immunosorbent assay. Protein expressions of skeletal muscle cytochrome c oxidase subunit 1 (COX1), PTEN-induced putative kinase 1 (PINK1), and mitochondrial Parkin microtubule-associated protein 1 light chain 3 (LC3) were determined by Western blot. Mitochondrial colocalizations with Parkin, ubiquitin (Ub), p62/sequestosome 1 (p62), and LC3 were measured by the immunofluorescence double labeling technique. RESULTS After downhill treadmill running, the skeletal muscle mitochondrial structure changed dramatically, and a large amount of mitophagosomes were observed; the citrate synthase content and complex II activity were significantly lower (P < 0.05), whereas complex IV activity and COX1 protein level remained unchanged; the expression levels of PINK1, Parkin, Ub, p62, and LC3 were significantly higher than those in the C group (P < 0.05 or P < 0.01). CONCLUSION A session of downhill treadmill running activated the PINK1/Parkin pathway and facilitated mitochondrial colocalizations with Ub, p62, and LC3, causing mitophagy and mitochondrial damage within the skeletal muscle.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, CHINA.,College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, CHINA
| | - Shengchao Bai
- College of Sports Science, Beijing Sport University, Beijing, CHINA.,Department of Physical Education, Nanjing University of Science and Technology, Nanjing, CHINA
| | - H E Zhang
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Boya Gu
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Ruiyuan Wang
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
13
|
Ge YD, Jiang LL, Hou SL, Su FZ, Wang P, Zhang G. Heteroexpression and biochemical characterization of thermostable citrate synthase from the cyanobacteria Anabaena sp. PCC7120. Protein Expr Purif 2019; 168:105565. [PMID: 31887428 DOI: 10.1016/j.pep.2019.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
Abstract
The present study recombinantly expressed a citrate synthase from cyanobacteria Anabaena sp. PCC7120 (AnCS) in Escherichia coli and characterized its enzymatic activity. The molecular mass of native AnCS was 88,533.1 Da containing two 44,162.7 Da subunits. Recombinant AnCS revealed the highest activity at pH 9.0 and 25 °C. AnCS displayed high thermal stability with a half-life time (t1/2) of approximately 6.5 h at 60 °C, which was more thermostable than most CS from general organisms, but less than those from hyperthermophilic bacteria. The Km values of oxaloacetate and acetyl-CoA were 138.50 and 18.15 μM respectively, suggesting a higher affinity to acetyl-CoA than oxaloacetate. Our inhibition assays showed that AnCS activity was not severely affected by most metal ions, but was strongly inhibited by Cu2+ and Zn2+. Treatments with ATP, ADP, AMP, NADH, and DTT depressed the AnCS activity. Overall, our results provide information on the enzymatic properties of AnCS, which contributes to the basic knowledge on CS selection for industrial utilizations.
Collapse
Affiliation(s)
- Ya-Dong Ge
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Lu-Lu Jiang
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shao-Lin Hou
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Feng-Zhi Su
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Peng Wang
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited, Shenzhen, 518000, China.
| |
Collapse
|
14
|
Ge YD, Hou SL, Jiang LL, Su FZ, Wang P. Expression and characterization of a thermostable citrate synthase from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett 2019; 366:5637861. [PMID: 31755935 DOI: 10.1093/femsle/fnz236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Citrate synthase (CS) is an important enzyme in energy conversion and material circulation, participating in many important biochemical processes. In the present study, CS from Microcystis aeruginosa PCC7806 (MaCS) was cloned and expressed in Escherichia coli Rosetta (DE3). The recombinant MaCS was purified and its enzymological properties were characterized. The results showed that MaCS formed dimers in native status. The optimum temperature and pH of MaCS was 30°C and 8.2, respectively. MaCS displayed relative high thermal stability. Treatment at 50°C for 20 min only decreased 11.30% activity of MaCS and the half-life of MaCS was approximately 35 min at 55°C. The kcat and Km of acetyl-CoA and oxaloacetic acid were 17.133 s-1 (kcat) and 11.62 μM (Km), 24.502 s-1 and 103.00 μM, respectively. MaCS activity was not drastically inhibited by monovalent ions and NADH but depressed by divalent ions and some small molecular compounds, especially Mg2+, Zn2+, Co2+ and DTT. Overall, these data contributed to further understanding of energy metabolism in cyanobacteria and also provided basic information for industrial application of CS.
Collapse
Affiliation(s)
- Ya-Dong Ge
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shao-Lin Hou
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lu-Lu Jiang
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Feng-Zhi Su
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Peng Wang
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
15
|
Wang T, Zhang X, Feng L, Xu L, Xue J, Yi S, Yu Y, Zhai J. Ubiquinone Ameliorates Simvastatin Induced Respiratory Chain Complex Function Impairment in High‐Fat High‐Cholesterol Diet Fed Mice. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Wang
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| | - Xiaoli Zhang
- Center Hospital of Taian cityTaianShandong271000China
| | - Lei Feng
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
| | - Lei Xu
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
- People's Hospital of ChengyangQingdao266000China
| | - Jing Xue
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebei050000China
| | - Shuying Yi
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
| | - Jing Zhai
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| |
Collapse
|
16
|
Low Citrate Synthase Activity Is Associated with Glucose Intolerance and Lipotoxicity. J Nutr Metab 2019; 2019:8594825. [PMID: 30944739 PMCID: PMC6421790 DOI: 10.1155/2019/8594825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/12/2019] [Indexed: 11/18/2022] Open
Abstract
Citrate synthase (CS) is a key mitochondrial enzyme. The aim of this study was to test the hypothesis that low CS activity impairs the metabolic health of mice fed a high fat diet (HFD) and promotes palmitate-induced lipotoxicity in muscle cells. C57BL/6J (B6) mice and congenic B6.A-(rs3676616-D10Utsw1)/KjnB6 (B6.A), a strain which carries the A/J allele of CS on the B6 strain background, were fed HFD (45% kcal from fat) for 12 weeks. C2C12 mouse muscle cells were used to investigate effects of CS knockdown on cell viability and signalling after incubation in 0.8 mM palmitate. CS activity, but not that of β-hydroxyacyl-coenzyme-A dehydrogenase was lower in the gastrocnemius muscle and heart of B6.A mice compared to B6 mice (P < 0.001). During HFD feeding, glucose tolerance of mice decreased progressively and to a greater extent in B6.A females compared to B6 females, with males showing a similar trend. Body weight and fat gain did not differ between B6.A and B6 mice. After an 18 h incubation in 0.8 mM palmitate C2C12 muscle cells with ∼50% shRNA mediated reduction in CS activity showed lower (P < 0.001) viability and increased (P < 0.001) levels of cleaved caspase-3 compared to the scramble shRNA treated C2C12 cells. A/J strain variant of CS is associated with low enzyme activity and impaired metabolic health. This could be due to impaired lipid metabolism in muscle cells.
Collapse
|