1
|
Wei X, Liu Z, Shen Y, Dong H, Chen K, Shi X, Chen Y, Wang B, Dong S. Semaphorin4A promotes lung cancer by activation of NF-κB pathway mediated by PlexinB1. PeerJ 2023; 11:e16292. [PMID: 37901456 PMCID: PMC10607275 DOI: 10.7717/peerj.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background Lung cancer (LC) is the most prevalent cancer with a poor prognosis. Semaphorin4A (Sema4A) is important in many physiological and pathological processes. This study aimed to explore the role and mechanism of Sema4A in LC. Methods Firstly, Sema4A expression was analyzed by the available dataset and detected in human normal bronchial epithelial cell line (HBE) and LC cell line (NCI-H460). Then, LC cells were transfected with Sema4A siRNA, and the cells were stimulated by PlexinB1, PlexinB2, PlexinD1 blocking antibodies, IgG antibody, BAY 11-7082 (an inhibitor for NF-κB pathway) and Sema4A-Fc protein, alone or in combination. After transfection, PlexinB1 mRNA expression was analyzed. Next, the biological functions, including proliferative, migratory, invasive abilities and viability of the cells were detected by colony formation, scratch, Transwell and MTT assays, respectively. NF-κB, Stat3 and MAPK protein expressions were determined by western blot. Furthermore, the secretion of IL-6 in LC cells was tested by ELISA. Results Sema4A was highly expressed in LC tissues and cells, could activate the NF-κB pathway and upregulate PlexinB1 mRNA expression. Furthermore, we observed that Sema4A knockdown suppressed the biological functions of NCI-H460 cells, while Sema4A-Fc protein reversed the situation. However, Sema4A-induced biological functions and activation in the NF-κB pathway were inhibited by PlexinB1 blocking antibody. Consistently, Sema4A promoted IL-6 production, which was down-regulated by PlexinB1 blocking antibody and BAY 11-7082. Conclusions Sema4A may facilitate LC development via the activation of the NF-κB pathway mediated by PlexinB1, suggesting that Sema4A would be a novel therapeutic target for LC treatment.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Zhili Liu
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu, China
| | - Yili Shen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Hui Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Kai Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Yi Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Shunli Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Shorning B, Trent N, Griffiths DF, Worzfeld T, Offermanns S, Smalley MJ, Williamson M. Plexin-B1 Mutation Drives Metastasis in Prostate Cancer Mouse Models. CANCER RESEARCH COMMUNICATIONS 2023; 3:444-458. [PMID: 36936664 PMCID: PMC10019359 DOI: 10.1158/2767-9764.crc-22-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Metastatic prostate cancer is essentially incurable and is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We show here that prostate epithelial cell-specific expression of a mutant form of Plexin-B1 (P1597L) which was identified in metastatic deposits in patients with prostate cancer, significantly increases metastasis, in particular metastasis to distant sites, in two transgenic mouse models of prostate cancer (PbCre+Ptenfl /flKrasG12V and PbCre+Ptenfl /flp53fl/ fl ). In contrast, prostate epithelial cell-specific expression of wild-type (WT) Plexin-B1 in PbCre+Ptenfl /flKrasG12V mice significantly decreases metastasis, showing that a single clinically relevant Pro1597Leu amino-acid change converts Plexin-B1 from a metastasis-suppressor to a metastasis-promoter. Furthermore, PLXNB1P1597L significantly increased invasion of tumor cells into the prostate stroma, while PLXNB1WT reduced invasion, suggesting that Plexin-B1 has a role in the initial stages of metastasis. Deletion of RhoA/C or PDZRhoGEF in Ptenfl /flKrasG12VPLXNB1P1597L mice suppressed metastasis, implicating the Rho/ROCK pathway in this phenotypic switch. Germline deletion of Plexin-B1, to model anti-Plexin-B1 therapy, significantly decreased invasion and metastasis in both models. Our results demonstrate that Plexin-B1 plays a complex yet significant role in metastasis in mouse models of prostate cancer and is a potential therapeutic target to block the lethal spread of the disease. Significance Few therapeutic targets have been identified specifically for preventing locally invasive/oligometastatic prostate cancer from becoming more widely disseminated. Our findings suggest Plexin-B1 signaling, particularly from the clinically relevant P1597L mutant, is such a target.
Collapse
Affiliation(s)
- Boris Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Neil Trent
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - David F. Griffiths
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, United Kingdom
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg, Germany
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Corresponding Author: Magali Williamson, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, United Kingdom. Phone: 4402-0784-86418; E-mail:
| |
Collapse
|
3
|
Kumar A, Mishra S, Kumar A, Raut AA, Sato S, Takaoka A, Kumar H. Essential role of Rnd1 in innate immunity during viral and bacterial infections. Cell Death Dis 2022; 13:520. [PMID: 35654795 PMCID: PMC9161769 DOI: 10.1038/s41419-022-04954-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Intracellular and cell surface pattern-recognition receptors (PRRs) are an essential part of innate immune recognition and host defense. Here, we have compared the innate immune responses between humans and bats to identify a novel membrane-associated protein, Rnd1, which defends against viral and bacterial infection in an interferon-independent manner. Rnd1 belongs to the Rho GTPase family, but unlike other small GTPase members, it is constitutively active. We show that Rnd1 is induced by pro-inflammatory cytokines during viral and bacterial infections and provides protection against these pathogens through two distinct mechanisms. Rnd1 counteracts intracellular calcium fluctuations by inhibiting RhoA activation, thereby inhibiting virus internalisation. On the other hand, Rnd1 also facilitates pro-inflammatory cytokines IL-6 and TNF-α through Plxnb1, which are highly effective against intracellular bacterial infections. These data provide a novel Rnd1-mediated innate defense against viral and bacterial infections.
Collapse
Affiliation(s)
- Akhilesh Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shalabh Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashish Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.27860.3b0000 0004 1936 9684Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA USA
| | - Ashwin Ashok Raut
- grid.506025.40000 0004 5997 407XPathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Seiichi Sato
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.136593.b0000 0004 0373 3971WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Van Battum E, Heitz-Marchaland C, Zagar Y, Fouquet S, Kuner R, Chédotal A. Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. eLife 2021; 10:60554. [PMID: 34100719 PMCID: PMC8211449 DOI: 10.7554/elife.60554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific Plxnb2 conditional knockout mice. We show that proliferating CGNs in Plxnb2 mutants not only escape the oEGL and mix with newborn postmitotic CGNs. Furthermore, motility of mitotic precursors and early postmitotic CGNs is altered. Together, this leads to the formation of ectopic patches of CGNs at the cerebellar surface and an intermingling of normally time-stamped parallel fibers in the molecular layer (ML), and aberrant arborization of Purkinje cell dendrites. There results suggest that Plexin-B2 restricts CGN motility and might have a function in cytokinesis.
Collapse
Affiliation(s)
- Eljo Van Battum
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
6
|
Ge X, Chen L, Li D, Liu R, Ge G. Estimation of non-constant variance in isothermal titration calorimetry using an ITC measurement model. PLoS One 2020; 15:e0244739. [PMID: 33378411 PMCID: PMC7773272 DOI: 10.1371/journal.pone.0244739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Isothermal titration calorimetry (ITC) is the gold standard for accurate measurement of thermodynamic parameters in solution reactions. In the data processing of ITC, the non-constant variance of the heat requires special consideration. The variance function approach has been successfully applied in previous studies, but is found to fail under certain conditions in this work. Here, an explicit ITC measurement model consisting of main thermal effects and error components has been proposed to quantitatively evaluate and predict the non-constant variance of the heat data under various conditions. Monte Carlo simulation shows that the ITC measurement model provides higher accuracy and flexibility than variance function in high c-value reactions or with additional error components, for example, originated from the fluctuation of the concentrations or other properties of the solutions. The experimental design of basic error evaluation is optimized accordingly and verified by both Monte Carlo simulation and experiments. An easy-to-run Python source code is provided to illustrate the establishment of the ITC measurement model and the estimation of heat variances. The accurate and reliable non-constant variance of heat is helpful to the application of weighted least squares regression, the proper evaluation or selection of the reaction model.
Collapse
Affiliation(s)
- Xiujie Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
- * E-mail: (DL); (GG)
| | - Renxiao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
- * E-mail: (DL); (GG)
| |
Collapse
|
7
|
Zhang Y, Shen S, Li P, Fan Y, Zhang L, Li W, Liu Y. PLEXIN-B2 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the RhoA signaling pathway. Cell Signal 2019; 62:109343. [PMID: 31176746 DOI: 10.1016/j.cellsig.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 01/07/2023]
Abstract
Plexin-B2 (PLXNB2), a transmembrane protein is found in various tissues. Recent studies have indicated the presence of PLXNB2 in large quantity in the growth plates of Sprague-Dawley rats and are believed to be potentially involved in their skeletal development. This study endeavored to analyze the effect of PLXNB2 on the osteogenic differentiation of BMSCs by using gene overexpression and knockdown assays. The results of our study revealed that PLXNB2 was upregulated during BMSCs differentiation into an osteoblastic lineage. By determining the expression levels of specific markers and mineral deposition, the study established that PLXNB2 promotes the osteogenic differentiation of human BMSCs through the activation of the RhoA signaling pathway. In conclusion, the study identified PLXNB2 as a novel regulator that enhanced the osteogenic differentiation of human BMSCs. The enhancing effect of PLXNB2 on osteogenesis of human BMSCs was mediated through activation of RhoA signaling. The results of our study imply that pharmacological targeting of PLXNB2 may initiate a possible improvement in bone formation.
Collapse
Affiliation(s)
- Ying Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Sheng Shen
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Peifeng Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Yanan Fan
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Leilei Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Wuyin Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China.
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China.
| |
Collapse
|
8
|
Zou L, Zhang J, Han J, Li W, Su F, Xu X, Zhai Z, Xiao F. cGMP interacts with tropomyosin and downregulates actin-tropomyosin-myosin complex interaction. Respir Res 2018; 19:201. [PMID: 30314482 PMCID: PMC6186101 DOI: 10.1186/s12931-018-0903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background The nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway, plays a critical role in the pathogenesis of pulmonary arterial hypertension (PAH); however, its exact molecular mechanism remains undefined. Methods Biotin-cGMP pull-down assay was performed to search for proteins regulated by cGMP. The interaction between cGMP and tropomyosin was analyzed with antibody dependent pull-down in vivo. Tropomyosin fragments were constructed to explore the tropomyosin-cGMP binding sites. The expression level and subcellular localization of tropomyosin were detected with Real-time PCR, Western blot and immunofluorescence assay after the 8-Br-cGMP treatment. Finally, isothermal titration calorimetry (ITC) was utilized to detect the binding affinity of actin-tropomyosin-myosin in the existence of cGMP-tropomyosin interaction. Results cGMP interacted with tropomyosin. Isoform 4 of TPM1 gene was identified as the only isoform expressed in the human pulmonary artery smooth muscle cells (HPASMCs). The region of 68-208aa of tropomyosin was necessary for the interaction between tropomyosin and cGMP. The expression level and subcellular localization of tropomyosin showed no change after the stimulation of NO-sGC-cGMP pathway. However, cGMP-tropomyosin interaction decreased the affinity of tropomyosin to actin. Conclusions We elucidate the downstream signal pathway of NO-sGC-cGMP. This work will contribute to the detection of innovative targeted agents and provide novel insights into the development of new therapies for PAH.
Collapse
Affiliation(s)
- Lihui Zou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Junhua Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Jingli Han
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Wenqing Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Fei Su
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Xiaomao Xu
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Zhenguo Zhai
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Fei Xiao
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China.
| |
Collapse
|
9
|
Amado-Azevedo J, de Menezes RX, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL. A functional siRNA screen identifies RhoGTPase-associated genes involved in thrombin-induced endothelial permeability. PLoS One 2018; 13:e0201231. [PMID: 30048510 PMCID: PMC6062096 DOI: 10.1371/journal.pone.0201231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Thrombin and other inflammatory mediators may induce vascular permeability through the disruption of adherens junctions between adjacent endothelial cells. If uncontrolled, hyperpermeability leads to an impaired barrier, fluid leakage and edema, which can contribute to multi-organ failure and death. RhoGTPases control cytoskeletal dynamics, adhesion and migration and are known regulators of endothelial integrity. Knowledge of the precise role of each RhoGTPase, and their associated regulatory and effector genes, in endothelial integrity is incomplete. Using a combination of a RNAi screen with electrical impedance measurements, we quantified the effect of individually silencing 270 Rho-associated genes on the barrier function of thrombin-activated, primary endothelial cells. Known and novel RhoGTPase-associated regulators that modulate the response to thrombin were identified (RTKN, TIAM2, MLC1, ARPC1B, SEPT2, SLC9A3R1, RACGAP1, RAPGEF2, RHOD, PREX1, ARHGEF7, PLXNB2, ARHGAP45, SRGAP2, ARHGEF5). In conclusion, with this siRNA screen, we confirmed the roles of known regulators of endothelial integrity but also identified new, potential key players in thrombin-induced endothelial signaling.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Renee X. de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Victor W. M. van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|