1
|
Gunasekera S, Thierry B, King B, Monis P, Carr JM, Chopra A, Watson M, O’Dea M, Cheah E, Ram R, Clode PL, Hijjawi N, Ryan U. Microphysiological gut-on-chip enables extended in vitro development of Cryptosporidium hominis. Front Cell Infect Microbiol 2025; 15:1564806. [PMID: 40343058 PMCID: PMC12058726 DOI: 10.3389/fcimb.2025.1564806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Cryptosporidium hominis is the dominant Cryptosporidium species infecting humans, but most advances in developing robust in vitro culturing platforms for Cryptosporidium have utilised C. parvum. Consequently, there is relatively little available information specific to the biology and life cycle of C. hominis. The present study utilised a pumpless and tubeless gut-on-chip to generate a physiologically relevant in vitro environment by applying a constant fluid shear stress of 0.02 dyn cm-2 to HCT-8 cells. Methods Gut-on-chips were fabricated using standard soft lithography. C. hominis oocysts isolated from human pathology samples were used to infect the human ileocecal colorectal adenocarcinoma (HCT-8) cell line under a constant fluid shear stress of 0.02 dyn cm-2. Parasite growth was assessed using a C. hominis-specific quantitative PCR, a Cryptosporidium genus-specific immunofluorescence assay, and scanning electron microscopy. Differences in the HCT-8 transcriptome with and without fluid shear stress, and the host-parasite interaction, were both assessed using bulk transcriptomics. Results Transcriptomic analysis of the HCT-8 cell line cultured within the gut-on-chip demonstrated a metabolic shift towards oxidative phosphorylation when compared to the same cell line cultured under static conditions. Extended C. hominis (subtype IdA15G1) cultures were sustained for up to 10 days within the gut-on-chip as shown by a C. hominis-specific qPCR and a Cryptosporidium genus-specific immunofluorescence assay, which demonstrated ~30-fold amplification in the gut-on-chip over the duration of the experiment. Scanning electron microscopy of infected monolayers identified trophozoites, meronts, merozoites, macrogamonts, microgamonts, and possible gamont-like stages at 48 h post-infection. The potential role of gamonts in the Cryptosporidium life cycle remains unclear and warrants further investigation. Transcriptomes of HCT-8 cells infected with C hominis revealed upregulation of biological processes associated with cell cycle regulation and cell signalling in C. hominis-infected cells under fluid shear stress compared to static culture. Conclusions These data demonstrate that bioengineered gut-on-chip models support extended C. hominis growth and can be used to interrogate responses of host cells to infection. Owing to its relative simplicity, the pumpless and tubeless gut-on-chip can be accessible to most laboratories with established HCT-8 infection models for Cryptosporidium culture.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Brendon King
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA, Australia
| | - Jillian M. Carr
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Mark O’Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Edward Cheah
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Ramesh Ram
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation, and Analysis and School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Ma M, Zhang Y, Fang Y, Lu Y, Huang H, Zeng Z, Zeng D. Pharmacokinetics and tissue distribution of LN002, a new compound alternative oxidase inhibitor against Cryptosporidium in rats. Front Pharmacol 2024; 15:1413872. [PMID: 39148541 PMCID: PMC11325084 DOI: 10.3389/fphar.2024.1413872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Cryptosporidiosis is considered a crucial zoonotic disease caused by widely distributing parasitic protozoa called Cryptosporidium spp. Nitazoxanide is the only FDA-approved drug but is only effective with a good immune response of the host. In addressing this unmet medical need, we previously identified a compound, namely, LN002, as a potent alternative oxidase inhibitor against cryptosporidiosis. To illustrate the pharmacokinetics, absolute bioavailability, and tissue distribution of LN002 in rats, rapid and sensitive high-performance liquid chromatography was developed and validated for the separation and detection of LN002 in plasma, tissue samples, and intestinal contents. In this study, a single dose of oral administration and intravenous injection of LN002 was used to determine the levels of LN002 in plasma, tissue samples, and intestinal contents by UHLC. Results of the study indicated that after intravenous administration of 1 mg/kg LN002, the AUC0-24 h, T1/2,Vd, and Cl were 7024.86 h·ng/mL, 10.91 h, 1.69 L/kg, and 0.11 L/h/kg, respectively. After oral administration of a single dosage of 100, 200, and 400 mg/kg LN002, the Tmax, Cmax, AUC0-24 h, T1/2, F, Vd, and Cl/F in plasma of rats were 1 h, 849.88-4033.21 ng/mL, 2280.41-7498.10 h·ng/mL, 17.96-18.83 h, 0.27%-0.32%, 581.54-869.21 L/kg, and 25.97-39.00 L/h/kg, respectively. After oral administration of 200 mg/kg, LN002 was extensively distributed in the main tissues of rats, and massive amounts of LN002 were distributed in the intestine and intestinal contents, indicating its potential as an effective anti-Cryptosporidium compound. After oral administration of a single dosage of 200 mg/kg, LN002 has a low bioavailability and high levels in the intestine, which is crucial for the safe and effective treatment of cryptosporidiosis. Overall, the results of this study provide valuable data support for the future study of LN002.
Collapse
Affiliation(s)
- Minglang Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yongxiang Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yanjun Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huiguo Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety. Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal. Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Khan SM, Witola WH. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Front Cell Infect Microbiol 2023; 13:1115522. [PMID: 36761902 PMCID: PMC9902888 DOI: 10.3389/fcimb.2023.1115522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan parasite of the genus Cryptosporidium is among the leading causes of waterborne diarrheal disease outbreaks throughout the world. The parasite is transmitted by ingestion of infective oocysts that are highly stable in the environment and resistant to almost all conventional disinfection methods and water treatments. Control of the parasite infection is exceedingly difficult due to the excretion of large numbers of oocysts in the feces of infected individuals that contaminate the environment and serve as a source of infection for susceptible hosts including humans and animals. Drug development against the parasite is challenging owing to its limited genetic tractability, absence of conventional drug targets, unique intracellular location within the host, and the paucity of robust cell culture platforms for continuous parasite propagation. Despite the high prevalence of the parasite, the only US Food and Drug Administration (FDA)-approved treatment of Cryptosporidium infections is nitazoxanide, which has shown moderate efficacy in immunocompetent patients. More importantly, no effective therapeutic drugs are available for treating severe, potentially life-threatening cryptosporidiosis in immunodeficient patients, young children, and neonatal livestock. Thus, safe, inexpensive, and efficacious drugs are urgently required to reduce the ever-increasing global cryptosporidiosis burden especially in low-resource countries. Several compounds have been tested for both in vitro and in vivo efficacy against the disease. However, to date, only a few experimental compounds have been subjected to clinical trials in natural hosts, and among those none have proven efficacious. This review provides an overview of the past and present anti-Cryptosporidium pharmacotherapy in humans and agricultural animals. Herein, we also highlight the progress made in the field over the last few years and discuss the different strategies employed for discovery and development of effective prospective treatments for cryptosporidiosis.
Collapse
|
4
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
5
|
A Bioinformatics Approach to Identifying Potential Biomarkers for Cryptosporidium parvum: A Coccidian Parasite Associated with Fetal Diarrhea. Vaccines (Basel) 2021; 9:vaccines9121427. [PMID: 34960172 PMCID: PMC8705633 DOI: 10.3390/vaccines9121427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023] Open
Abstract
Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can give us a snapshot of actively expressed genes and transcripts under infection conditions. In the present study, we have analyzed microarray data sets and compared the gene expression profiles of the patients with the different data sets of the healthy control. Using a network medicine approach to identify the most influential genes in the gene interaction network, we uncovered essential genes and pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up- and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The results underpin the identification of seven significant hub genes with high centrality values: ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with diverse biological processes not limited to host interaction, type 1 interferon production, or response to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell signaling. In conclusion, these results reinforce the development and implementation of tools based on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage.
Collapse
|
6
|
Absorption and Distribution of Toltrazuril and Toltrazuril Sulfone in Plasma, Intestinal Tissues and Content of Piglets after Oral or Intramuscular Administration. Molecules 2021; 26:molecules26185633. [PMID: 34577103 PMCID: PMC8468611 DOI: 10.3390/molecules26185633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Piglet coccidiosis due to Cystoisospora suis is a major cause of diarrhea and poor growth worldwide. It can effectively be controlled by application of toltrazuril (TZ), and oral formulations have been licensed for many years. Recently, the first parenteral formulation containing TZ in combination with iron (gleptoferron) was registered in the EU for the prevention of coccidiosis and iron deficiency anemia, conditions in suckling piglets requiring routine preventive measures. This study evaluated the absorption and distribution of TZ and its main metabolite, toltrazuril sulfone (TZ-SO2), in blood and intestinal tissues after single oral (20 mg/kg) or single intramuscular (45 mg/piglet) application of TZ. Fifty-six piglets were randomly allocated to the two treatment groups. Animals were sacrificed 1-, 5-, 13-, and 24-days post-treatment and TZ and TZ-SO2 levels were determined in blood, jejunal tissue, ileal tissue, and mixed jejunal and ileal content (IC) by high performance liquid chromatography (HPLC). Intramuscular application resulted in significantly higher and more sustained concentrations of both compounds in plasma, intestinal tissue, and IC. Higher concentrations after oral dosing were only observed one day after application of TZ in jejunum and IC. Toltrazuril was quickly metabolized to TZ-SO2 with maximum concentrations on day 13 for both applications. Remarkably, TZ and TZ-SO2 accumulated in the jejunum, the primary predilection site of C. suis, independently of the administration route, which is key to their antiparasitic effect.
Collapse
|
7
|
Diawara EH, François A, Stachulski AV, Razakandrainibe R, Costa D, Favennec L, Rossignol JF, Gargala G. Systemic efficacy on Cryptosporidium parvum infection of aminoxanide (RM-5061), a new amino-acid ester thiazolide prodrug of tizoxanide. Parasitology 2021; 148:975-984. [PMID: 33775260 PMCID: PMC11010128 DOI: 10.1017/s0031182021000524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/13/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Cryptosporidiosis is a gastrointestinal illness with profuse diarrhoea. Although there are no other Food and Drug Administration (FDA)-approved alternatives for the treatment of cryptosporidiosis, nitazoxanide (NTZ) can be qualified as partially effective. In immunosuppressed conditions, severe and/or disseminated cryptosporidiosis may occur and patients should be treated parenterally. To achieve the goal of developing parenteral treatment for cryptosporidiosis, the current study was undertaken to investigate the in vitro and in vivo anticryptosporidial activity of aminoxanide. This new l-tert-leucyl thiazolide is a soluble prodrug of tizoxanide (TIZ), the main metabolite of NTZ. Confirming the good efficacy of aminoxanide in Cryptosporidium parvum-infected HCT-8 cells with a 50% inhibitory concentration of 1.55 μm (±0.21), in immunosuppressed C. parvum-infected Mongolian gerbils (Meriones unguiculatus), a 5-day treatment with a daily intramuscular dose of 100 mg kg−1 aminoxanide resulted in a 72.5% oocyst excretion inhibition, statistically equivalent to 75.5% in gerbils treated with a 4-fold lower oral dose of NTZ. Cryptosporidium parvum-induced intestinal pathology and inflammation were improved. Aminoxanide provides an injectable form of TIZ that NTZ was unable to do and is a promising drug for which optimization of the formulation should be further explored. These results represent a first promising step towards the goal of developing a parenteral treatment for cryptosporidiosis.
Collapse
Affiliation(s)
- El Hadji Diawara
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Arnaud François
- Laboratoire d'Anatomo-Pathologie, Rouen University Hospital, Rouen, France
| | - Andrew V. Stachulski
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, UK
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Damien Costa
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | | | - Gilles Gargala
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| |
Collapse
|
8
|
Omolabi KF, Agoni C, Olotu FA, Soliman MES. Molecular Basis of P131 Cryptosporidial-IMPDH Selectivity-A Structural, Dynamical and Mechanistic Stance. Cell Biochem Biophys 2020; 79:11-24. [PMID: 33058015 DOI: 10.1007/s12013-020-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2020] [Indexed: 01/10/2023]
Abstract
Cryptosporidiosis accounts for a surge in infant (<5 years) mortality and morbidity. To date, several drug discovery efforts have been put in place to develop effective therapeutic options against the causative parasite. Based on a recent report, P131 spares inosine monophosphate dehydrogenase (IMPDH) in a eukaryotic model (mouse IMPDH (mIMPDH)) while binding selectively to the NAD+ site in Cryptosporidium parvum (CpIMPDH). However, no structural detail exists on the underlining mechanisms of P131-CpIMPDH selective targeting till date. To this effect, we investigate the selective inhibitory dynamics of P131 in CpIMPDH relative to mIMPDH via molecular biocomputation methods. Pairwise sequence alignment revealed prominent variations at the NAD+ binding regions of both proteins that accounted for disparate P131 binding activities. The influence of these variations was further revealed by the MM/PBSA energy estimations coupled with per-residue energy decomposition which monitored the systematic binding of the compound. Furthermore, relative high-affinity interactions occurred at the CpIMPDH NAD+ site which were majorly mediated by SER22, VAL24, PRO26, SER354, GLY357, and TYR358 located on chain D. These residues are unique to the parasite IMPDH form and not in the eukaryotic protein, highlighting variations that account for preferential P131 binding. Molecular insights provided herein corroborate previous experimental reports and further underpin the basis of CpIMPDH inhibitor selectivity. Findings from this study could present attractive prospects toward the design of novel anticryptosporidials with improved selectivity and binding affinity against parasitic targets.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
9
|
Walsh DJ, Livinghouse T, Durling GM, Chase-Bayless Y, Arnold AD, Stewart PS. Sulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilms. ACS OMEGA 2020; 5:6010-6020. [PMID: 32226882 PMCID: PMC7098047 DOI: 10.1021/acsomega.9b04392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.
Collapse
Affiliation(s)
- Danica J Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Greg M Durling
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Yenny Chase-Bayless
- Fish and Wildlife, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne D Arnold
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Lee S, Ginese M, Girouard D, Beamer G, Huston CD, Osbourn D, Griggs DW, Tzipori S. Piperazine-Derivative MMV665917: An Effective Drug in the Diarrheic Piglet Model of Cryptosporidium hominis. J Infect Dis 2020; 220:285-293. [PMID: 30893435 DOI: 10.1093/infdis/jiz105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cryptosporidiosis, an enteric protozoon, causes substantial morbidity and mortality associated with diarrhea in children <2 years old in low- to middle-income countries. There is no vaccine and treatments are inadequate. A piperazine-based compound, MMV665917, has in vitro and in vivo efficacy against Cryptosporidium parvum. In this study, we evaluated the efficacy of MMV665917 in gnotobiotic piglets experimentally infected with Cryptosporidium hominis, the species responsible for >75% of diarrhea reported in these children. METHODS Gnotobiotic piglets were orally challenged with C hominis oocysts, and oral treatment with MMV665917 was commenced 3 days after challenge. Oocyst excretion and diarrhea severity were observed daily, and mucosal colonization and lesions were recorded after necropsy. RESULTS MMV665917 significantly reduced fecal oocyst excretion, parasite colonization and damage to the intestinal mucosa, and peak diarrheal symptoms, compared with infected untreated controls. A dose of 20 mg/kg twice daily for 7 days was more effective than 10 mg/kg. There were no signs of organ toxicity at either dose, but 20 mg/kg was associated with slightly elevated blood cholesterol and monocytes at euthanasia. CONCLUSIONS These results demonstrate the effectiveness of this drug against C hominis. Piperazine-derivative MMV665917 may potentially be used to treat human cryptosporidiosis; however, further investigations are required.
Collapse
Affiliation(s)
- Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Don Girouard
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Christopher D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| | - Damon Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| |
Collapse
|
11
|
Pielok Ł, Nowak S, Kłudkowska M, Frąckowiak K, Kuszel Ł, Zmora P, Stefaniak J. Massive Cryptosporidium infections and chronic diarrhea in HIV-negative patients. Parasitol Res 2019; 118:1937-1942. [PMID: 30976968 PMCID: PMC6520477 DOI: 10.1007/s00436-019-06302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Protozoa of the genus Cryptosporidium are common parasites of domestic and wild animals—mammals, birds, reptiles, and fishes. The invasive forms are thick-walled oocysts, which can be present in water supplies, on fruits, vegetables, or in the soil contaminated with feces. In this work, we describe three cases of middle-aged persons with massive Cryptosporidium hominis infection and chronic diarrhea with no immunological abnormalities and no history of previous travels to tropical countries. The lesions discovered during colonoscopy within the large intestine–cryptitis and the histopathological changes were related to massive cryptosporidiosis. All these statements indicate necessity of parasitological stool examination in cases with chronic diarrhea in which no etiological agents are detected, but not only in HIV positive individuals. Parasite’s eradication leads to symptom disappearance as well as improvement of histopathological mucosa alterations.
Collapse
Affiliation(s)
- Łukasz Pielok
- Department and Clinic of Tropical and Parasitic Diseases, Poznań University of Medical Sciences, Przybyszewskiego Street, 60-355, Poznań, Poland.
| | - Szymon Nowak
- Department and Clinic of Tropical and Parasitic Diseases, Poznań University of Medical Sciences, Przybyszewskiego Street, 60-355, Poznań, Poland
| | - Matylda Kłudkowska
- Department and Clinic of Tropical and Parasitic Diseases, Poznań University of Medical Sciences, Przybyszewskiego Street, 60-355, Poznań, Poland.,Central Laboratory of Microbiology, H. Święcicki University Hospital, Poznań, Poland
| | - Krystyna Frąckowiak
- Central Laboratory of Microbiology, H. Święcicki University Hospital, Poznań, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Zmora
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Jerzy Stefaniak
- Department and Clinic of Tropical and Parasitic Diseases, Poznań University of Medical Sciences, Przybyszewskiego Street, 60-355, Poznań, Poland
| |
Collapse
|
12
|
Lee S, Beamer G, Tzipori S. The piglet acute diarrhea model for evaluating efficacy of treatment and control of cryptosporidiosis. Hum Vaccin Immunother 2018; 15:1445-1452. [PMID: 30036127 DOI: 10.1080/21645515.2018.1498436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cryptosporidium spp. are ranked as the second leading pathogens causing life-threatening diarrhea in children under 2 years of age. Although Cryptosporidium hominis causes three quarters of the cases of cryptosporidiosis, studies on C. hominis are limited since natural disease due to C. hominis is host-restricted to humans only. In this mini-review, we demonstrate the successfully adoption, propagation, and utility of the C. hominis strain TU502, isolated originally from an infant with diarrhea in Uganda, in gnotobiotic piglets. The TU502 C. hominis strain and the gnotobiotic piglet model currently are the only available preclinical tools to evaluate therapeutics that specifically target C. hominis. Infection in this gnotobiotic piglet model displays similar clinical symptoms of diarrhea observed in humans. Here we further describe how this unique model of acute diarrhea, can be used for drug discovery and testing of vaccine candidates against cryptosporidiosis. The shared anatomical, physiological and immunological characteristics between piglets and human infants makes the model ideal for evaluating the efficacy of therapeutics and vaccines against cryptosporidiosis as they become available.
Collapse
Affiliation(s)
- Sangun Lee
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| | - Gillian Beamer
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| | - Saul Tzipori
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| |
Collapse
|
13
|
Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther 2018; 16:655-661. [PMID: 30003818 DOI: 10.1080/14787210.2018.1500457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cryptosporidium is a protozoan pathogen that can cause diarrheal disease in healthy and immunosuppressed individuals, worldwide. Recent studies have highlighted the impact of cryptosporidiosis on children in resource-limited countries. Nitazoxanide is the only Food and Drug Administration approved treatment, but it is not consistently effective therapy for cryptosporidiosis in the most vulnerable populations. Areas covered: This review focused on recent published studies evaluating novel drugs and new compounds for the treatment of cryptosporidiosis. Expert commentary: Combinations of approved drugs have demonstrated some activity. Broad screens have demonstrated activity against Cryptosporidium for a number of available drugs, including statins and clofazimine, and the latter has advanced into clinical trials. Cryptosporidium calcium-dependent protein kinase 1 (CDPK1) has been identified as an attractive target for treatment, and bumped kinase inhibitors have been developed which inhibit CDPK1 and are active against Cryptosporidium growth both in vitro and in vivo. Inhibition of Plasmodium lipid kinase PI(4)K8 of Cryptosporidium by KDU731 greatly reduced oocyst shedding and improved diarrhea in calves with limited effects on the human PI(4)K. Another novel potent inhibitor MMV665917 was efficacious in mouse models with cidal activity against Cryptosporidium. Additional compounds have proved active in vitro. So far, only clofazimine has entered human trials.
Collapse
Affiliation(s)
- Miguel A Chavez
- a Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| | - A Clinton White
- b Infectious Diseases Division, Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| |
Collapse
|
14
|
Liu TL, Fan XC, Li YH, Yuan YJ, Yin YL, Wang XT, Zhang LX, Zhao GH. Expression Profiles of mRNA and lncRNA in HCT-8 Cells Infected With Cryptosporidium parvum IId Subtype. Front Microbiol 2018; 9:1409. [PMID: 30013528 PMCID: PMC6036261 DOI: 10.3389/fmicb.2018.01409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/08/2018] [Indexed: 12/03/2022] Open
Abstract
Cryptosporidium parvum is one of the most important enteric protozoan pathogens, responsible for severe diarrhea in immunocompromised human and livestock. However, few effective agents were available for controlling this parasite. Accumulating evidences suggest that long non-coding RNA (lncRNA) played key roles in many diseases through regulating the gene expression. Here, the expression profiles of lncRNAs and mRNAs were analyzed in HCT-8 cells infected with C. parvum IId subtype using microarray assay. A total of 821 lncRNAs and 1,349 mRNAs were differentially expressed in infected cells at 24 h post infection (pi). Of them, all five types of lncRNAs were identified, including 22 sense, 280 antisense, 312 intergenic, 44 divergent, 33 intronic lncRNAs, and 130 lncRNAs that were not found the relationship with mRNAs’ location. Additionally, real-time polymerase chain reactions of 10 lncRNAs and 10 mRNAs randomly selected were successfully confirmed the microarray results. The co-expression and target prediction analysis indicated that 27 mRNAs were cis-regulated by 29 lncRNAs and 109 were trans-regulated by 114 lncRNAs. These predicted targets were enriched in several pathways involved in the interaction between host and C. parvum, e.g., hedgehog signaling pathway, Wnt signaling pathway, and tight junction, suggesting that these differentially expressed lncRNAs would play important regulating roles during the infection of C. parvum IId subtype.
Collapse
Affiliation(s)
- Ting-Li Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xian-Chen Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yun-Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ya-Jie Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Ling Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xue-Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Long-Xian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Therapeutic Efficacy of Bumped Kinase Inhibitor 1369 in a Pig Model of Acute Diarrhea Caused by Cryptosporidium hominis. Antimicrob Agents Chemother 2018; 62:AAC.00147-18. [PMID: 29661877 DOI: 10.1128/aac.00147-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Recent reports highlighting the global significance of cryptosporidiosis among children have renewed efforts to develop control measures. We evaluated the efficacy of bumped kinase inhibitor (BKI) 1369 in the gnotobiotic piglet model of acute diarrhea caused by Cryptosporidium hominis, the species responsible for most human cases. Five-day treatment with BKI 1369 reduced signs of disease early during treatment compared to those of untreated animals. Piglets treated with BKI 1369 exhibited significant reductions of oocyst excretion, mucosal colonization by C. hominis, and mucosal lesions, which resulted in considerable symptomatic improvement. BKI 1369 reduced the parasite burden and disease severity in the gnotobiotic pig model. Together these data suggest that a BKI-mediated therapeutic may be an effective treatment against cryptosporidiosis.
Collapse
|