1
|
Cheng T, Xu M, Zhang H, Lu B, Zhang X, Wang Z, Huang J. KLHDC8A Expression in Association with Macrophage Infiltration and Oxidative Stress Predicts Unfavorable Prognosis for Glioma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2694377. [PMID: 36199422 PMCID: PMC9527113 DOI: 10.1155/2022/2694377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/21/2022]
Abstract
Background The tumor immune microenvironment (TME) is associated with cancer progression and immune escape. Although KLHDC8A has been reported in glioma in vitro, the expression and clinical significance of this gene in clinical samples are unknown. Methods The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases were used to evaluate the mRNA expression level of KLHDC8A and its significance in the glioma TME. Tissue microarray-based multiple immunohistochemical staining was conducted to determine KLHDC8A protein levels and characterize the immune signature of tumor-infiltrating immune cells in gliomas. Results Tumor cells and tumor-associated macrophages expressed KLHDC8A. The expression of KLHDC8A was higher in glioma tissues than in normal brain tissues and was associated with patient clinical characteristics. Gliomas exhibited a high abundance of macrophages, neutrophils, regulatory T cells, and the immune checkpoint PD-L1, as well as high KLHDC8A expression. Cox regression analysis showed that KLHDC8A+CD68+ macrophages and KLHDC8A predicted unfavorable survival in patients with glioma. Finally, protein-protein interaction network analysis showed that the KLHDC8A expression was associated with hypoxia and oxidative stress. Conclusions KLHDC8A is a potential marker for the clinical diagnosis of glioma. The immune characteristics of macrophages play a crucial role in predicting patients with glioma, providing a new avenue for targeted glioma therapy.
Collapse
Affiliation(s)
- Tong Cheng
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Hui Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Bing Lu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Ziheng Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu 226001, China
| |
Collapse
|
2
|
Sun DA, Bredeson JV, Bruce HS, Patel NH. Identification and classification of cis-regulatory elements in the amphipod crustacean Parhyale hawaiensis. Development 2022; 149:275484. [PMID: 35608283 DOI: 10.1242/dev.200793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Emerging research organisms enable the study of biology that cannot be addressed using classical 'model' organisms. New data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-seq to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis and limb development. In addition, we use short- and long-read RNA-seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Holm I, Nardini L, Pain A, Bischoff E, Anderson CE, Zongo S, Guelbeogo WM, Sagnon N, Gohl DM, Nowling RJ, Vernick KD, Riehle MM. Comprehensive Genomic Discovery of Non-Coding Transcriptional Enhancers in the African Malaria Vector Anopheles coluzzii. Front Genet 2022; 12:785934. [PMID: 35082832 PMCID: PMC8784733 DOI: 10.3389/fgene.2021.785934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences. Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.
Collapse
Affiliation(s)
- Inge Holm
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Luisa Nardini
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Adrien Pain
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France.,Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Cameron E Anderson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, United States.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Ronald J Nowling
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering (MSOE), Milwaukee, WI, United States
| | - Kenneth D Vernick
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Farley EJ, Eggleston H, Riehle MM. Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. INSECTS 2021; 12:186. [PMID: 33671692 PMCID: PMC7926655 DOI: 10.3390/insects12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.
Collapse
Affiliation(s)
| | | | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (E.J.F.); (H.E.)
| |
Collapse
|
5
|
Nowling RJ, Behura SK, Halfon MS, Emrich SJ, Duman-Scheel M. PeakMatcher facilitates updated Aedes aegypti embryonic cis-regulatory element map. Hereditas 2021; 158:7. [PMID: 33509290 PMCID: PMC7844911 DOI: 10.1186/s41065-021-00172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Aedes aegypti mosquito is a threat to human health across the globe. The A. aegypti genome was recently re-sequenced and re-assembled. Due to a combination of long-read PacBio and Hi-C sequencing, the AaegL5 assembly is chromosome complete and significantly improves the assembly in key areas such as the M/m sex-determining locus. Release of the updated genome assembly has precipitated the need to reprocess historical functional genomic data sets, including cis-regulatory element (CRE) maps that had previously been generated for A. aegypti. RESULTS We re-processed and re-analyzed the A. aegypti whole embryo FAIRE seq data to create an updated embryonic CRE map for the AaegL5 genome. We validated that the new CRE map recapitulates key features of the original AaegL3 CRE map. Further, we built on the improved assembly in the M/m locus to analyze overlaps of open chromatin regions with genes. To support the validation, we created a new method (PeakMatcher) for matching peaks from the same experimental data set across genome assemblies. CONCLUSION Use of PeakMatcher software, which is available publicly under an open-source license, facilitated the release of an updated and validated CRE map, which is available through the NIH GEO. These findings demonstrate that PeakMatcher software will be a useful resource for validation and transferring of previous annotations to updated genome assemblies.
Collapse
Affiliation(s)
- Ronald J Nowling
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, 1025 North Broadway, Milwaukee, WI, 53202, USA.
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Marc S Halfon
- Department of Biochemistry, State University of New York at Buffalo, NY, 14203, Buffalo, USA
| | - Scott J Emrich
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, 37996, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
6
|
Ruiz JL, Ranford-Cartwright LC, Gómez-Díaz E. The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression. NAR Genom Bioinform 2021; 3:lqaa113. [PMID: 33987532 PMCID: PMC8092447 DOI: 10.1093/nargab/lqaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Lisa C Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
7
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Ruiz JL, Yerbanga RS, Lefèvre T, Ouedraogo JB, Corces VG, Gómez-Díaz E. Chromatin changes in Anopheles gambiae induced by Plasmodium falciparum infection. Epigenetics Chromatin 2019; 12:5. [PMID: 30616642 PMCID: PMC6322293 DOI: 10.1186/s13072-018-0250-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Infection by the human malaria parasite leads to important changes in mosquito phenotypic traits related to vector competence. However, we still lack a clear understanding of the underlying mechanisms and, in particular, of the epigenetic basis for these changes. We have examined genome-wide distribution maps of H3K27ac, H3K9ac, H3K9me3 and H3K4me3 by ChIP-seq and the transcriptome by RNA-seq, of midguts from Anopheles gambiae mosquitoes blood-fed uninfected and infected with natural isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. RESULTS We report 15,916 regions containing differential histone modification enrichment between infected and uninfected, of which 8339 locate at promoters and/or intersect with genes. The functional annotation of these regions allowed us to identify infection-responsive genes showing differential enrichment in various histone modifications, such as CLIP proteases, antimicrobial peptides-encoding genes, and genes related to melanization responses and the complement system. Further, the motif analysis of regions differentially enriched in various histone modifications predicts binding sites that might be involved in the cis-regulation of these regions, such as Deaf1, Pangolin and Dorsal transcription factors (TFs). Some of these TFs are known to regulate immunity gene expression in Drosophila and are involved in the Notch and JAK/STAT signaling pathways. CONCLUSIONS The analysis of malaria infection-induced chromatin changes in mosquitoes is important not only to identify regulatory elements and genes underlying mosquito responses to P. falciparum infection, but also for possible applications to the genetic manipulation of mosquitoes and to other mosquito-borne systems.
Collapse
Affiliation(s)
- José L. Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean B. Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Victor G. Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322 USA
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|