1
|
Zhao Z, Li R, Zhao X, Wang Y, Lin M, Wei Q, Li X, Xiong P. The Diagnostic Value of Interleukin-2 and Interferon-γ Induced by Fusion Protein (ESAT-6/CFP-10/Rv1985c) for Active Mycobacterium tuberculosis Infection. J Clin Lab Anal 2025; 39:e70010. [PMID: 40019050 PMCID: PMC11904813 DOI: 10.1002/jcla.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate the diagnostic ability of interleukin 2 (IL-2) and interferon gamma (IFN-γ) release assay induced by the fusion protein (ESAT-6/CFP-10/Rv1985c) for detecting active tuberculosis (ATB) in clinically visiting patients. METHODS A total of 970 subjects (215 in ATB group and 755 in non-ATB group) underwent both an interferon-γ release assay (IGRA) and a TB-DNA PCR assay. Using clinical diagnosis as the gold standard, both qualitative and quantitative test results for IL-2 and IFN-γ were analyzed. Subsequently, the diagnostic ability of IL-2 and IFN-γ to screen for ATB among the high-risk population was then evaluated. RESULTS IL-2 exhibited higher specificity, while IFN-γ demonstrated higher sensitivity in distinguishing between ATB and non-ATB subjects. The sensitivity of the serial application of IL-2 and IFN-γ had no significant difference (p = 1.000) compared with IFN-γ; the specificity of the serial application of IL-2 and IFN-γ had no significant difference (p = 0.708) compared with IL-2. Quantitative analysis of the results revealed that the IL-2 and IFN-γ values were significantly higher in the ATB group compared with the non-ATB group. Additionally, the combined predictors of IL-2 and IFN-γ did not show a significant difference compared with IL-2 alone (p = 0.324) or IFN-γ alone (p = 0.405). CONCLUSIONS This study demonstrated that IL-2 and IFN-γ release assays induced by the fusion protein (ESAT-6/CFP-10/Rv1985c) were valuable for distinguishing ATB from non-ATB subjects, with IL-2 exhibiting higher specificity and IFN-γ demonstrating higher sensitivity.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Runqing Li
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Xiuying Zhao
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yujie Wang
- Medical Data Science Center of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Minggui Lin
- Infectious Disease Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qian Wei
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Xiaochen Li
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Pan Xiong
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Upadhyay S, Dhok A, Kashikar S, Quazi ZS, Agarkar VB. Unveiling the Significance of LysE in Survival and Virulence of Mycobacterium tuberculosis: A Review Reveals It as a Potential Drug Target, Diagnostic Marker, and a Vaccine Candidate. Vaccines (Basel) 2024; 12:779. [PMID: 39066417 PMCID: PMC11281339 DOI: 10.3390/vaccines12070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a global health threat, necessitating innovative strategies for control and prevention. This comprehensive review explores the Mycobacterium tuberculosis Lysine Exporter (LysE) gene, unveiling its multifaceted roles and potential uses in controlling and preventing tuberculosis (TB). As a pivotal player in eliminating excess L-lysine and L-arginine, LysE contributes to the survival and virulence of M. tuberculosis. This review synthesizes findings from different electronic databases and includes 13 studies focused on the LysE of M. tuberculosis. The research unveils that LysE can be a potential drug target, a diagnostic marker for TB, and a promising candidate for vaccine development. The absence of LysE in the widely used BCG vaccine underscores its uniqueness and positions it as a novel area for TB prevention. In conclusion, this review underscores the significance of LysE in TB pathogenesis and its potential as a drug target, diagnostic marker, and vaccine candidate. The multifaceted nature of LysE positions it at the forefront of innovative approaches to combat TB, calling for sustained research efforts to harness its full potential in the global fight against this infectious disease.
Collapse
Affiliation(s)
- Shilpa Upadhyay
- Global Consortium of Public Health Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India
| | - Archana Dhok
- i-Health Consortium, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Supriya Kashikar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| | - Zahiruddin Syed Quazi
- Global Evidence Synthesis Initiative, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Vinod B. Agarkar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| |
Collapse
|
3
|
Zhang Y, Wang S, Chen X, Cui P, Chen J, Zhang W. Mutations in the promoter region of methionine transporter gene metM (Rv3253c) confer para-aminosalicylic acid (PAS) resistance in Mycobacterium tuberculosis. mBio 2024; 15:e0207323. [PMID: 38179948 PMCID: PMC10865796 DOI: 10.1128/mbio.02073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Tuberculosis (TB) is a significant global public health threat. Despite the long-standing use of para-aminosalicylic acid (PAS) as a second-line anti-TB drug, its resistance mechanism remains unclear. In this study, we isolated 90 mutants of PAS-resistant Mycobacterium tuberculosis (MTB) H37Ra in 7H11 solid medium and performed whole-genome sequencing, gene overexpression, transcription level comparison and amino acid level determination in MTB, and promoter activity by β-galactosidase assays in Mycobacterium smegmatis to elucidate the mechanism of PAS resistance. Herein, we found that 47 of 90 (52.2%) PAS-resistant mutants had nine different mutations in the intergenic region of metM (Rv3253c) and Rv3254. Beta-galactosidase assays confirmed that mutations increased promoter activity only for metM but not Rv3254. Interestingly, overexpression of MetM or its M. smegmatis homolog (MSMEI_1796) either by its promoter in metM's direction or by exogenous expression in MTB induced PAS resistance in a methionine-dependent manner. Therefore, drug susceptibility results for the metM promoter mutants can be misleading when using standard 7H10 or 7H9 medium, which lacks methionine. At the metabolism level, PAS treatment led to higher intracellular methionine levels in the mutants than the wild type, antagonizing PAS and conferring resistance. Furthermore, 12 different mutations in the metM promoter were identified in clinical MTB strains. In summary, we found a novel mechanism of PAS resistance in MTB. Mutations in the metM (Rv3253c) promoter upregulate metM transcription and elevate intracellular methionine, which antagonize PAS. Our findings shed new light on the mechanism of PAS resistance in MTB and highlight issues with the current PAS susceptibility culture medium.IMPORTANCEAlthough para-aminosalicylic acid (PAS) has been used to treat TB for more than 70 years, the understanding of PAS resistance mechanisms is still vague, living gaps in our ability to predict resistance and apply PAS effectively in clinical practice. This study aimed to address this knowledge gap by inducing in vitro PAS resistance in Mycobacterium tuberculosis (MTB) using 7H11 medium and discovering a new PAS resistance mechanism. Our research revealed that spontaneous mutations occurring in the promoter region of the methionine transporting gene, metM, can upregulate the expression of metM, resulting in increased intracellular transport of methionine and consequently high-level resistance of Mycobacterium tuberculosis to PAS. Notably, this resistance phenotype cannot be observed when using the commonly recommended 7H10 medium, possibly due to the lack of additional methionine supply compared with that when using the 7H11 medium. Mutations on the regulatory region of metM were also found in some clinical MTB strains. These findings may have important implications for the unexplained PAS resistance observed in clinical settings and provide insight into the failures of PAS treatment. Additionally, they underscore the importance of considering the choice of culture media when conducting drug susceptibility testing for MTB.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchang Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Nguyen TQ, Heo BE, Park Y, Jeon S, Choudhary A, Moon C, Jang J. CRISPR Interference-Based Inhibition of MAB_0055c Expression Alters Drug Sensitivity in Mycobacterium abscessus. Microbiol Spectr 2023; 11:e0063123. [PMID: 37158736 PMCID: PMC10269454 DOI: 10.1128/spectrum.00631-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
There is an unmet medical need for effective treatments against Mycobacterium abscessus infections. Although advanced molecular genetic tools to validate drug targets and resistance of M. abscessus exist, the practical design and construction of plasmids are relatively laborious and time-consuming. Thus, for this purpose, we used CRISPR interference (CRISPRi) combined with catalytically deactivated Cas9 to inhibit the gene expression of a predicted LysR-type transcriptional regulator gene, MAB_0055c, in M. abscessus and evaluated its contribution to the development of drug resistance. Our results showed that silencing the MAB_0055c gene lead to increased rifamycin susceptibility depending on the hydroquinone moiety. These results demonstrate that CRISPRi is an excellent approach for studying drug resistance in M. abscessus. IMPORTANCE In this study, we utilized CRISPR interference (CRISPRi) to specifically target the MAB_0055c gene in M. abscessus, a bacterium that causes difficult-to-treat infections. The study found that silencing the gene lead to increased rifabutin and rifalazil susceptibility. This study is the first to establish a link between the predicted LysR-type transcriptional regulator gene and antibiotic resistance in mycobacteria. These findings underscore the potential of using CRISPRi as a tool for elucidating resistance mechanisms, essential drug targets, and drug mechanisms of action, which could pave the way for more effective treatments for M. abscessus infections. The results of this study could have important implications for the development of new therapeutic options for this challenging-to-treat bacterial infection.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arunima Choudhary
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
5
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nat Commun 2019; 10:4215. [PMID: 31527595 PMCID: PMC6746716 DOI: 10.1038/s41467-019-12224-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulnerable component of Mycobacterium tuberculosis (Mtb) persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct susceptibility of Mtb to inhibition of this pathway. Combinatorial metabolomic and transcriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation. Mtb’s adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate. We present evidence that inhibition of the aspartate pathway at different branch-point enzymes leads to clearance of chronic infections. Together these findings demonstrate that the aspartate pathway in Mtb relies on a combination of metabolic control mechanisms, is required for persistence, and represents a target space for anti-tuberculosis drug development. Amino acid biosynthetic pathways are an attractive alternative to treat chronic infections such as Mycobacterium tuberculosis (Mtb). Here, the authors investigate the metabolic response to disruption of the aspartate pathway in persistent Mtb and identify essential enzymes as potential new targets for drug development.
Collapse
|
7
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|