1
|
Han L, Li D, Wang C, Ren L, Guo L, Wang J. Infection of nonclassic monocytes by respiratory syncytial virus induces an imbalance in the CD4 + T-cell subset response. Microbiol Spectr 2025; 13:e0207324. [PMID: 39656009 PMCID: PMC11705840 DOI: 10.1128/spectrum.02073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections in infants and young children, leading to a pathogenesis-associated imbalance in CD4+ T-cell subsets and monocyte subsets. To investigate whether RSV affects the imbalance of CD4+ T-cells through monocytes, we examined the effects of the RSV-infected monocyte subset on CD4+ T-cell subsets, namely, Th1, Th2, Th17, and regulatory T (Treg) subsets, on proliferation in vitro and identified key monocyte-derived cytokines. We found that RSV efficiently infects CD16+ monocytes, but not CD16- monocytes, via cocultures of CD4+ T-cells with RSV-infected CD16+ monocytes, inhibits Treg cell proliferation and increases Th2 cell frequency, suggesting that RSV causes an imbalance in the CD4+ T-cell subset by primarily infecting CD16+ monocytes. Our data also revealed that IL-1β and IL-10 are key cytokines responsible for the activities of RSV-infected CD16+ monocytes. In a mouse model, we found that high-efficiency RSV infection of mouse Ly6C- monocytes, corresponding to CD16+ monocytes in humans, and adoptive transfer of Ly6C- monocytes during RSV infection decreased the Treg frequency in the lungs and aggravated pneumonia. Our data indicate that RSV can increase its pathogenesis through infection of nonclassic monocytes, leading to a CD4+ T-cell imbalance.IMPORTANCEThis study identified a pathogenesis pathway related to the RSV-nonclassic monocyte-IL-1β/IL-10-CD4+ T-cell subset balance, which links the heterogeneity of monocytes to RSV pathogenesis and elucidates a new mechanism by which RSV infection disrupts the balance of CD4+ T cells during RSV infection. These new findings provide potential therapeutic targets for RSV infection.
Collapse
Affiliation(s)
- Lianlian Han
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danyang Li
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Azami H, Watanabe Y, Kojima H, Yoshida Y, Ban S, Nonaka K, Yaguchi T, Iwatsuki M. Cytosporones Y and Z, new antifungal polyketides produced by the fungal strain Trichoderma sp. FKI-6626. J Antibiot (Tokyo) 2024; 77:721-726. [PMID: 39242787 DOI: 10.1038/s41429-024-00765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Two new antifungal polyketides, named cytosporones Y (1) and Z (2), were discovered from the cultured broth of Trichoderma sp. FKI-6626. Their structures were elucidated by MS and NMR analysis. Both compounds exhibited antifungal activity against five Aspergillus species, the causative agents of aspergillosis.
Collapse
Affiliation(s)
- Haruki Azami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroki Kojima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yurika Yoshida
- School of Science, Kitasato University, 1-15-1, Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Sayaka Ban
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
Collins CA, Waller C, Batourina E, Kumar L, Mendelsohn CL, Gilbert NM. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat Commun 2024; 15:8308. [PMID: 39333075 PMCID: PMC11436794 DOI: 10.1038/s41467-024-52454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined. Here we show that Nur77 protects against intracellular infection in the bladder by uropathogenic Escherichia coli (UPEC), the leading cause of urinary tract infections (UTI). Nur77 deficiency in mice promotes the formation of UPEC intracellular bacterial communities (IBCs) in the cells lining the bladder lumen, leading to persistent infection in bladder tissue. Conversely, treatment with a small-molecule Nur77 agonist, cytosporone B, inhibits invasion and enhances the expulsion of UPEC from human urothelial cells in vitro, and significantly reduces UPEC IBC formation and bladder infection in mice. Our findings reveal a new role for Nur77 in control of bacterial infection and suggest that pharmacologic agonism of Nur77 function may represent a promising antibiotic-sparing therapeutic approach for UTI.
Collapse
Affiliation(s)
- Christina A Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chevaughn Waller
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lokesh Kumar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Jaroque G, dos Santos AL, Sartorelli P, Caseli L. Surface Chemistry of Cytosporone-B Incorporated in Models for Microbial Biomembranes as Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39007866 PMCID: PMC11295194 DOI: 10.1021/acs.langmuir.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Cytosporone-B, a polyketide renowned for its antimicrobial properties, was integrated into Langmuir monolayers composed of dipalmitoylphosphoethanolamine (DPPE) and dioleoylphosphoethanolamine (DOPE) lipids, effectively emulating microbial cytoplasmic membranes. This compound exhibited an expansive influence on DPPE monolayers while inducing condensation in DOPE monolayers. This led to a notable reduction in the compressibility modulus for both lipids, with a more pronounced effect observed for DPPE. The heightened destabilization observed in DOPE monolayers subjected to biologically relevant pressures was particularly noteworthy, as evidenced by surface pressure-time curves at constant area. In-depth analysis using infrared spectroscopy at the air-water interface unveiled alterations in the alkyl chains of the lipids induced by cytosporone-B. This was further corroborated by surface potential measurements, indicating a heightened tilt in the acyl chains upon drug incorporation. Notably, these observed effects did not indicate an aggregating process induced by the drug. Overall, the distinctive impact of cytosporone-B on each lipid underscores the importance of understanding the nuanced effects of microbial drugs on membranes, whether in condensed or fluid states.
Collapse
Affiliation(s)
- Guilherme
Nuñez Jaroque
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Augusto Leonardo dos Santos
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Patricia Sartorelli
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Luciano Caseli
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| |
Collapse
|
5
|
Wang Y, Thaler M, Salgado‐Benvindo C, Ly N, Leijs AA, Ninaber DK, Hansbro PM, Boedijono F, van Hemert MJ, Hiemstra PS, van der Does AM, Faiz A. SARS-CoV-2-infected human airway epithelial cell cultures uniquely lack interferon and immediate early gene responses caused by other coronaviruses. Clin Transl Immunology 2024; 13:e1503. [PMID: 38623540 PMCID: PMC11017760 DOI: 10.1002/cti2.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.
Collapse
Affiliation(s)
- Ying Wang
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Melissa Thaler
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Nathan Ly
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - Anouk A Leijs
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dennis K Ninaber
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Philip M Hansbro
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Fia Boedijono
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Martijn J van Hemert
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter S Hiemstra
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne M van der Does
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
6
|
Li L, Zhong W, Liu H, Espinosa-Artiles P, Xu YM, Wang C, Robles JMV, Paz TA, Inácio MC, Chen F, Xu Y, Gunatilaka AAL, Molnár I. Biosynthesis of Cytosporones in Leotiomycetous Filamentous Fungi. J Am Chem Soc 2024; 146:6189-6198. [PMID: 38386630 PMCID: PMC11106036 DOI: 10.1021/jacs.3c14066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.
Collapse
Affiliation(s)
- Li Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- College of Life Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Hang Liu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Patricia Espinosa-Artiles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Ya-ming Xu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Chen Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jose Manuel Verdugo Robles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Tiago Antunes Paz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Marielle Cascaes Inácio
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Fusheng Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- VTT Technical Research Center of Finland Ltd., Espoo 02150, Finland
| |
Collapse
|
7
|
Huang L, Zuo Y, Yang H, He X, Zhang L. Identification of key genes as potential diagnostic and therapeutic targets for comorbidity of myasthenia gravis and COVID-19. Front Neurol 2024; 14:1334131. [PMID: 38384322 PMCID: PMC10879883 DOI: 10.3389/fneur.2023.1334131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Coronavirus disease 2019 (COVID-19) has a significant impact on the health and quality of life of MG patients and may even trigger the onset of MG in some cases. With the worldwide development of the COVID-19 vaccination, several new-onset MG cases and exacerbations following the COVID-19 vaccines have been acknowledged. The potential link between myasthenia gravis (MG) and COVID-19 has prompted the need for further investigation into the underlying molecular mechanism. Methods and results The differential expression analysis identified six differentially expressed genes (DEGs) shared by myasthenia gravis (MG) and COVID-19, namely SAMD9, PLEK, GZMB, JUNB, NR4A1, and NR1D1. The relationship between the six common genes and immune cells was investigated in the COVID-19 dataset. The predictive value of the shared genes was assessed and a nomogram was constructed using machine learning algorithms. The regulatory miRNAs, transcription factors and small molecular drugs were predicted, and the molecular docking was carried out by AutoDock. Discussion We have identified six common DEGs of MG and COVID-19 and explored their immunological effects and regulatory mechanisms. The result may provide new insights for further mechanism research.
Collapse
Affiliation(s)
- Liyan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Zuo
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
| | - Hui Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiaofang He
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Zhang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Jaroque GN, Dos Santos AL, Sartorelli P, Caseli L. Unsaturation of serine lipids modulating the interaction of a cytosporone with models of the external leaflet of tumorigenic cell membranes. Chem Phys Lipids 2024; 258:105363. [PMID: 38042456 DOI: 10.1016/j.chemphyslip.2023.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Cytosporone-B was isolated from fungi and incorporated in models of tumorigenic cell membranes using palmitoyloleoylglycerophosphoserine (POPS) and dipalmitoyl glycerophosphoserine (DPPS) lipids. While for DPPS, the compound condensed the monolayer and decreased the surface compressional modulus, it expanded and kept the compressional modulus for POPS. Hysteresis for compression-expansion cycles was more sensitive for POPS than for DPPS, while a high degree of destabilization was observed for POPS. As observed with infrared spectroscopy and Brewster angle microscopy, specific changes were selective regarding molecular organization and morphology. Atomic force microscopy for transferred monolayers as Langmuir-Blodgett films also confirmed such specificities. We believe these data can help understand the mechanism of action of bioactive drugs in lipid interfaces at the molecular level.
Collapse
Affiliation(s)
| | | | - Patrícia Sartorelli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
9
|
Cheng Y, Yang C, Li Z, Li X, Zou X, Li L, Cui M, Tian A, Li X, He W, Zhao Z, Ding Y. Anti-influenza virus activity of the REV-ERBα agonist SR9009 and related analogues. Antiviral Res 2022; 207:105418. [PMID: 36122620 DOI: 10.1016/j.antiviral.2022.105418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
REV-ERBα is a member of the nuclear receptor superfamily of transcription factors that aids in the regulation of many diseases. However, the prospect of using REV-ERBα for anti-influenza virus treatment remains poorly described, and there is an urgent need to develop effective anti-influenza agents due to the emergence of drug-resistant influenza viruses. In this study, eight SR9009 analogues were designed, synthesized, and evaluated for their biological activities against multiple influenza virus strains (H1N1, H3N2, adamantane- and oseltamivir-resistant H1N1 and influenza B virus), using ribavirin as the positive control. SR9009 and its analogues showed low micromolar or submicromolar EC50 values and exhibited modestly improved antiviral potency compared to that of ribavirin. In particular, compound 5a possessed the most potent inhibitory activity (EC50 = 0.471, 0.644, 1.644, 0.712 and 0.661 μM for A/PR/8/34, A/WSN/33, A/Wisconsin/67/2005, B/Yamagata/16/88 and Hebei/SWL1/2006, respectively). Cotransfection assays showed that all synthesized derivatives efficaciously suppressed transcription driven by the Bmal1 promoter. Mechanistic study results indicated that 5a efficiently inhibited IAV replication and interfered with the ealry stage of influenza virus life cycle. In addition, we found that 5a upregulated the key antiviral interferon-stimulated genes MxA, OAS2 and CH25H. Further in-depth transcriptome analysis revealed a series of upregulated genes that may contribute to the antiviral activities of 5a. These findings may provide an important direction for the development of new host-targeted broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Yunyun Cheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaofu Yang
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| | - Zhan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiheng Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaocui Zou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Menghan Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Airong Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhongpeng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Exploring the Citrus Sour Rot pathogen: biochemical aspects, virulence factors, and strategies for disease management - a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Bonnet R, Mariault L, Peyron JF. Identification of potentially anti-COVID-19 active drugs using the connectivity MAP. PLoS One 2022; 17:e0262751. [PMID: 35085325 PMCID: PMC8794112 DOI: 10.1371/journal.pone.0262751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing can be an interesting strategy for an emergency response to the severe acute respiratory syndrome-coronavirus-2, (SARS-COV-2), the causing agent of the coronavirus disease-19 (COVID-19) pandemic. For this, we applied the Connectivity Map (CMap) bioinformatic resource to identify drugs that generate, in the CMap database, gene expression profiles (GEP) that negatively correlate with a SARS-COV-2 GEP, anticipating that these drugs could antagonize the deleterious effects of the virus at cell, tissue or organism levels. We identified several anti-cancer compounds that target MDM2 in the p53 pathway or signaling proteins: Ras, PKBβ, Nitric Oxide synthase, Rho kinase, all involved in the transmission of proliferative and growth signals. We hypothesized that these drugs could interfere with the high rate of biomass synthesis in infected cells, a feature shared with cancer cells. Other compounds including etomoxir, triacsin-c, PTB1-IN-3, are known to modulate lipid metabolism or to favor catabolic reactions by activating AMPK. Four different anti-inflammatory molecules, including dexamethasone, fluorometholone and cytosporone-b, targeting the glucocorticoid receptor, cyclooxygenase, or NUR77 also came out of the analysis. These results represent a first step in the characterization of potential repositioning strategies to treat SARS-COV-2.
Collapse
Affiliation(s)
- Raphaël Bonnet
- Université Côte d’Azur, Nice, France
- Inserm U1065 Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Lee Mariault
- Université Côte d’Azur, Nice, France
- Inserm U1065 Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Jean-François Peyron
- Université Côte d’Azur, Nice, France
- Inserm U1065 Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|
12
|
Role of NR4A family members in myeloid cells and leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:23-36. [PMID: 35496823 PMCID: PMC9040138 DOI: 10.1016/j.crimmu.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia. NR4A1-3 have important roles in the different cells of the myeloid compartment. These orphan receptors homeostasis, differentiation, and activation. NR4A family is important in suppressing the development of myeloid leukemias. NR4As have been linked to several diseases and could be pharmacological targets.
Collapse
|
13
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
14
|
Carpenter MD, Hu Q, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, Song H, Wimmer ME, Pierce RC, Heller EA. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun 2020; 11:504. [PMID: 31980629 PMCID: PMC6981219 DOI: 10.1038/s41467-020-14331-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor, Nr4a1, and its target gene, Cartpt, a key molecule involved in dopamine metabolism. Sustained activation of Cartpt at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule Nr4a1 activation, we demonstrated the direct causal role of Nr4a1 in sustained activation of Cartpt and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
Collapse
Affiliation(s)
- Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiwen Hu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allison M Bond
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle S Czarnecki
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Pennsylvania, Philadelphia, PA, 19122, USA
| | - R Christopher Pierce
- Center for Nurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. SUSTAINABILITY 2020. [DOI: 10.3390/su12020495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solid state fermentation (SSF) is a sustainable process that uses low amounts of water and transforms plant-based agro-industrial residues into valuable products such as enzymes, biofuels, nanoparticles and other bioactive compounds. Many fungal species can be used in SSF because of their low requirements of water, O2 and light. During SSF, plant-based wastes rich in soluble and insoluble fiber are utilized by lignocellulolytic fungi that have enzymes such as lignases, celullases or hemicelullases that break fiber hard structure. During the hydrolysis of lignin, some phenolic compounds are released but fungi also synthetize bioactive compounds such as mycophenolic acid, dicerandrol C, phenylacetates, anthraquinones, benzofurans and alkenyl phenols that have health beneficial effects such as antitumoral, antimicrobial, antioxidant and antiviral activities. Another important group of compounds synthetized by fungi during SSF are polysaccharides that also have important health promoting properties. Polysaccharides have antioxidant, antiproliferative and immunomodulatory activities as well as prebiotic effects. Fungal SSF has also proved to be a process which can release high contents of phenolics and it also increases the bioactivity of these compounds.
Collapse
|
16
|
Cytosporone B as a Biological Preservative: Purification, Fungicidal Activity and Mechanism of Action against Geotrichum citri-aurantii. Biomolecules 2019; 9:biom9040125. [PMID: 30934892 PMCID: PMC6523523 DOI: 10.3390/biom9040125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
To prevent citrus decay caused by Geotrichum citri-aurantii, 12 natural products were isolated from two endophytic fungi, in which cytosporone B was shown to have excellent bioactivity for control of G. citri-aurantii with median effect concentration (EC50) of 26.11 μg/mL and minimum inhibitory concentration (MIC) of 105 μg/mL, and also significantly reduced the decay of sugar orange during the in vivo trials. In addition, cytosporone B could alter the morphology of G. citri-aurantii by causing distortion of the mycelia and loss of membrane integrity. Differentially expressed genes (DEGs) between cytosporone B-treated and -untreated samples were revealed by Illumina sequencing, including 3540 unigenes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that most DEGs were related to metabolic production and cell membrane. These findings suggest cytosporone B is a promising biological preservative to control citrus decay and reveal the action mechanism of cytosporone B in relation to the destruction of the fungal cell membrane at both morphological and molecular levels.
Collapse
|
17
|
Luo X, Yang J, Chen F, Lin X, Chen C, Zhou X, Liu S, Liu Y. Structurally Diverse Polyketides From the Mangrove-Derived Fungus Diaporthe sp. SCSIO 41011 With Their Anti-influenza A Virus Activities. Front Chem 2018; 6:282. [PMID: 30050898 PMCID: PMC6052247 DOI: 10.3389/fchem.2018.00282] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is a severe worldwide threat to public health and economic development due to its high morbidity and mortality. Marine-derived fungi have been evidenced as a prolific source for the discovery of pharmacologically-active lead compounds. During the course of our search for novel bioactive substances from marine microorganisms, six new polyketides, including two octaketides (1-2), one chromone derivative (13), two highly substituted phthalides (17-18), and one α-pyrone derivative (21) along with 22 known congeners were isolated from a mangrove-associated fungus Diaporthe sp. SCSIO 41011. Their structures were determined by spectroscopic analysis and by comparison with literature data. And the absolute configurations were established according to the specific rotation or electron circular dichroism method. Antiviral evaluation results revealed that compounds 14, 15, 26, and 5-chloroisorotiorin displayed significant anti-IAV activities against three influenza A virus subtypes, including A/Puerto Rico/8/34 H274Y (H1N1), A/FM-1/1/47 (H1N1), and A/Aichi/2/68 (H3N2), with IC50 values in the range of 2.52-39.97 μM. The preliminary structure-activity relationships (SARs) are also discussed. These findings expand the chemical and bioactive diversity of polyketides derived from the genus Diaporthe, and also provide a basis for further development and utilization of chromone, xanthone, and chloroazaphilone derivatives as source of potential anti-viral chemotherapy agents.
Collapse
Affiliation(s)
- Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|