1
|
Gangurde SS, Thompson E, Yaduru S, Wang H, Fountain JC, Chu Y, Ozias-Akins P, Isleib TG, Holbrook C, Dutta B, Culbreath AK, Pandey MK, Guo B. Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR-1 and PLLSR-2, Using Nested Association Mapping. PHYTOPATHOLOGY 2024; 114:1346-1355. [PMID: 38669464 DOI: 10.1094/phyto-04-23-0143-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (Arachis hypogaea) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, PLLSR-1 and PLLSR-2, respectively. PLLSR-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, Arahy.VKVT6A, was also identified on homoeologous chromosome A02. PLLSR-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.
Collapse
Affiliation(s)
- Sunil S Gangurde
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Ethan Thompson
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | - Shasidhar Yaduru
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Hui Wang
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | - Jake C Fountain
- Department of Plant Pathology, University of Georgia, Griffin, GA, U.S.A
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA, U.S.A
| | - Peggy Ozias-Akins
- Department of Horticulture, University of Georgia, Tifton, GA, U.S.A
| | - Thomas G Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, U.S.A
| | - Corley Holbrook
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | | | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Baozhu Guo
- U.S. Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA, U.S.A
| |
Collapse
|
2
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
3
|
Alhashel AF, Fiedler JD, Nandety RS, Skiba RM, Bruggeman RS, Baldwin T, Friesen TL, Yang S. Genetic and physical localization of a major susceptibility gene to Pyrenophora teres f. maculata in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:118. [PMID: 37103563 PMCID: PMC10140075 DOI: 10.1007/s00122-023-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.
Collapse
Affiliation(s)
- Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ryan M Skiba
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| |
Collapse
|
4
|
Grover S, Shinde S, Puri H, Palmer N, Sarath G, Sattler SE, Louis J. Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. FRONTIERS IN PLANT SCIENCE 2022; 13:1019266. [PMID: 36507437 PMCID: PMC9732255 DOI: 10.3389/fpls.2022.1019266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Plants undergo dynamic metabolic changes at the cellular level upon insect infestation to better defend themselves. Phenylpropanoids, a hub of secondary plant metabolites, encompass a wide range of compounds that can contribute to insect resistance. Here, the role of sorghum (Sorghum bicolor) phenylpropanoids in providing defense against the chewing herbivore, fall armyworm (FAW), Spodoptera frugiperda, was explored. We screened a panel of nested association mapping (NAM) founder lines against FAW and identified SC1345 and Ajabsido as most resistant and susceptible lines to FAW, respectively, compared to reference parent, RTx430. Gene expression and metabolomic studies suggested that FAW feeding suppressed the expression level of genes involved in monolignol biosynthetic pathway and their associated phenolic intermediates at 10 days post infestation. Further, SC1345 genotype displayed elevated levels of flavonoid compounds after FAW feeding for 10 days, suggesting a diversion of precursors from lignin biosynthesis to the flavonoid pathway. Additionally, bioassays with sorghum lines having altered levels of flavonoids provided genetic evidence that flavonoids are crucial in providing resistance against FAW. Finally, the application of FAW regurgitant elevated the expression of genes associated with the flavonoid pathway in the FAW-resistant SC1345 genotype. Overall, our study indicates that a dynamic regulation of the phenylpropanoid pathway in sorghum plants imparts resistance against FAW.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan Palmer
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
5
|
Pourkheirandish M, Komatsuda T. Grain Disarticulation in Wild Wheat and Barley. PLANT & CELL PHYSIOLOGY 2022; 63:1584-1591. [PMID: 35765920 PMCID: PMC9680857 DOI: 10.1093/pcp/pcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Our industrial-scale crop monocultures, which are necessary to provide grain for large-scale food and feed production, are highly vulnerable to biotic and abiotic stresses. Crop wild relatives have adapted to harsh environmental conditions over millennia; thus, they are an important source of genetic variation and crop diversification. Despite several examples where significant yield increases have been achieved through the introgression of genomic regions from wild relatives, more detailed understanding of the differences between wild and cultivated species for favorable and unfavorable traits is still required to harness these valuable resources. Recently, as an alternative to the introgression of beneficial alleles from the wild into domesticated species, a radical suggestion is to domesticate wild relatives to generate new crops. A first and critical step for the domestication of cereal wild relatives would be to prevent grain disarticulation from the inflorescence at maturity. Discovering the molecular mechanisms and understanding the network of interactions behind grain retention/disarticulation would enable the implementation of approaches to select for this character in targeted species. Brittle rachis 1 and Brittle rachis 2 are major genes responsible for grain disarticulation in the wild progenitors of wheat and barley that were the target of mutations during domestication. These two genes are only found in the Triticeae tribe and are hypothesized to have evolved by a duplication followed by neo-functionalization. Current knowledge gaps include the molecular mechanisms controlling grain retention in cereals and the genomic consequences of strong selection for this essential character.
Collapse
Affiliation(s)
| | - Takao Komatsuda
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Grieco M, Schmidt M, Warnemünde S, Backhaus A, Klück HC, Garibay A, Tandrón Moya YA, Jozefowicz AM, Mock HP, Seiffert U, Maurer A, Pillen K. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111123. [PMID: 35067296 DOI: 10.1016/j.plantsci.2021.111123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health. The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral imaging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and four developmental stages. Particularly accurate predictions were obtained by partial least squares regression (PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and 0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field experiments to ultimately select genes and genotypes supporting plant biofortification.
Collapse
Affiliation(s)
- Michele Grieco
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Maria Schmidt
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Sebastian Warnemünde
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Hans-Christian Klück
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Adriana Garibay
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Yudelsy Antonia Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Maurer
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
7
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
8
|
Maurer A, Pillen K. Footprints of Selection Derived From Temporal Heterozygosity Patterns in a Barley Nested Association Mapping Population. FRONTIERS IN PLANT SCIENCE 2021; 12:764537. [PMID: 34721490 PMCID: PMC8551860 DOI: 10.3389/fpls.2021.764537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, genetic diversity more than ever represents a key driver of adaptation to climate challenges like drought, heat, and salinity. Therefore, there is a need to replenish the limited elite gene pools with favorable exotic alleles from the wild progenitors of our crops. Nested association mapping (NAM) populations represent one step toward exotic allele evaluation and enrichment of the elite gene pool. We investigated an adaptive selection strategy in the wild barley NAM population HEB-25 based on temporal genomic data by studying the fate of 214,979 SNP loci initially heterozygous in individual BC1S3 lines after five cycles of selfing and field propagation. We identified several loci exposed to adaptive selection in HEB-25. In total, 48.7% (104,725 SNPs) of initially heterozygous SNP calls in HEB-25 were fixed in BC1S3:8 generation, either toward the wild allele (19.9%) or the cultivated allele (28.8%). Most fixed SNP loci turned out to represent gene loci involved in domestication and flowering time as well as plant height, for example, btr1/btr2, thresh-1, Ppd-H1, and sdw1. Interestingly, also unknown loci were found where the exotic allele was fixed, hinting at potentially useful exotic alleles for plant breeding.
Collapse
|
9
|
Alhashel AF, Sharma Poudel R, Fiedler J, Carlson CH, Rasmussen J, Baldwin T, Friesen TL, Brueggeman RS, Yang S. Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3. G3-GENES GENOMES GENETICS 2021; 11:6377783. [PMID: 34586371 DOI: 10.1093/g3journal/jkab341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is a foliar disease of barley that results in significant yield losses in major growing regions worldwide. Understanding the host-parasite interactions between pathogen virulence/avirulence genes and the corresponding host susceptibility/resistance genes is important for the deployment of genetic resistance against SFNB. Two recombinant inbred mapping populations were developed to characterize genetic resistance/susceptibility to the Ptm isolate 13IM8.3, which was collected from Idaho (ID). An Illumina Infinium array was used to produce a genome wide marker set. Quantitative trait loci (QTL) analysis identified ten significant resistance/susceptibility loci, with two of the QTL being common to both populations. One of the QTL on 5H appears to be novel, while the remaining loci have been reported previously. Single nucleotide polymorphisms (SNPs) closely linked to or delimiting the significant QTL have been converted to user-friendly markers. Loci and associated molecular markers identified in this study will be useful in genetic mapping and deployment of the genetic resistance to SFNB in barley.
Collapse
Affiliation(s)
- Abdullah Fahad Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Craig H Carlson
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Jack Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| |
Collapse
|
10
|
Chidzanga C, Fleury D, Baumann U, Mullan D, Watanabe S, Kalambettu P, Pontre R, Edwards J, Forrest K, Wong D, Langridge P, Chalmers K, Garcia M. Development of an Australian Bread Wheat Nested Association Mapping Population, a New Genetic Diversity Resource for Breeding under Dry and Hot Climates. Int J Mol Sci 2021; 22:4348. [PMID: 33919411 PMCID: PMC8122485 DOI: 10.3390/ijms22094348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic diversity, knowledge of the genetic architecture of the traits of interest and efficient means of transferring the desired genetic diversity into the relevant genetic background are prerequisites for plant breeding. Exotic germplasm is a rich source of genetic diversity; however, they harbor undesirable traits that limit their suitability for modern agriculture. Nested association mapping (NAM) populations are valuable genetic resources that enable incorporation of genetic diversity, dissection of complex traits and providing germplasm to breeding programs. We developed the OzNAM by crossing and backcrossing 73 diverse exotic parents to two Australian elite varieties Gladius and Scout. The NAM parents were genotyped using the iSelect wheat 90K Infinium SNP array, and the progeny were genotyped using a custom targeted genotyping-by-sequencing assay based on molecular inversion probes designed to target 12,179 SNPs chosen from the iSelect wheat 90K Infinium SNP array of the parents. In total, 3535 BC1F4:6 RILs from 125 families with 21 to 76 lines per family were genotyped and we found 4964 polymorphic and multi-allelic haplotype markers that spanned the whole genome. A subset of 530 lines from 28 families were evaluated in multi-environment trials over three years. To demonstrate the utility of the population in QTL mapping, we chose to map QTL for maturity and plant height using the RTM-GWAS approach and we identified novel and known QTL for maturity and plant height.
Collapse
Affiliation(s)
- Charity Chidzanga
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| | - Delphine Fleury
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| | - Dan Mullan
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
- Intergrain 19 Ambitious Link, Bibra Lake, WA 6163, Australia;
| | - Sayuri Watanabe
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| | - Priyanka Kalambettu
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| | - Robert Pontre
- Intergrain 19 Ambitious Link, Bibra Lake, WA 6163, Australia;
| | - James Edwards
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
- Australian Grain Technologies, 20 Leitch Rd, Roseworthy, SA 5371, Australia
| | - Kerrie Forrest
- Genomics & Cell Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC 3083, Australia; (K.F.); (D.W.)
| | - Debbie Wong
- Genomics & Cell Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC 3083, Australia; (K.F.); (D.W.)
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
| | - Ken Chalmers
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
| | - Melissa Garcia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (C.C.); (D.F.); (U.B.); (S.W.); (P.K.); (P.L.); (K.C.)
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia; (D.M.); (J.E.)
| |
Collapse
|
11
|
Cui Z, Cui Y, Zang T, Wang Y. interacCircos: an R package based on JavaScript libraries for the generation of interactive Circos plots. Bioinformatics 2021; 37:3642-3644. [PMID: 33830205 DOI: 10.1093/bioinformatics/btab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
SUMMARY JavaScript-based Circos libraries have been widely implemented to generate interactive Circos plots in web applications. However, these libraries require either local installation, which requires the compilation of extra libraries, or extra data processing procedures to prepare input and configuration for each track of plot, which limits the utility and capability of integration with powerful R packages. In this report, we present interacCircos, an R package for creating interactive Circos plots through the integration of JavaScript-based libraries. interacCircos can simply and flexibly implement 14 track-plot functions and 7 auxiliary functions for presenting large-scale genomic data in interactive Circos plots. AVAILABILITY AND IMPLEMENTATION InteracCircos and its manual are freely available at https://github.com/mrcuizhe/interacCircos. The online documentation is available at https://mrcuizhe.github.io/interacCircos_documentation/index.html under the GPL license. We thank the teams of BioCircos.js, BioCircos.R, NGCircos and circosJS for sharing the code.
Collapse
Affiliation(s)
- Zhe Cui
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ya Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyi Zang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yadong Wang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
12
|
Backes A, Guerriero G, Ait Barka E, Jacquard C. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. FRONTIERS IN PLANT SCIENCE 2021; 12:614951. [PMID: 33889162 PMCID: PMC8055952 DOI: 10.3389/fpls.2021.614951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
Net blotch, induced by the ascomycete Pyrenophora teres, has become among the most important disease of barley (Hordeum vulgare L.). Easily recognizable by brown reticulated stripes on the sensitive barley leaves, net blotch reduces the yield by up to 40% and decreases seed quality. The life cycle, the mode of dispersion and the development of the pathogen, allow a quick contamination of the host. Crop residues, seeds, and wild grass species are the inoculum sources to spread the disease. The interaction between the barley plant and the fungus is complex and involves physiological changes with the emergence of symptoms on barley and genetic changes including the modulation of different genes involved in the defense pathways. The genes of net blotch resistance have been identified and their localizations are distributed on seven barley chromosomes. Considering the importance of this disease, several management approaches have been performed to control net blotch. One of them is the use of beneficial bacteria colonizing the rhizosphere, collectively referred to as Plant Growth Promoting Rhizobacteria. Several studies have reported the protective role of these bacteria and their metabolites against potential pathogens. Based on the available data, we expose a comprehensive review of Pyrenophora teres including its morphology, interaction with the host plant and means of control.
Collapse
Affiliation(s)
- Aurélie Backes
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
13
|
Colasuonno P, Marcotuli I, Gadaleta A, Soriano JM. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:315. [PMID: 33562160 PMCID: PMC7914919 DOI: 10.3390/plants10020315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
14
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Büttner B, Draba V, Pillen K, Schweizer G, Maurer A. Identification of QTLs conferring resistance to scald (Rhynchosporium commune) in the barley nested association mapping population HEB-25. BMC Genomics 2020; 21:837. [PMID: 33246416 PMCID: PMC7694317 DOI: 10.1186/s12864-020-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC1S3 generation, derived from crosses of 25 wild barley accessions with cv. Barke. RESULTS In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected. CONCLUSIONS To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.
Collapse
Affiliation(s)
- Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Vera Draba
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.
| |
Collapse
|
16
|
Sallam AH, Manan F, Bajgain P, Martin M, Szinyei T, Conley E, Brown-Guedira G, Muehlbauer GJ, Anderson JA, Steffenson BJ. Genetic architecture of agronomic and quality traits in a nested association mapping population of spring wheat. THE PLANT GENOME 2020; 13:e20051. [PMID: 33217209 DOI: 10.1002/tpg2.20051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Germplasm collections are rich sources of genetic variation to improve crops for many valuable traits. Nested association mapping (NAM) populations can overcome the limitations of genome-wide association studies (GWAS) in germplasm collections by reducing the effect of population structure. We exploited the genetic diversity of the USDA-ARS wheat (Triticum aestivum L.) core collection by developing the Spring Wheat Multiparent Introgression Population (SWMIP). To develop this population, twenty-five core parents were crossed and backcrossed to the Minnesota spring wheat cultivar RB07. The NAM population and 26 founder parents were genotyped using genotyping-by-sequencing and phenotyped for heading date, height, test weight, and grain protein content. After quality control, 20,312 markers with physical map positions were generated for 2,038 recombinant inbred lines (RILs). The number of RILs in each family varied between 58 and 96. Three GWAS models were utilized for quantitative trait loci (QTL) detection and accounted for known family stratification, genetic kinship, and both covariates. GWAS was performed on the whole population and also by bootstrap sampling of an equal number of RILs from each family. Greater power of QTL detection was achieved by treating families equally through bootstrapping. In total 16, 15, 12, and 13 marker-trait associations (MTAs) were identified for heading date, height, test weight, and grain protein content, respectively. Some of these MTAs were coincident with major genes known to control the traits, but others were novel and contributed by the wheat core parents. The SWMIP will be a valuable source of genetic variation for spring wheat breeding.
Collapse
Affiliation(s)
- Ahmad H Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Fazal Manan
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Martin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Emily Conley
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
17
|
Beche E, Gillman JD, Song Q, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo AM. Nested association mapping of important agronomic traits in three interspecific soybean populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1039-1054. [PMID: 31974666 DOI: 10.1007/s00122-019-03529-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Glycine soja germplasm can be used to successfully introduce new alleles with the potential to add valuable new genetic diversity to the current elite soybean gene pool. Given the demonstrated narrow genetic base of the US soybean production, it is essential to identify beneficial alleles from exotic germplasm, such as wild soybean, to enhance genetic gain for favorable traits. Nested association mapping (NAM) is an approach to population development that permits the comparison of allelic effects of the same QTL in multiple parents. Seed yield, plant maturity, plant height and plant lodging were evaluated in a NAM panel consisting of 392 recombinant inbred lines derived from three biparental interspecific soybean populations in eight environments during 2016 and 2017. Nested association mapping, combined with linkage mapping, identified three major QTL for plant maturity in chromosomes 6, 11 and 12 associated with alleles from wild soybean resulting in significant increases in days to maturity. A significant QTL for plant height was identified on chromosome 13 with the allele increasing plant height derived from wild soybean. A significant grain yield QTL was detected on chromosome 17, and the allele from Glycine soja had a positive effect of 166 kg ha-1; RIL's with the wild soybean allele yielded on average 6% more than the lines carrying the Glycine max allele. These findings demonstrate the usefulness and potential of alleles from wild soybean germplasm to enhance important agronomic traits in a soybean breeding program.
Collapse
Affiliation(s)
- Eduardo Beche
- Division of Plant Science, University of Missouri, Columbia, MO, USA
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Randall Nelson
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
- USDA-Agricultural Research Service, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Tim Beissinger
- Center for Integrated Breeding Research, Georg-August-Universität, Göttingen, Germany
| | - Jared Decker
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - Grover Shannon
- Division of Plant Science, University of Missouri, Columbia, MO, USA
| | - Andrew M Scaboo
- Division of Plant Science, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
18
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
19
|
Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2633-2650. [PMID: 31209538 DOI: 10.1007/s00122-019-03378-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 05/28/2023]
Abstract
A total of 449 barley accessions were phenotyped for Pyrenophora teres f. teres resistance at three locations and in greenhouse trials. Genome-wide association studies identified 254 marker-trait associations corresponding to 15 QTLs. Net form of net blotch is one of the most important diseases of barley and is present in all barley growing regions. Under optimal conditions, it causes high yield losses of 10-40% and reduces grain quality. The most cost-effective and environmentally friendly way to prevent losses is growing resistant cultivars, and markers linked to effective resistance factors can accelerate the breeding process. Here, 449 barley accessions expressing different levels of resistance comprising landraces and commercial cultivars from the centres of diversity were selected. The set was phenotyped for seedling resistance to three isolates in controlled-environment tests and for adult plant resistance at three field locations (Belarus, Germany and Australia) and genotyped with the 50 k iSelect chip. Genome-wide association studies using 33,818 markers and a compressed mixed linear model to account for population structure and kinship revealed 254 significant marker-trait associations corresponding to 15 distinct QTL regions. Four of these regions were new QTL that were not described in previous studies, while a total of seven regions influenced resistance in both seedlings and adult plants.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Olga Afanasenko
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Anna Anisimova
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Gregory J Platz
- Queensland Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Olga Kovaleva
- Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, B. Morskaya Street, Saint Petersburg, Russia, 190000
| | - Alexandr Zubkovich
- Republican Unitary Enterprise, The Research and Practical Center of the National Academy of Sciences of Belarus for Arable Farming, Timiriazeva Street 1, 222160, Zhodino, Belarus
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
20
|
Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:151-164. [PMID: 31203880 DOI: 10.1016/j.plantsci.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Enhancing the accumulation of essential mineral elements in cereal grains is of prime importance for combating human malnutrition. Biofortification by breeding holds great potential for improving nutrient accumulation in grains. However, conventional breeding approaches require element analysis of many grain samples, which causes high costs. Here we applied hyperspectral imaging to estimate the concentration of 15 grain elements (C, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in high-throughput in the wild barley nested association mapping (NAM) population HEB-25, comprising 1,420 BC1S3 lines derived from crossing 25 wild barley accessions with the cultivar 'Barke'. Nutrient concentrations varied largely with a multitude of lines having higher micronutrient concentration than 'Barke'. In a genome-wide association study (GWAS), we located 75 quantitative trait locus (QTL) hotspots, whereof many could be explained by major genes such as NO APICAL MERISTEM-1 (NAM-1) and PHOTOPERIOD 1 (Ppd-H1). The GWAS approach revealed exotic alleles that were able to increase grain element concentrations. Remarkably, a QTL linked to GIBBERELLIN 20 OXIDASE 2 (HvGA20ox2) significantly increased several grain elements without yield loss. We conclude that introgressing promising exotic alleles into elite breeding material can assist in improving the nutritional value of barley grains.
Collapse
Affiliation(s)
- Paul Herzig
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
21
|
Linde CC, Smith LM. Host specialisation and disparate evolution of Pyrenophora teres f. teres on barley and barley grass. BMC Evol Biol 2019; 19:139. [PMID: 31286867 PMCID: PMC6615293 DOI: 10.1186/s12862-019-1446-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 05/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Pathogens evolve in an arms race, frequently evolving virulence that defeats resistance genes in their hosts. Infection of multiple hosts may accelerate this virulence evolution. Theory predicts that host diversity affects pathogen diversity, with more diverse hosts expected to harbour more diverse pathogens that reproduce sexually. We tested this hypothesis by comparing the microsatellite (SSR) genetic diversity of the barley leaf pathogen Pyrenophora teres f. teres (Ptt) from barley (monoculture) and barley grass (outbreeding). We also aim to investigate host specificity and attempt to track virulence on two barley cultivars, Maritime and Keel. Results Genetic diversity in barley Ptt populations was higher than in populations from barley grass. Barley Ptt populations also had higher linkage disequilibrium levels, indicating less frequent sexual reproduction, consistent with the Red Queen hypothesis theory that genetically diverse hosts should select for higher levels of sexual reproduction of the pathogen. SSR analyses indicate that host-associated Ptt populations do not share genotypes and have independent evolutionary histories. Pathogenicity studies showed host specificity as host-associated Ptt isolates could not cross-infect hosts. Minimum spanning network analyses indicated two major clusters of barley Ptt. One cluster represents Maritime virulent and isolates from Western Australia (WA). Low PhiPt population differentiation between WA populations and those from Maritime and Keel, indicated a WA origin of the Maritime and Keel virulences. The main minimum spanning network cluster is represented by a panmictic population structure, represented by isolates from all over Australia. Conclusions Although barley Ptt populations are more diverse than barley grass Ptt populations, this may be a result of the size and number of founder Ptt populations to Australia, with larger and more barley Ptt populations introduced. More frequent sexual reproduction of Ptt on barley grass support the Red Queen Hypothesis and suggest evolutionary potential of pathogens on diverse hosts are high. Extensive gene flow of Ptt between regions in Australia is suggested to maintain a panmictic population structure, with human-mediated dispersal aiding in virulence evolution of Ptt on barley. Electronic supplementary material The online version of this article (10.1186/s12862-019-1446-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Celeste C Linde
- Division of Ecology and Evolution, Research School of Biology, ANU College of Science, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia.
| | - Leon M Smith
- Division of Ecology and Evolution, Research School of Biology, ANU College of Science, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
22
|
Wiegmann M, Thomas WTB, Bull HJ, Flavell AJ, Zeyner A, Peiter E, Pillen K, Maurer A. "Wild barley serves as a source for biofortification of barley grains". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:83-94. [PMID: 31128718 DOI: 10.1016/j.plantsci.2018.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/05/2023]
Abstract
The continuing growth of the human population creates an inevitable necessity for higher crop yields, which are mandatory for the supply with adequate amounts of food. However, increasing grain yield may lead to a reduction of grain quality, such as a decline in protein and mineral nutrient concentrations causing the so-called hidden hunger. To assess the interdependence between quantity and quality and to evaluate the biofortification potential of wild barley, we conducted field studies, examining the interplay between plant development, yield, and nutrient concentrations, using HEB-YIELD, a subset of the wild barley nested association mapping population HEB-25. A huge variation of nutrient concentration in grains was obtained, since we identified lines with a more than 50% higher grain protein, iron, and zinc concentration in comparison to the recurrent parent 'Barke'. We observed a negative relationship between grain yield and nutritional value in barley, indicated by predominantly negative correlations between yield and nutrient concentrations. Analyzing the genetic control of nutrient concentration in mature grains indicated that numerous genomic regions determine the final nutritional value of grains and wild alleles were frequently associated with higher nutrient concentrations. The targeted introgression of wild barley alleles may enable biofortification in future barley breeding.
Collapse
Affiliation(s)
- Mathias Wiegmann
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - William T B Thomas
- The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Hazel J Bull
- The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Andrew J Flavell
- University of Dundee at JHI, School of Life Sciences, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | - Annette Zeyner
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Animal Nutrition, Theodor-Lieser-Str. 11, 06120 Halle, Germany.
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Nutrition, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
23
|
Rozanova IV, Lashina NM, Mustafin ZS, Gorobets SA, Efimov VM, Afanasenko OS, Khlestkina EK. SNPs associated with barley resistance to isolates of Pyrenophora teres f. teres. BMC Genomics 2019; 20:292. [PMID: 32039701 PMCID: PMC7227216 DOI: 10.1186/s12864-019-5623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Net blotch caused by Pyrenophra teres f. teres is a major foliar disease of barley. Infection can result in significant yield losses of susceptible cultivars of up to 40%. Of the two forms of net blotch (P. teres f. teres and P. teres f. maculata), P. teres f. teres (net form of net blotch) is the dominant one in Russia. The goal of the current study was to identify genomic regions associated with seedling resistance to several pathotypes of the net form of net blotch in Siberian spring barley genotypes. For this, a genome-wide association study of a Siberian barley collection, genotyped with 50 K Illumina SNP-chip, was carried out. RESULTS Seedling resistance of 94 spring barley cultivars and lines to four Pyrenophora teres f. teres isolates (S10.2, K5.1, P3.4.0, and A2.6.0) was investigated. According to the Tekauz rating scale, 25, 21, 14, and 14% of genotypes were highly resistant, and 19, 8, 9, and 16% of genotypes were moderate-resistant to the isolates S10.2, K5.1, P3.4.0, and A2.6.0, respectively. Eleven genotypes (Alag-Erdene, Alan-Bulag, L-259/528, Kedr, Krymchak 55, Omsky golozyorny 2, Omsky 13709, Narymchanin, Pallidum 394, Severny and Viner) were resistant to all studied isolates. Nine additional cultivars (Aley, Barkhatny, Belogorsky, Bezenchuksky 2, Emelya, G-19980, Merit 57, Mestny Primorsky, Slavaynsky) were resistant to 3 of the 4 isolates. The phenotyping and genotyping data were analysed using several statistical models: GLM + Q, GLM + PCA, GLM + PCA + Q, and the MLM + kinship matrix. In total, 40 SNPs in seven genomic regions associated with net blotch resistance were revealed: the region on chromosome 1H between 57.3 and 62.8 cM associated with resistance to 2 isolates (to P3.4.0 at the significant and K5.1 at the suggestive levels), the region on chromosome 6H between 52.6 and 55.4 cM associated with resistance to 3 isolates (to P3.4.0 at the significant and K5.1 and S10.2 at the suggestive levels), three isolate-specific significant regions (P3.4.0-specific regions on chromosome 2H between 71.0 and 74.1 cM and on chromosome 3H between 12.1 and 17.4 cM, and the A2.6.0-specific region on chromosome 3H between 50.9 and 54.8 cM), as well as two additional regions on chromosomes 2H (between 23.2 and 23.8 cM, resistant to S10.2) and 3 (between 135.6 and 137.5 cM resistant to K5.1) with suggestive SNPs, coinciding, however, with known net blotch resistance quantitative trait loci (QTLs) at the same regions. CONCLUSIONS Seven genomic regions on chromosomes 1H, 2H, 3H, and 6H associated with the resistance to four Pyrenophora teres f. teres isolates were identified in a genome-wide association study of a Siberian spring barley panel. One novel isolate-specific locus on chromosome 3 between 12.1 and 17.4 cM was revealed. Other regions identified in the current study coincided with previously known loci conferring resistance to net blotch. The significant SNPs revealed in the current study can be converted to convenient PCR markers for accelerated breeding of resistant barley cultivars.
Collapse
Affiliation(s)
- Irina V Rozanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia. .,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia.
| | - Nina M Lashina
- All-Russian Research Institute for Plant Protection, St. Petersburg, 196608, Russia
| | - Zakhar S Mustafin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia
| | - Sofia A Gorobets
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova, 1, Novosibirsk, 630090, Russia
| | - Olga S Afanasenko
- All-Russian Research Institute for Plant Protection, St. Petersburg, 196608, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia
| |
Collapse
|
24
|
Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M. Genome-wide Association Studies and Candidate Gene Identification for Leaf Scald and Net Blotch in Barley ( Hordeum vulgare L.). PLANT DISEASE 2019; 103:880-889. [PMID: 30806577 DOI: 10.1094/pdis-07-18-1190-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report genomic regions that significantly control resistance to scald, net form (NFNB) and spot form net blotch (SFNB) in barley. Barley genotypes from Ethiopia, ICARDA, and the United States were evaluated in Ethiopia and North Dakota State University (NDSU). Genome-wide association studies (GWAS) were conducted using 23,549 single nucleotide polymorphism (SNP) markers for disease resistance in five environments in Ethiopia. For NFNB and SFNB, we assessed seedling resistance in a glasshouse at NDSU. A large proportion of the Ethiopian landraces and breeding genotypes were resistant to scald and NFNB. Most of genotypes resistant to SFNB were from NDSU. We identified 17, 26, 7, and 1 marker-trait associations (MTAs) for field-scored scald, field-scored net blotch, greenhouse-scored NFNB, and greenhouse-scored SFNB diseases, respectively. Using the genome sequence and the existing literature, we compared the MTAs with previously reported loci and genes for these diseases. For leaf scald, only a few of our MTAs overlap with previous reports. However, the MTAs found for field-scored net blotch as well as NFNB and SFNB mostly overlap with previous reports. We scanned the barley genome for identification of candidate genes within 250 kb of the MTAs, resulting in the identification of 307 barley genes for the 51 MTAs. Some of these genes are related to plant defense responses such as subtilisin-like protease, chalcone synthase, lipoxygenase, and defensin-like proteins.
Collapse
Affiliation(s)
- Sintayehu D Daba
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| | - Richard Horsley
- 2 North Dakota State University, Department of Plant Sciences, Fargo, ND 58108-6050
| | - Robert Brueggeman
- 3 North Dakota State University, Department of Plant Pathology, Fargo, ND 58102-2765; and
| | | | - Mohsen Mohammadi
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| |
Collapse
|
25
|
Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K. Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues. Sci Rep 2019; 9:6397. [PMID: 31024028 PMCID: PMC6484077 DOI: 10.1038/s41598-019-42673-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/05/2019] [Indexed: 01/28/2023] Open
Abstract
Since the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley alleles, introgressed into elite barley cultivars, can be utilized to support grain yield formation. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.
Collapse
Affiliation(s)
- Mathias Wiegmann
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Anh Pham
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
| | - Timothy J March
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
- Rijk Zwaan Australia Pty. Ltd., PO Box 284, Daylesford, 3460, Australia
| | - Ayed Al-Abdallat
- The University of Jordan, Faculty of Agriculture, Department of Horticulture and Crop Science, Amman, Jordan
| | | | - Hazel J Bull
- The James Hutton Institute, Invergrowie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd, Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - Mohammed Shahid
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Jason Eglinton
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, Queensland, Australia
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Dalia Building 2nd Floor, Bashir El Kassar Street, Verdun, Beirut, Lebanon
| | - Andrew J Flavell
- University of Dundee at JHI, School of Life Sciences, Invergrowie, Dundee, DD2 5DA, Scotland, UK
| | - Mark Tester
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
26
|
Pham AT, Maurer A, Pillen K, Brien C, Dowling K, Berger B, Eglinton JK, March TJ. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC PLANT BIOLOGY 2019; 19:134. [PMID: 30971212 PMCID: PMC6458831 DOI: 10.1186/s12870-019-1723-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can improve adaptation of cultivated barley to drought stress. RESULTS In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC1S3 lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar 'Barke', was evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele. CONCLUSIONS Across all traits, QTL which increased phenotypic values were identified, providing a wider range of genetic diversity for the improvement of drought tolerance in barley.
Collapse
Affiliation(s)
- Anh-Tung Pham
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Chris Brien
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Phenomics and Bioinformatics Research Centre, University of South Australia, North Terrace, Adelaide, SA 5000 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Kate Dowling
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Phenomics and Bioinformatics Research Centre, University of South Australia, North Terrace, Adelaide, SA 5000 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Jason K. Eglinton
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865 Australia
| | - Timothy J. March
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| |
Collapse
|
27
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
28
|
Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS One 2018; 13:e0191666. [PMID: 29370232 PMCID: PMC5784946 DOI: 10.1371/journal.pone.0191666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Meng Q, Cui W, Lan S, Ma X, Wang H, Kong L. Genetic Architecture of Nitrogen-Deficiency Tolerance in Wheat Seedlings Based on a Nested Association Mapping (NAM) Population. FRONTIERS IN PLANT SCIENCE 2018; 9:845. [PMID: 29997636 PMCID: PMC6028695 DOI: 10.3389/fpls.2018.00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
Genetic divergence for nitrogen utilization in germplasms is important in wheat breeding programs, especially for low nitrogen input management. In this study, a nested association mapping (NAM) population, derived from "Yanzhan 1" (a Chinese domesticated cultivar) crossed with "Hussar" (a British domesticated cultivar) and another three semi-wild wheat varieties, namely, "Cayazheda 29" (Triticum aestivum ssp. tibetanum Shao), "Yunnan" (T. aestivum ssp. yunnanense King), and "Yutian" (T. aestivum petropavloski Udats et Migusch), was used to detect quantitative trait loci (QTLs) for nitrogen utilization at the seedling stage. An integrated genetic map was constructed using 2,059 single nucleotide polymorphism (SNP) markers from a 90 K SNP chip, with a total coverage of 2,355.75 cM and an average marker spacing of 1.13 cM. A total of 67 QTLs for RDW (root dry weight), SDW (shoot dry weight), TDW (total dry weight), and RSDW (root to shoot ratio) were identified under normal nitrogen conditions (N+) and nitrogen deficient conditions (N-). Twenty-three of these QTLs were only detected under N- conditions. Moreover, 23 favorable QTLs were identified in the domesticated cultivar Yanzhan 1, 15 of which were detected under N+ conditions, while only four were detected under N- conditions. In contrast, the semi-wild cultivars contributed more favorable N--specific QTLs (eight from Cayazheda 29; nine from Yunnan), which could be further explored for breeding cultivars adapted to nitrogen-deficient conditions. In particular, QRSDW-5A.1 from YN should be further evaluated using high-resolution mapping.
Collapse
Affiliation(s)
- Deqiang Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qing Meng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Weian Cui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shengjie Lan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| |
Collapse
|