1
|
Steinegger KM, Merkel OM. How can simulations aid our understanding of nanoparticle-mediated siRNA delivery? Ther Deliv 2025:1-3. [PMID: 40357536 DOI: 10.1080/20415990.2025.2505397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Affiliation(s)
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Ziebarth JD, Shadman H, Wang Y. Insights from Computational Studies of Polymeric Systems for Nucleic Acid Delivery. Mol Pharm 2025; 22:1160-1173. [PMID: 39957182 DOI: 10.1021/acs.molpharmaceut.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The safe and efficient delivery of nucleic acids into cells is a critical step in the success of gene and cell therapies. Although viral vectors are the predominant tools in current gene and cell therapy practices, they present significant challenges including high costs and safety concerns. Nonviral delivery systems for nucleic acids show immense potential for future medicine, particularly as nucleic acid therapeutics continue to be developed for the treatment of a wide range of diseases, including cancer. Significant research efforts, both experimental and computational, have been devoted to the development, characterization, and understanding of nonviral delivery processes. While numerous reviews have documented these research advancements, few have specifically addressed the contributions from computational studies. In this review, we provide an overview of the insights gained from computational and theoretical studies of polymeric systems for nucleic acid delivery. We also highlight future directions where computational and experimental approaches could synergize to advance the field.
Collapse
Affiliation(s)
- Jesse Dylan Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
3
|
Mohiuddin AKM, Ferdous N, Reza MN, Al Amin M, Khanam R, Hossain MU, Ahammad I, Mahmud S. Designing siRNA for silencing the human ERBB2 gene in cancer treatment: Evaluating intracellular delivery strategies. Comput Biol Med 2025; 186:109663. [PMID: 39809083 DOI: 10.1016/j.compbiomed.2025.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals. Several ERBB2-blocking techniques have the effect of overexpressed ERBB2, and several of them have passed clinical trials for use as therapies. Small interfering RNAs (siRNA), which have the potential to silence genes, are attractive for treating such fatal malignancies. In this study, we rationally designed a siRNA molecule targeting the human ERBB2 gene. The selection process involved identifying a shared region among all ERBB2 transcripts for siRNA design. The ultimate siRNA candidate was chosen through rigorous evaluation using contemporary algorithms, considering off-target similarities, examination of thermodynamic properties, and analysis using molecular dynamics (MD) simulations. Further, we opted for cell-penetrating peptides (CPP) and RNA aptamer as carriers for the siRNA. Employing both steered MD simulations and traditional MD simulations, we investigated how these carriers facilitate siRNA delivery. Experimental confirmation revealed the stability of the selected carriers and siRNA on the lipid bilayer. The designed siRNA molecule and the simulations present a potential alternative therapeutic strategy against human ERBB2. This contributes to advances in developing and utilizing innovative carriers for the delivery of siRNA, enhancing the potential for therapeutic applications.
Collapse
Affiliation(s)
- A K M Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Roksana Khanam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
4
|
Dodaro A, Novello G, Menin S, Cavastracci Strascia C, Sturlese M, Salmaso V, Moro S. Post-Docking Refinement of Peptide or Protein-RNA Complexes Using Thermal Titration Molecular Dynamics (TTMD): A Stability Insight. J Chem Inf Model 2025; 65:1441-1452. [PMID: 39818831 PMCID: PMC11815843 DOI: 10.1021/acs.jcim.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
RNA-protein interactions drive and regulate fundamental cellular processes like transcription and translation. Despite being still limited, the growing body of structural data significantly contributes to the characterization of these interactions. However, RNA complexes involving proteins or peptides are not always available due to the structural determination challenges that this biopolymer entails. Consequently, modeling approaches like molecular docking are exploited to generate complexes relevant to structural and pharmaceutical purposes, including analysis of putative drug targets. Docking methods, despite their widespread adoption, are often hindered by limitations in scoring accuracy, which affects the ranking of the generated poses. Postdocking refining methods, including molecular dynamics (MD) approaches, have been developed to tackle this issue. Thermal Titration Molecular Dynamics (TTMD) is an enhanced sampling molecular dynamics technique that has been previously effectively applied to refine protein or RNA-small-molecule docking poses. This study presents the first application of TTMD to RNA-peptide complexes, validating this method on more complex systems and extending its applicability domain. Our findings showcase the capability of this technique to refine peptide-RNA docking poses, correctly identifying native binding modes among decoys for different pharmaceutically relevant targets.
Collapse
Affiliation(s)
- Andrea Dodaro
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Gianluca Novello
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Chiara Cavastracci Strascia
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Veronica Salmaso
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
5
|
Roy P, Kreofsky NW, Reineke TM. Quinine-Based Polymers Are Versatile and Effective Vehicles for Intracellular pDNA, mRNA, and Cas9 Protein Delivery. Biomacromolecules 2024; 25:6693-6707. [PMID: 39324490 DOI: 10.1021/acs.biomac.4c00925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Quinine-based polymers have previously demonstrated promising performance in delivering pDNA in cells owing to their electrostatic as well as the nonelectrostatic interactions with pDNA. Herein, we evaluate whether quinine-based polymers are versatile for delivery of mRNA and Cas9-sgRNA complexes, especially in a serum-rich environment. Both mRNA and the Cas9-sgRNA complex are potent therapeutics that are structurally, chemically, and functionally very different from pDNA. By exploring a family of 7 quinine-based polymers that vary in monomer structure and polymer composition, we tested numerous formulations (42 with pDNA, 96 with mRNA, and 48 with Cas9-sgRNA) for payload-polymer complexation and delivery to compare payload-dependent structure-activity relationships. Several formulations demonstrated performance comparable to or better than the commercially available transfection agent jetPEI. The results of this study demonstrate the potential of quinine-based as a versatile carrier platform for delivering a wide range of nucleic acid therapeutics and serving the drug delivery needs in the field genetic medicine.
Collapse
Affiliation(s)
- Punarbasu Roy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Ying ANJ, Tan YF, Wong YS, Venkatraman S. Sustained intra-cellular siRNA release from poly(L-arginine) multilayered nanoparticles for prolonged gene silencing. Expert Opin Drug Deliv 2024; 21:1513-1522. [PMID: 39290161 DOI: 10.1080/17425247.2024.2405206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Sustained siRNA release from nanocarriers is difficult to achieve inside the cell after entry: typically, all nanocarriers exhibit burst release of the cargo into the cytoplasm. RESEARCH DESIGN AND METHODS Layer-by-layer (LbL) nanoparticles (NPs) can be constructed so that they escape endosomes intact, and subsequently exhibit sustained release of the cargo. Our work quantifies intra-cellular siRNA release from multilayered NPs, evaluates mechanism behind the sustained release, and optimizes the duration of release. RESULTS Intra-cellular studies showed that NPs developed with four layers of poly-L-arginine, alternated with three layers of siRNA layers, were able to elicit effective and prolonged SPARC knockdown activity over 21 days with a single-dose treatment. For the first time, we have quantified the amounts of released siRNA in the cytoplasm and the amount of siRNA remaining inside the NPs at each timepoint. Furthermore, we have correlated the amount of released siRNA within cells by LbL NPs to the cellular knockdown efficiency of multilayered delivery system. CONCLUSIONS This methodology may provide an excellent screening tool for assessing the duration of gene silencing by various nanocarrier formulations.
Collapse
Affiliation(s)
- Alice Ng Jie Ying
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Fei Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- NTU-Northwestern University, Institute for Nanomedicine, Singapore, Singapore
| | - Subbu Venkatraman
- Material Science & Engineering, National University of Singapore, Singapore, Singapore
- Investigator, iHealthTech, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Muscat S, Martino G, Manigrasso J, Marcia M, De Vivo M. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J Chem Theory Comput 2024. [PMID: 39150960 DOI: 10.1021/acs.jctc.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
RNA molecules play a vital role in biological processes within the cell, with significant implications for science and medicine. Notably, the biological functions exerted by specific RNA molecules are often linked to the RNA conformational ensemble. However, the experimental characterization of such three-dimensional RNA structures is challenged by the structural heterogeneity of RNA and by its multiple dynamic interactions with binding partners such as small molecules, proteins, and metal ions. Consequently, our current understanding of the structure-function relationship of RNA molecules is still limited. In this context, we highlight molecular dynamics (MD) simulations as a powerful tool to complement experimental efforts on RNAs. Despite the recognized limitations of current force fields for RNA MD simulations, examining the dynamics of selected RNAs has provided valuable functional insights into their structures.
Collapse
Affiliation(s)
- Stefano Muscat
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Mölndal, Sweden
| | - Marco Marcia
- European Molecular Biology Laboratory Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
8
|
Binder J, Winkeljann J, Steinegger K, Trnovec L, Orekhova D, Zähringer J, Hörner A, Fell V, Tinnefeld P, Winkeljann B, Frieß W, Merkel OM. Closing the Gap between Experiment and Simulation─A Holistic Study on the Complexation of Small Interfering RNAs with Polyethylenimine. Mol Pharm 2024; 21:2163-2175. [PMID: 38373164 PMCID: PMC7616749 DOI: 10.1021/acs.molpharmaceut.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Rational design is pivotal in the modern development of nucleic acid nanocarrier systems. With the rising prominence of polymeric materials as alternatives to lipid-based carriers, understanding their structure-function relationships becomes paramount. Here, we introduce a newly developed coarse-grained model of polyethylenimine (PEI) based on the Martini 3 force field. This model facilitates molecular dynamics simulations of true-sized PEI molecules, exemplified by molecules with molecular weights of 1.3, 5, 10, and 25 kDa, with degrees of branching between 50.0 and 61.5%. We employed this model to investigate the thermodynamics of small interfering RNA (siRNA) complexation with PEI. Our simulations underscore the pivotal role of electrostatic interactions in the complexation process. Thermodynamic analyses revealed a stronger binding affinity with increased protonation, notably in acidic (endosomal) pH, compared to neutral conditions. Furthermore, the molecular weight of PEI was found to be a critical determinant of binding dynamics: smaller PEI molecules closely enveloped the siRNA, whereas larger ones extended outward, facilitating the formation of complexes with multiple RNA molecules. Experimental validations, encompassing isothermal titration calorimetry and single-molecule fluorescence spectroscopy, aligned well with our computational predictions. Our findings not only validate the fidelity of our PEI model but also accentuate the importance of in silico data in the rational design of polymeric drug carriers. The synergy between computational predictions and experimental validations, as showcased here, signals a refined and precise approach to drug carrier design.
Collapse
Affiliation(s)
- Jonas Binder
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Joshua Winkeljann
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Katharina Steinegger
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Lara Trnovec
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Daria Orekhova
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Jonas Zähringer
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Andreas Hörner
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Valentin Fell
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Philip Tinnefeld
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Benjamin Winkeljann
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Wolfgang Frieß
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Olivia M Merkel
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| |
Collapse
|
9
|
Marquet F, Hagen H, Stanchieri M, Beinier VS, Grasso G, Danani A, Patrulea V, Borchard G. Clickable polyethyleneimine incorporated into triblock copolymeric micelles as an efficient platform in the delivery of siRNA to NSCLC cells. Int J Pharm 2024; 649:123632. [PMID: 38000648 DOI: 10.1016/j.ijpharm.2023.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Franck Marquet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Harry Hagen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mattia Stanchieri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Véronique Serre Beinier
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
10
|
Reza MN, Mahmud S, Ferdous N, Ahammad I, Hossain MU, Al Amin M, Mohiuddin AKM. Gene silencing of Helicobacter pylori through newly designed siRNA convenes the treatment of gastric cancer. Cancer Med 2023; 12:22407-22419. [PMID: 38037736 PMCID: PMC10757103 DOI: 10.1002/cam4.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastric pathogen that is responsible for causing chronic inflammation and increasing the risk of gastric cancer development. It is capable of persisting for decades in the harsh gastric environment because of the inability of the host to eradicate the infection. Several treatment strategies have been developed against this bacterium using different antibiotics. But the effectiveness of treating H. pylori has significantly decreased due to widespread antibiotic resistance, including an increased risk of gastric cancer. The small interfering RNAs (siRNA), which is capable of sequence-specific gene-silencing can be used as a new therapeutic approach for the treatment of a variety of such malignancies. In the current study, we rationally designed two siRNA molecules to silence the cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) genes of H. pylori for their significant involvement in developing cancer. METHODS We selected a common region of all the available transcripts from different countries of CagA and VacA to design the siRNA molecules. The final siRNA candidate was selected based on the results from machine learning algorithms, off-target similarity, and various thermodynamic properties. RESULT Further, we utilized molecular docking and all atom molecular dynamics (MD) simulations to assess the binding interactions of the designed siRNAs with the major components of the RNA-induced silencing complex (RISC) and results revealed the ability of the designed siRNAs to interact with the proteins of RISC complex in comparable to those of the experimentally reported siRNAs. CONCLUSION These designed siRNAs should effectively silence the CagA and VacA genes of H. pylori during siRNA mediated treatment in gastric cancer.
Collapse
Affiliation(s)
- Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Ishtiaque Ahammad
- Bioinformatics DivisionNational Institute of BiotechnologyAshuliaBangladesh
| | | | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
11
|
Characterization of the Interaction of Polymeric Micelles with siRNA: A Combined Experimental and Molecular Dynamics Study. Polymers (Basel) 2022; 14:polym14204409. [PMID: 36297986 PMCID: PMC9611052 DOI: 10.3390/polym14204409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The simulation of large molecular systems remains a daunting challenge, which justifies the exploration of novel methodologies to keep computers as an ideal companion tool for everyday laboratory work. Whole micelles, bigger than 20 nm in size, formed by the self-assembly of hundreds of copolymers containing more than 50 repeating units, have until now rarely been simulated, due to a lack of computational power. Therefore, a flexible amphiphilic triblock copolymer (mPEG45-α-PLL10-PLA25) containing a total of 80 repeating units, has been emulated and synthesized to embody compactified nanoconstructs of over 900 assembled copolymers, sized between 80 and 100 nm, for siRNA complexing purposes. In this study, the tailored triblock copolymers containing a controlled number of amino groups, were used as a support model to address the binding behavior of STAT3-siRNA, in the formation of micelleplexes. Since increasingly complex drug delivery systems require an ever more optimized physicochemical characterization, a converging description has been implemented by a combination of experimentation and computational simulations. The computational data were advantageous in allowing for the assumption of an optimal N/P ratio favoring both conformational rigidifications of STAT3-siRNA with low competitive phenomena at the binding sites of the micellar carriers. These calculations were consistent with the experimental data showing that an N/P ratio of 1.5 resulted in a sufficient amount of complexed STAT3-siRNA with an electrical potential at the slipping plane of the nanopharmaceuticals, close to the charge neutralization.
Collapse
|
12
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Marquet F, Patrulea V, Borchard G. Comparison of triblock copolymeric micelles based on α- and ε-poly(L-lysine): a Cornelian choice. Polym J 2021. [DOI: 10.1038/s41428-021-00552-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractDue to the lack of safe carriers for the delivery of small interfering RNA (siRNA), clinical applications of nucleotide-based therapeutics have been limited. In this study, biodegradable amphiphilic triblock copolymers with tailored molecular weights for each block composed of methoxy poly(ethylene glycol) (2000 g/mol), poly(L-lysine) (1300 g/mol) and poly(D,L-lactic acid) (1800 g/mol) (mPEG45-α-PLL10-PLA25) were synthesized and fully characterized. The peptide synthesis was carried out on a solid phase to limit the presence of cationic charges. The arrangement and availability of cationic amino groups within a micellar vector were investigated to determine the colloidal stability as well as the predisposition of these systems to vectorize siRNAs in addition to their already known ability to improve the solubility of hydrophobic compounds. For this purpose, a triblock copolymer containing an epsilon poly(L-lysine) was synthesized similarly. Accordingly, the arrangement of the cationic segment modifies the rigidity involving a complexation constraint due to limited cationic charges available on the surface, which can compromise the efficiency of delivery into cells. In addition, the two vectors were biocompatible in different human cell lines.
Collapse
|
14
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Sperti M, Malavolta M, Ciniero G, Borrelli S, Cavaglià M, Muscat S, Tuszynski JA, Afeltra A, Margiotta DPE, Navarini L. JAK inhibitors in immune-mediated rheumatic diseases: From a molecular perspective to clinical studies. J Mol Graph Model 2021; 104:107789. [DOI: 10.1016/j.jmgm.2020.107789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
16
|
Rapallo A, Gaspari R, Grasso G, Danani A. Extended diffusion theory: Recovering dynamics from biased/accelerated molecular simulations. J Comput Chem 2020; 42:586-599. [PMID: 33351966 DOI: 10.1002/jcc.26474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022]
Abstract
Dynamical properties are of great importance in determining the behavior of synthetic and natural molecules, but capturing them by computational methods is a nontrivial task. Very often the time scales of the relevant phenomena are far beyond the typical time windows accessible by classical Molecular Dynamics (MD) simulations, currently limited to the order of microseconds on standard laboratory workstations. On the other hand, biased and accelerated simulations allow for fast and thorough exploration of the molecular conformational space, but they lose the dynamic information. The problem of recovering dynamics from biased/accelerated simulations is a very active field of research, but no totally robust/reliable solutions have been given yet. In this paper it is shown how the Smoluchowski equation, in the framework of Diffusion Theory (DT), can be used to bridge this gap, and dynamical properties, in the form of time correlation functions (TCFs), can be extracted also from such kind of simulations. DT is first extended (EDT) to express the mobility tensors entering the Smoluchowski operator in terms of a recently introduced unified and regularized Rotne-Prager-Yamakawa approximation, [P. J. Zuk, E. Wajnryb, K. A. Mizerski, P. Szymczak, J. Fluid. Mech. 2014, 741, R5, 1-13] also involving mixed rotation-translation contributions, and rotation-rotation terms beside the classical translation-translation ones, so far used in DT. Then, the method is applied to recover the dynamics of a nontrivial example of a peptide in explicit water from the first 200 ns of a Replica Exchange Molecular Dynamics simulation, which is a popular computational method that destroys the long time dynamics. EDT dynamics were found to favorably compare against those coming from a standard MD simulation of the same system, requiring a time window of 30 μs to converge. This result shows that EDT is a tool of practical value to recover the long time dynamics of systems in diffusive regimes from biased/accelerated simulations, to be exploited in those cases when direct evaluation by standard MD is unfeasible.
Collapse
Affiliation(s)
- Arnaldo Rapallo
- CNR - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Milano, Italy
| | - Roberto Gaspari
- CNR - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Milano, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Università della Svizzera italiana (USI), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Lugano-Viganello, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Università della Svizzera italiana (USI), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Lugano-Viganello, Switzerland
| |
Collapse
|
17
|
Miyazaki T, Uchida S, Hatano H, Miyahara Y, Matsumoto A, Cabral H. Guanidine-phosphate interactions stabilize polyion complex micelles based on flexible catiomers to improve mRNA delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Abstract
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France.,Faculty of Sciences and Techniques, University of Orléans, Orléans 45071 Cedex 02, France
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| |
Collapse
|
19
|
Miyazaki T, Uchida S, Nagatoishi S, Koji K, Hong T, Fukushima S, Tsumoto K, Ishihara K, Kataoka K, Cabral H. Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Adv Healthc Mater 2020; 9:e2000538. [PMID: 32583633 DOI: 10.1002/adhm.202000538] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Messenger RNA (mRNA) shows high therapeutic potential, though effective delivery systems are still needed for boosting its application. Nanocarriers loading mRNA via polyion complexation with block catiomers into core-shell micellar structures are promising systems for enhancing mRNA delivery. Engineering the interaction between mRNA and catiomers through polymer design can promote the development of mRNA-loaded micelles (mRNA/m) with increased delivery efficiency. Particularly, the polycation chain rigidity may critically affect the mRNA-catiomer interplay to yield potent nanocarriers, yet its effect remains unknown. Herein, the influence of polycation stiffness on the performance of mRNA/m by developing block complementary catiomers having polycation segments with different flexibility, that is, poly(ethylene glycol)-poly(glycidylbutylamine) (PEG-PGBA) and PEG-poly(L-lysine) (PEG-PLL) is studied. PEG-PGBA allows more than 50-fold stronger binding to mRNA than the relatively more rigid PEG-PLL, resulting in mRNA/m with enhanced protection against enzymatic attack and polyanions. mRNA/m from PEG-PGBA significantly enhances mRNA in vivo bioavailability and increased protein translation, indicating the importance of controlling polycation flexibility for forming stable polyion complexes with mRNA toward improved delivery.
Collapse
Affiliation(s)
- Takuya Miyazaki
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Kanagawa Institute of Industrial Science and Technology 705‐1 Shimoimaizumi, Ebina Kanagawa 243‐0435 Japan
| | - Satoshi Uchida
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Satoru Nagatoishi
- Institute of Medical ScienceThe University of Tokyo 4‐6‐1 Shirokanedai, Minato‐ku Tokyo 108‐8639 Japan
| | - Kyoko Koji
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Taehun Hong
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine (iCONM) 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Kouhei Tsumoto
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Institute of Medical ScienceThe University of Tokyo 4‐6‐1 Shirokanedai, Minato‐ku Tokyo 108‐8639 Japan
| | - Kazuhiko Ishihara
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM) 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
- Institute for Future InitiativesThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Horacio Cabral
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
20
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
21
|
Stojceski F, Grasso G, Pallante L, Danani A. Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery. ACS OMEGA 2020; 5:2978-2986. [PMID: 32095720 PMCID: PMC7033960 DOI: 10.1021/acsomega.9b03908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.
Collapse
Affiliation(s)
- Filip Stojceski
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Gianvito Grasso
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed
Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Andrea Danani
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| |
Collapse
|
22
|
Grasso G, Mercuri S, Danani A, Deriu MA. Biofunctionalization of Silica Nanoparticles with Cell-Penetrating Peptides: Adsorption Mechanism and Binding Energy Estimation. J Phys Chem B 2019; 123:10622-10630. [DOI: 10.1021/acs.jpcb.9b08106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland
| | - Stefano Mercuri
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy
| | - Andrea Danani
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland
| | - Marco A. Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy
| |
Collapse
|
23
|
Gurtovenko AA. Molecular-Level Insight into the Interactions of DNA/Polycation Complexes with Model Cell Membranes. J Phys Chem B 2019; 123:6505-6514. [DOI: 10.1021/acs.jpcb.9b05110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey A. Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004 Russia
| |
Collapse
|
24
|
Grasso G, Morbiducci U, Massai D, Tuszynski JA, Danani A, Deriu MA. Destabilizing the AXH Tetramer by Mutations: Mechanisms and Potential Antiaggregation Strategies. Biophys J 2019; 114:323-330. [PMID: 29401430 DOI: 10.1016/j.bpj.2017.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
The AXH domain of protein Ataxin 1 is thought to play a key role in the misfolding and aggregation pathway responsible for Spinocerebellar ataxia 1. For this reason, a molecular level understanding of AXH oligomerization pathway is crucial to elucidate the aggregation mechanism, which is thought to trigger the disease. This study employs classical and enhanced molecular dynamics to identify the structural and energetic basis of AXH tetramer stability. Results of this work elucidate molecular mechanisms behind the destabilizing effect of protein mutations, which consequently affect the AXH tetramer assembly. Moreover, results of the study draw attention for the first time, to our knowledge, to the R638 protein residue, which is shown to play a key role in AXH tetramer stability. Therefore, R638 might be also implicated in the AXH oligomerization pathway and stands out as a target for future experimental studies focused on self-association mechanisms and fibril formation of full-length ATX1.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Manno, Switzerland
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Manno, Switzerland
| | - Marco A Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Manno, Switzerland.
| |
Collapse
|
25
|
Ferracini R, Martínez Herreros I, Russo A, Casalini T, Rossi F, Perale G. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10030122. [PMID: 30096765 PMCID: PMC6161191 DOI: 10.3390/pharmaceutics10030122] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in materials science have provided several innovations, underlying the increasing importance of biomaterials in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from organic or inorganic materials, incorporating drugs and growth factors, to induce new bone tissue formation. This review emphasizes recent progress in materials science that allows reliable scaffolds to be synthesized for targeted drug delivery in bone regeneration, also with respect to past directions no longer considered promising. A general overview concerning modeling approaches suitable for the discussed systems is also provided.
Collapse
Affiliation(s)
- Riccardo Ferracini
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Isabel Martínez Herreros
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Antonio Russo
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Tommaso Casalini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Giuseppe Perale
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland.
| |
Collapse
|
26
|
Deriu MA, Tsapis N, Noiray M, Grasso G, El Brahmi N, Mignani S, Majoral JP, Fattal E, Danani A. Elucidating the role of surface chemistry on cationic phosphorus dendrimer-siRNA complexation. NANOSCALE 2018; 10:10952-10962. [PMID: 29850714 DOI: 10.1039/c8nr01928b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of dendrimers targeting small interfering RNA (siRNA) delivery, dendrimer structural properties, such as the flexibility/rigidity ratio, play a crucial role in the efficiency of complexation. However, advances in organic chemistry have enabled the development of dendrimers that differ only by a single atom on their surface terminals. This is the case for cationic phosphorus dendrimers functionalized with either pyrrolidinium (DP) or morpholinium (DM) terminal groups. This small change was shown to strongly affect the dendrimer-siRNA complexation, leading to more efficient anti-inflammatory effects in the case of DP. Reasons for this different behavior can hardly be inferred only by biological in vitro and in vivo experiments due to the high number of variables and complexity of the investigated biological system. However, an understanding of how small chemical surface changes may completely modify the overall dendrimer-siRNA complexation is a significant breakthrough towards the design of efficient dendrimers for nucleic acid delivery. Herein, we present experimental and computational approaches based on isothermal titration calorimetry and molecular dynamics simulations to elucidate the molecular reasons behind different efficiencies and activities of DP and DM. Results of the present research highlight how chemical surface modifications may drive the overall dendrimer-siRNA affinity by influencing enthalpic and entropic contributions of binding free energy. Moreover, this study elucidates molecular reasons related to complexation stoichiometry that may be crucial in determining the dendrimer complexation efficiency.
Collapse
Affiliation(s)
- Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grasso G, Muscat S, Rebella M, Morbiducci U, Audenino A, Danani A, Deriu MA. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics. J Biomech 2018; 73:137-144. [PMID: 29631749 DOI: 10.1016/j.jbiomech.2018.03.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022]
Abstract
The efficacy of a pharmaceutical treatment is often countered by the inadequate membrane permeability, that prevents drugs from reaching their specific intracellular targets. Cell penetrating peptides (CPPs) are able to route across cells' membrane various types of cargo, including drugs and nanoparticles. However, CPPs internalization mechanisms are not yet fully understood and depend on a wide variety of aspects. In this contest, the entry of a CPP into the lipid bilayer might induce molecular conformational changes, including marked variations on membrane's mechanical properties. Understanding how the CPP does influence the mechanical properties of cells membrane is crucial to design, engineer and improve new and existing penetrating peptides. Here, all atom Molecular Dynamics (MD) simulations were used to investigate the interaction between different types of CPPs embedded in a lipid bilayer of dioleoyl phosphatidylcholine (DOPC). In a greater detail, we systematically highlighted how CPP properties are responsible for modulating the membrane bending modulus. Our findings highlighted the CPP hydropathy strongly correlated with penetration of water molecules in the lipid bilayer, thus supporting the hypothesis that the amount of water each CPP can route inside the membrane is modulated by the hydrophobic and hydrophilic character of the peptide. Water penetration promoted by CPPs leads to a local decrease of the lipid order, which emerges macroscopically as a reduction of the membrane bending modulus.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Stefano Muscat
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
| | - Martina Rebella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
| | - Alberto Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
| | - Andrea Danani
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Marco A Deriu
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland.
| |
Collapse
|
28
|
|
29
|
Grasso G, Rebella M, Muscat S, Morbiducci U, Tuszynski J, Danani A, Deriu MA. Conformational Dynamics and Stability of U-Shaped and S-Shaped Amyloid β Assemblies. Int J Mol Sci 2018; 19:ijms19020571. [PMID: 29443891 PMCID: PMC5855793 DOI: 10.3390/ijms19020571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/04/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease is the most fatal neurodegenerative disorder characterized by the aggregation and deposition of Amyloid β (Aβ) oligomers in the brain of patients. Two principal variants of Aβ exist in humans: Aβ1–40 and Aβ1–42. The former is the most abundant in the plaques, while the latter is the most toxic species and forms fibrils more rapidly. Interestingly, fibrils of Aβ1–40 peptides can only assume U-shaped conformations while Aβ1–42 can also arrange as S-shaped three-stranded chains, as recently discovered. As alterations in protein conformational arrangement correlate with cell toxicity and speed of disease progression, it is important to characterize, at molecular level, the conformational dynamics of amyloid fibrils. In this work, Replica Exchange Molecular Dynamics simulations were carried out to compare the conformational dynamics of U-shaped and S-shaped Aβ17–42 small fibrils. Our computational results provide support for the stability of the recently proposed S-shaped model due to the maximized interactions involving the C-terminal residues. On the other hand, the U-shaped motif is characterized by significant distortions resulting in a more disordered assembly. Outcomes of our work suggest that the molecular architecture of the protein aggregates might play a pivotal role in formation and conformational stability of the resulting fibrils.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, CH-6928 Manno, Switzerland.
| | - Martina Rebella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy.
| | - Stefano Muscat
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy.
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy.
| | - Jack Tuszynski
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy.
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Andrea Danani
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, CH-6928 Manno, Switzerland.
| | - Marco A Deriu
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, CH-6928 Manno, Switzerland.
| |
Collapse
|
30
|
Mlýnský V, Bussi G. Exploring RNA structure and dynamics through enhanced sampling simulations. Curr Opin Struct Biol 2018; 49:63-71. [PMID: 29414513 DOI: 10.1016/j.sbi.2018.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|