1
|
Gao Z, Su Q, Raza SHA, Piras C, BinMowyna MN, Al-Zahrani M, Mavromatis C, Makhlof RTM, Senna MM, Gui L. Identification and Co-expression Analysis of Differentially Expressed LncRNAs and mRNAs Regulate Intramuscular Fat Deposition in Yaks at Two Developmental Stages. Biochem Genet 2025:10.1007/s10528-025-11046-x. [PMID: 39971835 DOI: 10.1007/s10528-025-11046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Intramuscular fat (IMF) content is a key indicator of yak meat quality. This study aimed to identify lncRNAs that regulate IMF deposition in yaks. Three male calf yaks (3 months) and three male adult yaks (3 years) were used in the current study. After slaughter, the tissue morphology of the longissimus dorsi (LD) muscle was assessed using a cry-sectioning technique and differentially expressed lncRNAs and mRNAs (DELs and DEMs) were identified using RNA-Seq technology. The diameter and volume of fat droplets were significantly larger and bigger, respectively, in adults than in calves (P < 0.001). A total of 37,790 genes and 16,400 lncRNAs that regulate fat deposition were identified. Among them, 2327 mRNAs and 474 lncRNAs were differentially expressed between calves and adult yaks. DEGs stearoyl-CoA desaturase (SCD), fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4) and fibronectin 1 (FN1) and DELs MSTRG.15795.4 and MSTRG.35028.6 were screened. The enrichment and pathway analysis regulated by the DMEs and DELs were predicted. We found significantly enriched biological processes and pathways involved in fat deposition, including the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid elongation, and the mTOR signaling pathway. Co-expression network of the DELs and related genes, including MSTRG.10268.1-placenta associated 8 (PLAC8), MSTRG.16223.1-galectin 3 (LGALS3), MSTRG.34732.1-glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), MSTRG.11907.11-fibroblast growth factor 1 (FGF1), MSTRG.34342.1-lipase A, lysosomal acid type (LIPA), and MSTRG.1667.2-integrin subunit beta 2 (ITGB2) was constructed. RT-qPCR verified the sequence results. The molecular regulatory mechanisms of lncRNAs on intramuscular fat deposition in yak were further explored.
Collapse
Affiliation(s)
- Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, PR China
| | - Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Mona N BinMowyna
- College of Education, Shaqra University, 11911, Shaqra, Saudi Arabia
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, P.O. Box 344, 21911 Rabigh, Saudi Arabia
| | - Charalampos Mavromatis
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, P.O. Box 344, 21911 Rabigh, Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
- Department of Parasitology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Mustafa M Senna
- Department of Anatomy, Faculty of Medicine, Umm-Alqura University, Makkah, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China.
| |
Collapse
|
2
|
Cai A, Wang S, Li P, Yao Z, Li G. Evaluation of carcass traits, meat quality and the expression of lipid metabolism-related genes in different slaughter ages and muscles of Taihang black goats. Anim Biosci 2024; 37:1483-1494. [PMID: 38419531 PMCID: PMC11222851 DOI: 10.5713/ab.23.0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE This study was conducted to investigate the effect of slaughter age on carcass traits, meat quality, and the relative mRNA levels of lipid metabolism-related genes in different muscles of Taihang black goats. METHODS In this study, the triceps brachii (TB), longissimus dorsi (LD) and gluteus (GL) muscles of 15 grazing Taihang black goats slaughtered at the age of 2, 3, and 4 (designated as 2-year-old, 3-year-old, and 4-year-old, respectively) were collected. The differences in carcass shape, meat quality, amino acid composition and lipid metabolism gene expression among Taihang black goats of different ages and from different plant parts were compared. RESULTS Compared with goats at other ages, goats slaughtered at the age of 4 had greater live and carcass weights, meat weights, bone weights and skin areas (p<0.05). LD in the 4-years-old had the lowest cooking loss and moisture content. The crude protein content in the LD of 2-year-old was significantly greater than that in the other age group, and at the age of 2, the LD had the highest crude protein content than TB and GL. The highest fat content was in LD, followed by TB, for goats slaughtered at the age of 4. Eight out of 9 essential amino acids had higher content in the TB compared with other muscles, regardless of age. The total essential amino acid content was highest in the 4-year-old and lowest in the GL muscle at the age of 3. The sterol regulatory element-binding protein-1c (SREBP-1c) and adipose triglyceride lipase (ATGL) genes were significantly more abundant in the TB muscle than in the other muscles for goats slaughtered at the age of 2. At the age of 4, the ATGL and peroxisome proliferator-activated receptor γ (PPARγ) genes were significantly more abundant in the GL than in the LD, while the fatty acid synthase (FAS) genes were significantly less abundant in the GL than in the other muscles. Similarly, compared with those in goats of other ages, the relative mRNA expression levels of the FAS and heart-type fatty acid binding protein (H-FABP) genes in goats slaughtered at the age of 4 were the highest, and the relative mRNA expression of the PPARγ gene was the lowest (p<0.05). The relative mRNA expression of the H-FABP and FAS genes was positively correlated with the intramuscular fat (IMF) content, while the relative mRNA expression levels of the PPARγ and ATGL genes was negatively correlated with the IMF content. CONCLUSION Overall, a better nutritional value was obtained for TB from 4-year-old goats, in which the total essential amino acid and fat contents were greater than those of other muscles. The comprehensive action of lipid metabolism genes was consistent with that of the IMF content, among which the FAS, H-FABP, PPARγ, and ATGL genes had positive and negative effects on the process of IMF deposition in Taihang black goats.
Collapse
Affiliation(s)
- Amin Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 10466,
China
| | - Shiwei Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 10466,
China
| | - Pengtao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 10466,
China
| | - Zhaohui Yao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 10466,
China
| | - Gaiying Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 10466,
China
| |
Collapse
|
3
|
Shi M, Huang L, Meng S, Wang H, Zhang J, Miao Z, Li Z. Identification of several lncRNA-mRNA pairs associated with marbling trait between Nanyang and Angus cattle. BMC Genomics 2024; 25:696. [PMID: 39014336 PMCID: PMC11250971 DOI: 10.1186/s12864-024-10590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The marbling trait of cattle muscles, being a key indicator, played an important role in evaluating beef quality. Two breeds of cattle, namely a high-marbling (Angus) and a low-marbling (Nanyang) one, with their cattle muscles selected as our samples for transcriptome sequencing, were aimed to identify differentially expressed long non-coding RNAs (lncRNAs) and their targets associated with the marbling trait. RESULTS Transcriptome sequencing identified 487 and 283 differentially expressed mRNAs and lncRNAs respectively between the high-marbling (Angus) and low-marbling (Nanyang) cattle muscles. Twenty-seven pairs of differentially expressed lncRNAs-mRNAs, including eighteen lncRNAs and eleven target genes, were found to be involved in fat deposition and lipid metabolism. We established a positive correlation between fourteen up-regulated (NONBTAT000849.2, MSTRG.9591.1, NONBTAT031089.1, MSTRG.3720.1, NONBTAT029718.1, NONBTAT004228.2, NONBTAT007494.2, NONBTAT011094.2, NONBTAT015080.2, NONBTAT030943.1, NONBTAT021005.2, NONBTAT021004.2, NONBTAT025985.2, and NONBTAT023845.2) and four down-regulated (NONBTAT000850.2, MSTRG.22188.3, MSTRG.22188.4, and MSTRG.22188.5) lncRNAs and eleven genes related to adiponectin family protein (ADIPOQ), cytochrome P450 family (CYP4V2), 3-hydroxyacyl-CoA dehydratase family (HACD4), kinesin family (KIF5C), lipin family (LPIN2), perilipin family (PLIN1), prostaglandin family (PTGIS), solute carrier family (SLC16A7, SLC2213, and SLCO4C1), and containing a transmembrane domain protein family (VSTM1). CONCLUSIONS These candidate genes and lncRNAs can be regarded as being responsible for regulating the marbling trait of cattle. lncRNAs along with the variations in intramuscular fat marbling established a foundation for elucidating the genetic basis of high marbling in cattle.
Collapse
Affiliation(s)
- Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Luyao Huang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Shuaitao Meng
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Heming Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China.
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Wang H, Fu J, Wu X, Wang Y, Li W, Huang Y, Zhong J, Peng Z. Effects of Dietary Protein Level and Rumen-Protected Methionine and Lysine on Growth Performance, Rumen Fermentation and Serum Indexes for Yaks. Animals (Basel) 2024; 14:1751. [PMID: 38929369 PMCID: PMC11201000 DOI: 10.3390/ani14121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the effects of the dietary protein level and rumen-protected methionine and lysine (RPML) on the growth performance, rumen fermentation, and serum indexes of yaks. Thirty-six male yaks were randomly assigned to a two by three factorial experiment with two protein levels, 15.05% and 16.51%, and three RPML levels: 0% RPML; 0.05% RPMet and 0.15% RPLys; and 0.1% RPMet and 0.3% RPLys. The trial lasted for sixty days. The results showed that the low-protein diet increased the DMI and feed conversion ratio of yaks. The diet supplemented with RPML increased the activities of IGF1 and INS and nutrient digestibility. The high-protein diet decreased the rumen butyrate concentration and increased the rumen isovalerate concentration. The low-protein diet supplemented with RPML increased the rumen pH and the concentrations of total volatile fatty acids, butyrate and NH3-N; the high-protein diet supplemented with a high level of RPML decreased the rumen pH and the concentrations of isobutyrate, isovalerate, propionate and NH3-N. The low-protein diet supplemented with RPML increased the total antioxidant capacity and glutathione peroxidase activity, along with the concentrations of malondialdehyde and amino acids such as aspartic acid, lysine, cysteine, etc. In conclusion, a low-protein diet supplemented with RPML is beneficial for rumen and body health, physiological response, and metabolic status in yaks.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jianhui Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xia Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yadong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Wenjie Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Yanling Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Zhongli Peng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| |
Collapse
|
5
|
Mansour S, Alkhaaldi SMI, Sammanasunathan AF, Ibrahim S, Farhat J, Al-Omari B. Precision Nutrition Unveiled: Gene-Nutrient Interactions, Microbiota Dynamics, and Lifestyle Factors in Obesity Management. Nutrients 2024; 16:581. [PMID: 38474710 PMCID: PMC10935146 DOI: 10.3390/nu16050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Obesity is a complex metabolic disorder that is associated with several diseases. Recently, precision nutrition (PN) has emerged as a tailored approach to provide individualised dietary recommendations. AIM This review discusses the major intrinsic and extrinsic components considered when applying PN during the management of obesity and common associated chronic conditions. RESULTS The review identified three main PN components: gene-nutrient interactions, intestinal microbiota, and lifestyle factors. Genetic makeup significantly contributes to inter-individual variations in dietary behaviours, with advanced genome sequencing and population genetics aiding in detecting gene variants associated with obesity. Additionally, PN-based host-microbiota evaluation emerges as an advanced therapeutic tool, impacting disease control and prevention. The gut microbiome's composition regulates diverse responses to nutritional recommendations. Several studies highlight PN's effectiveness in improving diet quality and enhancing adherence to physical activity among obese patients. PN is a key strategy for addressing obesity-related risk factors, encompassing dietary patterns, body weight, fat, blood lipids, glucose levels, and insulin resistance. CONCLUSION PN stands out as a feasible tool for effectively managing obesity, considering its ability to integrate genetic and lifestyle factors. The application of PN-based approaches not only improves current obesity conditions but also holds promise for preventing obesity and its associated complications in the long term.
Collapse
Affiliation(s)
- Samy Mansour
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saif M. I. Alkhaaldi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Ashwin F. Sammanasunathan
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saleh Ibrahim
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
- Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Joviana Farhat
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Basem Al-Omari
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
6
|
Otto JR, Pewan SB, Edmunds RC, Mwangi FW, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Differential expressions of FASN, SCD, and FABP4 genes in the ribeye muscle of omega-3 oil-supplemented Tattykeel Australian White lambs. BMC Genomics 2023; 24:666. [PMID: 37932697 PMCID: PMC10626737 DOI: 10.1186/s12864-023-09771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The concept of the functional nutritional value of health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) is becoming a phenomenon among red meat consumers globally. This study examined the expressions of three lipogenic genes (fatty acid binding protein 4, FABP4, fatty acid synthase, FASN; and stearoyl-CoA desaturase, SCD) in the ribeye (Longissimus thoracis et lumborum) muscle of Tattykeel Australian White (TAW) lambs fed fortified omega-3 diets and correlations with fatty acids. To answer the research question, "are there differences in the expression of lipogenic genes between control, MSM whole grain and omega-3 supplemented lambs?", we tested the hypothesis that fortification of lamb diets with omega-3 will lead to a down-regulation of lipogenic genes. Seventy-five six-month old TAW lambs were randomly allocated to the (1) omega-3 oil-fortified grain pellets, (2) unfortified grain pellets (control) or (3) unfortified MSM whole grain pellets diet supplements to generate three treatments of 25 lambs each. The feeding trial lasted 47 days. RESULTS From the Kruskal-Wallis test, the results showed a striking disparity in lipogenic gene expression between the three dietary treatments in which the FABP4 gene was significantly up-regulated by 3-folds in the muscles of lambs fed MSM Milling (MSM) whole grain diet compared to the omega-3 and control diets. A negative correlation was observed between FASN gene expression and intramuscular fat (IMF), eicosapentaenoic acid (EPA), total polyunsaturated fatty acids (PUFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and monounsaturated fatty acids (MUFA). The FABP4 gene expression was positively correlated (P < 0.05) with EPA and docosahexaenoic acid (DHA). CONCLUSION Taken together, this study's results suggest that FABP4 and FASN genes perform an important role in the biosynthesis of fatty acids in the ribeye muscle of TAW lambs, and supplementary diet composition is an important factor influencing their expressions.
Collapse
Affiliation(s)
- John Roger Otto
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Shedrach Benjamin Pewan
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | | | - Felista Waithira Mwangi
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert Tumwesigye Kinobe
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Aduli Enoch Othniel Malau-Aduli
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Torrecilhas JA, Pereira GL, Vito ES, Fiorentini G, Ramirez-Zamudio GD, Fonseca LS, Torres RDNS, Simioni TA, Duarte JM, Machado Neto OR, Curi RA, Chardulo LAL, Baldassini WA, Berchielli TT. Changes in the Lipid Metabolism of the Longissimus thoracis Muscle in Bulls When Using Different Feeding Strategies during the Growing and Finishing Phases. Metabolites 2023; 13:1042. [PMID: 37887367 PMCID: PMC10608670 DOI: 10.3390/metabo13101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The objective was to evaluate the supplementation strategy's effect on beef cattle during the growing phase and two systems during the finishing phase. One hundred and twenty young bulls were randomly divided in a 2 × 2 factorial design to receive either mineral (ad libitum) or protein + energy (3 g/kg body weight (BW)/day) during the growing phase and pasture plus concentrate supplementation (20 g/kg BW/day) or feedlot (25:75% corn silage:concentrate) during the finishing phase. Feedlot-fed bulls had meat (Longissimus thoracis-LT) with a higher content of lipids and saturated and monounsaturated fatty acids and a greater upregulation of stearoyl-CoA desaturase and sterol regulatory element-binding protein-1c than animals that fed on pasture (p < 0.05). On the other hand, pasture-fed bulls had meat with a higher content of α-linoleic acid, linolenic acid, and n6 and a greater n6:n3 ratio compared to the feedlot-fed group (p < 0.05). In addition, meat from pasture-fed bulls during the finishing phase had 17.6% more isocitrate dehydrogenase enzyme concentration than the feedlot group (p = 0.02). Mineral-fed and pasture-finished bulls showed down-regulation of peroxisome proliferator-activated receptor gamma (p < 0.05), while the bulls fed protein + energy and finished in the feedlot had higher carnitine palmitoyltransferase 2 expression (p ≤ 0.013). In conclusion, mineral or protein + energy supplementation in the growing does not affect the fatty acid composition of intramuscular fat of LT muscle. In the finishing phase, feeding bulls in the feedlot upregulates the lipogenic genes and consequently improves the intramuscular fat content in the meat.
Collapse
Affiliation(s)
- Juliana Akamine Torrecilhas
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Guilherme Luis Pereira
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Elias San Vito
- Confina Beef Cattle Consulting, Sinop 78555-603, MT, Brazil;
| | - Giovani Fiorentini
- Department of Animal Science, Federal University of Pelotas (UFPEL), Pelotas 96160-000, RS, Brazil;
| | - Germán Darío Ramirez-Zamudio
- College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Larissa Simielli Fonseca
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Rodrigo de Nazaré Santos Torres
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Tiago Adriano Simioni
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Juliana Messana Duarte
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Otavio Rodrigues Machado Neto
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Rogério Abdallah Curi
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Luis Artur Loyola Chardulo
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Welder Angelo Baldassini
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Telma Teresinha Berchielli
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| |
Collapse
|
8
|
Zhang Y, Yao D, Huang H, Zhang M, Sun L, Su L, Zhao L, Guo Y, Jin Y. Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway. Food Sci Anim Resour 2023; 43:805-825. [PMID: 37701743 PMCID: PMC10493559 DOI: 10.5851/kosfa.2023.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.
Collapse
Affiliation(s)
- Yue Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Duo Yao
- Inner Mongolia Institute of Quality and
Standardization, Hohhot 010070, China
| | - Huan Huang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
| | - Min Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - LiHua Zhao
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Yueying Guo
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| |
Collapse
|
9
|
Bharanidharan R, Thirugnanasambantham K, Kim J, Xaysana P, Viengsakoun N, Ibidhi R, Oh J, Kim NY, Beak SH, Smith SB, Kim KH. Supplementation with rumen-inert fat in the growing phase altered adipogenic gene expression and the size and number of adipocytes in Hanwoo steers. J Anim Sci 2023; 101:skad315. [PMID: 37768168 PMCID: PMC10583981 DOI: 10.1093/jas/skad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
We hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239 ± 25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression. Both groups were then fed the same basal diets during the early and late fattening phases, without RIF, until slaughter (average shrunk BW = 759 kg). Supplementation with RIF increased the longissimus thoracis (LT) intramuscular fatty acid concentration at slaughter (P = 0.087) and numerically increased the quality grade score (P = 0.106). The LM intramuscular relative mRNA expression of genes such as PPARα, ZFP423 and SREBP1, FASN, SCD, FABP4, GPAT1, and DGAT2 were downregulated (P < 0.1) following RIF supplementation. Supplementation of RIF decreased (P < 0.1) diameter and concomitantly increased intramuscular adipocytes per viewing section at slaughter. This likely was caused by promotion of triacylglycerol hydrolysis during the growing phase. Another possible explanation is that the relative mRNA expression of gene ATGL was upregulated by RIF supplementation during the growing (P < 0.1) and the fattening phases (P < 0.05), while the genes associated with fatty acid uptake (FABP4) and esterification (DGAT2) were downregulated during the growing phase and upregulated (P < 0.1) during the fattening phase. This implies that the lipid turnover rate was higher for steers during the growing than fattening phase. This study demonstrated that RIF supplementation during the growing phase induced a carryover effect on the lipogenic transcriptional regulation involved in adipocyte lipid content of intramuscular adipose tissue; increased triacylglycerol hydrolysis during the growing phase subsequently was followed by increased lipid accumulation during the fattening phases.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Krishnaraj Thirugnanasambantham
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Jayeon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Panyavong Xaysana
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Napasirth Viengsakoun
- Department of Livestock and Fisheries, Faculty of Agriculture, National University of Laos, Vientiane Capital, 856, Lao People’s Democratic Republic
| | - Ridha Ibidhi
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam, Republic of Korea
| | - Na-Yeon Kim
- Asia Pacific Ruminant Institute, Icheon 17385, Republic of Korea
| | - Seok-Hyeon Beak
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, USA
| | - Kyoung Hoon Kim
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
10
|
Chen J, You R, Lv Y, Liu H, Yang G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front Nutr 2022; 9:1029864. [PMID: 36523338 PMCID: PMC9745092 DOI: 10.3389/fnut.2022.1029864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 06/22/2024] Open
Abstract
Intramuscular fat (IMF) is correlated positively with meat tenderness, juiciness and taste that affected sensory meat quality. Conjugated linoleic acid (CLA) has been extensively researched to increase IMF content in animals, however, the regulatory mechanism remains unclear. Adipocyte fatty acid binding protein (A-FABP) gene has been proposed as candidates for IMF accretion. The purpose of this study is to explore the molecular regulatory pathways of CLA on intramuscular fat deposition. Here, our results by cell lines indicated that CLA treatment promoted the expression of A-FABP through activated the transcription factor of peroxisome proliferator-activated receptor α (PPARα). Moreover, in an animal model, we discovered that dietary supplemental with CLA significantly enhanced IMF deposition by up-regulating the mRNA and protein expression of PPARα and A-FABP in the muscle tissues of mice. In addition, our current study also demonstrated that dietary CLA increased mRNA expression of genes and enzymes involved in fatty acid synthesis and lipid metabolism the muscle tissues of mice. These findings suggest that CLA mainly increases the expression of A-FABP through PPARα signaling pathway and regulates the expression of genes and enzymes related to IMF deposition, thus increasing IMF content. These results contribute to better understanding the molecular mechanism of IMF accretion in animals for the improvement of meat quality.
Collapse
Affiliation(s)
| | | | | | | | - Guoqing Yang
- Laboratory of Animal Gene Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Zhu J, Xiao Q, Wen L, Yin L, Zhang F, Li T, Banma Z, He K, Suolang S. First detection and complete genome analysis of porcine circovirus-like virus P1 and porcine circovirus-2 in yak in China. Vet Med Sci 2022; 8:2553-2561. [PMID: 36049138 PMCID: PMC9677406 DOI: 10.1002/vms3.911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus-like virus P1, like porcine circovirus type 2 (PCV2), is a potential pathogen of post-weaning multisystemic wasting syndrome in swine. Yaks are a valuable species and an iconic symbol of the Tibet Plateau which is the highest and largest plateau in the world. In this study, a total of 105 yak diarrheal samples, collected from 13 farms in Linzhi in the Tibet Plateau from January 2019 to December 2021, that were screened for P1 and PCV2 by polymerase chain reaction, 10.48% (n = 11) were positive for P1, 4.76% (n = 5) for PCV2, and 5.71% (n = 6) were positive for coinfection of P1 and PCV2. In addition, the whole genomes of eight P1 strains and eight PCV2 strains were sequenced. Alignment of deduced amino acid sequences of P1 ORF1 and PCV2 ORF2 gene revealed that ON012566 had one unique amino acid mutation at residues 137 (T to P). This mutation has important implication for the study of virus virulence, tissue tropism, and immune response. Phylogenetic analysis shows that the yak-origin P1 strains in this study with cattle-origin P1 reference strains were grouped into one cluster. The yak-origin PCV2 (ON012566) and a buffalo-origin PCV2 (KM116514) reference strain clustered in the same branch in the PCV2b regions. Meanwhile, the remaining PCV2 strains and buffalo-origin PCV2 reference strain (ON012565) clustered in the PCV2d regions. To summarize, to our knowledge, this is the first report on the molecular prevalence and genome characteristics of P1 and PCV2 in yaks in the world and will contribute to further study of the molecular epidemiology, source, and evolution of P1 and PCV2 strains.
Collapse
Affiliation(s)
- Jiaping Zhu
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Qi Xiao
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Libin Wen
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Lihong Yin
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Fengxi Zhang
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Tianjiao Li
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Zelang Banma
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Kongwang He
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Sizhu Suolang
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| |
Collapse
|
12
|
Cui Y, Liu H, Gao Z, Xu J, Liu B, Guo M, Yang X, Niu J, Zhu X, Ma S, Li D, Sun Y, Shi Y. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl Microbiol Biotechnol 2022; 106:4187-4198. [PMID: 35604439 DOI: 10.1007/s00253-022-11956-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022]
Abstract
In recent years, whole-plant corn silage has been widely used in China. Roughage is an important source of nutrition for ruminants and has an important effect on rumen microbiota, which plays an important role in animal growth performance and feed digestion. To better understand the effects of different silages on rumen microbiota, the effects of whole-plant corn silage or corn straw silage on growth performance, rumen fermentation products, and rumen microbiota of Simmental hybrid cattle were studied. Sixty healthy Simmental hybrid cattle were randomly divided into 2 groups with 6 replicates in each group and 5 cattle in each replicate. They were fed with whole-plant corn silage (WS) diet and corn straw silage (CS) diet respectively. Compared with corn straw silage, whole-plant corn silage significantly increased daily gain and decreased the feed intake-to-weight gain ratio (F/G) of beef cattle. Whole-plant corn silage also decreased the acetic acid in the rumen and the acetate-to-propionate ratio (A/P) compared with corn straw silage. On the genus level, the relative abundance of Prevotella_1 was significantly increased while the relative abundance of Succinivibrionaceae_UCG-002 was decreased in cattle fed whole-plant corn silage compared with those fed corn straw silage. Prevotella_1 was positively correlated with acetic acid and A/P. Succinivibrionaceae_UCG-002 was positively correlated with propionic acid and butyric acid, and negatively correlated with pH. Feeding whole-plant corn silage improved amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism. Correlation analysis between rumen microbiota and metabolic pathways showed that Succinivibrionaceae_UCG-002 was negatively correlated with glycan biosynthesis and metabolism, metabolism of co-factors and vitamins, nucleotide metabolism, and translation while Prevotellaceae_UCG-003 was positively correlated with amino acid metabolism, carbohydrate metabolism, energy metabolism, genetic information processing, lipid metabolism, membrane transport, metabolism of cofactors and vitamins, nucleotide metabolism, replication and repair, and translation. Ruminococcus_2 was positively correlated with amino acid metabolism and carbohydrate metabolism. Feeding whole-plant corn silage can improve the growth performance and rumen fermentation of beef cattle by altering rumen microbiota and regulating the metabolism of amino acids, carbohydrates, and nucleotides. KEY POINTS: • Feeding whole-plant corn silage could decrease the F/G of beef cattle • Feeding whole-plant corn silage improves rumen fermentation in beef cattle • Growth performance of beef cattle is related to rumen microbiota and metabolism.
Collapse
Affiliation(s)
- Yalei Cui
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China.,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.,Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| | - Hua Liu
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Zimin Gao
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Junying Xu
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Boshuai Liu
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Ming Guo
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Xu Yang
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Jiakuan Niu
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China
| | - Xiaoyan Zhu
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China.,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.,Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| | - Sen Ma
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China.,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.,Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| | - Defeng Li
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China.,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.,Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| | - Yu Sun
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China.
| | - Yinghua Shi
- Zhengdong New District, Henan Agricultural University, Longzihu University Area, Zhengzhou, 450046, People's Republic of China. .,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China. .,Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
13
|
Salgado Pardo JI, Delgado Bermejo JV, González Ariza A, León Jurado JM, Marín Navas C, Iglesias Pastrana C, Martínez Martínez MDA, Navas González FJ. Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats ( Capra hircus). Animals (Basel) 2022; 12:ani12080988. [PMID: 35454235 PMCID: PMC9026325 DOI: 10.3390/ani12080988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary During the present decade, highly selected caprine farming has increased in popularity due to the hardiness and adaptability inherent to goats. Recent advances in genetics have enabled the improvement in goat selection efficiency. The present review explores how genetic technologies have been applied to the goat-farming sector in the last century. The main candidate genes related to economically relevant traits are reported. The major source of income in goat farming derives from the sale of milk and meat. Consequently, yield and quality must be specially considered. Meat-related traits were evaluated considering three functional groups (weight gain, carcass quality and fat profile). Milk traits were assessed in three additional functional groups (milk production, protein and fat content). Abstract Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability.
Collapse
Affiliation(s)
- Jose Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - José Manuel León Jurado
- Agropecuary Provincial Center of Córdoba, Provincial Council of Córdoba, 14014 Córdoba, Spain;
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Carlos Iglesias Pastrana
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - María del Amparo Martínez Martínez
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-63-853-5046 (ext. 621262)
| |
Collapse
|
14
|
Du M, Yang C, Liang Z, Zhang J, Yang Y, Ahmad AA, Yan P, Ding X. Dietary Energy Levels Affect Carbohydrate Metabolism-Related Bacteria and Improve Meat Quality in the Longissimus Thoracis Muscle of Yak ( Bos grunniens). Front Vet Sci 2021; 8:718036. [PMID: 34631849 PMCID: PMC8492897 DOI: 10.3389/fvets.2021.718036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023] Open
Abstract
The effects of different dietary energy levels on the ruminal bacterial population, selected meat quality indices, and their relationship in yak longissimus thoracis (LT) muscle were assessed in this study. A total of 15 castrated yaks were randomly assigned to three groups with low- (NEg: 5.5 MJ/Kg, LE), medium- (NEg: 6.2 MJ/Kg, ME), and high- (NEg: 6.9 MJ/Kg, HE) dietary energy levels and occurred in the cold season (March to May). All yaks from each treatment group were humanely slaughtered and sampled on the day of completion of their feeding treatment. The results showed that the water content and crude fat levels of the LT muscle were markedly elevated in the HE group (P < 0.05), while the shear force was drastically reduced (P = 0.001). Methionine, aspartic acid, and glycine levels in the LT muscle were higher in the LE group compared with the ME and HE groups (P < 0.05). The glutamic acid level in the ME group was greater in comparison to the LE and HE groups (P < 0.05), while the histidine level in the ME group was higher than that in the HE group (P < 0.05). Additionally, the HE diet significantly elevated (P < 0.05) the abundance of carbohydrate metabolism-associated bacteria including Prevotella_1, Lachnospiraceae_NK4A136_group, U29_B03, Ruminiclostridium_6, and Ruminococcaceae_UCG_013 in the rumen. The results of the Spearman's rank correlation analysis showed that the abundance of uncultured_bacterium_f_vadinBE97 and uncultured_bacterium_f_Lachnospiraceae showed a significant influence on the indicator of IMF and SF. In conclusion, a high dietary energy level improved the meat quality in the LT muscle of yak mainly by increasing the relative abundance of ruminal amylolytic bacteria to provide substrates for fatty acid synthesis.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yayuan Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Yakan A, Özkan H, Çamdeviren B, Kaya U, Karaaslan İ, Dalkiran S. Expression patterns of major genes in fatty acid synthesis, inflammation, oxidative stress pathways from colostrum to milk in Damascus goats. Sci Rep 2021; 11:9448. [PMID: 33941846 PMCID: PMC8093257 DOI: 10.1038/s41598-021-88976-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
The molecular regulation of milk secretion and quality in the transition period from colostrum to milk in goats is largely unknown. In the present study, mammary gland secretion of goats was collected in 0th, 4th, 7th, 14th and 28th days after parturition. In addition to composition and fatty acid profile of colostrum or milk, FASN, SCD, ACACA, COX-2, NRF2, TLR2, NF-kB, LTF and PTX3 genes expression patterns were determined from milk somatic cells. While somatic cell count (SCC), malondialdehyde (MDA), fat, fat-free dry matter, protein and lactose were highest as expression levels of the oxidative and inflammatory genes, freezing point and electrical conductivity were lowest in colostrum. With the continuation of lactation, most of the fatty acids, n3 ratio, and odour index increased but C14:0 and C16:0 decreased. While FASN was upregulated almost threefolds in 14th day, ACACA was upregulated more than fivefolds in 7th and 14th days. Separately, the major genes in fatty acid synthesis, inflammation and oxidative stress were significantly associated with each other due to being positively correlated. MDA was positively correlated with SCC and some of the genes related inflammation and oxidative stress. Furthermore, significant negative correlations were determined between SCC and fatty acid synthesis related genes. With this study, transition period of mammary secretion was particularly clarified at the molecular levels in Damascus goats.
Collapse
Affiliation(s)
- Akın Yakan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31060, Hatay, Turkey.
- Technology and Research and Development Center (MARGEM), Hatay Mustafa Kemal University, 31060, Hatay, Turkey.
| | - Hüseyin Özkan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31060, Hatay, Turkey.
| | - Baran Çamdeviren
- Department of Molecu1ar Biochemistry and Genetics, Institute of Health Sciences, Hatay Mustafa Kemal University, 31060, Hatay, Turkey
| | - Ufuk Kaya
- Department of Biostatistics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31060, Hatay, Turkey
| | - İrem Karaaslan
- Technology and Research and Development Center (MARGEM), Hatay Mustafa Kemal University, 31060, Hatay, Turkey
| | - Sevda Dalkiran
- Department of Molecu1ar Biochemistry and Genetics, Institute of Health Sciences, Hatay Mustafa Kemal University, 31060, Hatay, Turkey
| |
Collapse
|
16
|
Symmank J, Chorus M, Appel S, Marciniak J, Knaup I, Bastian A, Hennig CL, Döding A, Schulze-Späte U, Jacobs C, Wolf M. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep 2020; 10:15706. [PMID: 32973207 PMCID: PMC7518255 DOI: 10.1038/s41598-020-72736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.
Collapse
Affiliation(s)
- Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Martin Chorus
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Appel
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
17
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
18
|
Ahmad AA, Yang C, Zhang J, Kalwar Q, Liang Z, Li C, Du M, Yan P, Long R, Han J, Ding X. Effects of Dietary Energy Levels on Rumen Fermentation, Microbial Diversity, and Feed Efficiency of Yaks ( Bos grunniens). Front Microbiol 2020; 11:625. [PMID: 32670204 PMCID: PMC7326093 DOI: 10.3389/fmicb.2020.00625] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
Abstract
The microbial community of the yak (Bos grunniens) rumen plays an important role in surviving the harsh Tibetan environment where seasonal dynamic changes in pasture cause nutrient supply imbalances, resulting in weight loss in yaks during the cold season. A better understanding of rumen microbiota under different feeding regimes is critical for exploiting the microbiota to enhance feed efficiency and growth performance. This study explored the impact of different dietary energy levels on feed efficiency, rumen fermentation, bacterial community, and abundance of volatile fatty acid (VFA) transporter transcripts in the rumen epithelium of yaks. Fifteen healthy castrated male yaks were divided into three groups and fed with low (YL), medium (YM), and high energy (YH) levels diet having different NEg of 5.5, 6.2, and 6.9 MJ/kg, respectively. The increase in feed efficiency was recorded with an increase in dietary energy levels. The increase in dietary energy levels decreased the pH and increased the concentrations of acetate, propionate, butyrate, and valerate in yak rumens. The increase in the mRNA abundance of VFA transporter genes (MCT1, DRA, PAT1, and AE2) in the rumen epithelium of yaks was recorded as dietary energy level increased. High relative abundances of Firmicutes and Bacteroidetes were recorded with the increase in dietary energy levels. Significant population shifts at the genus level were recorded among the three treatments. This study provides new insights into the dietary energy-derived variations in rumen microbial community.
Collapse
Affiliation(s)
- Anum Ali Ahmad
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chao Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jianbo Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chen Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Du
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs and Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment. Animals (Basel) 2019; 9:ani9121036. [PMID: 31783557 PMCID: PMC6941001 DOI: 10.3390/ani9121036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
Simple Summary In this study, the effect of dietary rumen-protected L-tryptophan (RPT) supplement on growth performance, blood hematological and biochemical profiles, and gene expression was investigated in beef steers during a cold environment. We revealed that supplementation of 0.1% RPT incorporated into diet was beneficial owing to enhanced growth performance by increasing the ADG and glucose level, decreasing the feed conversion ratio, and maintaining homeostasis in immune responses in beef steers in a cold environment. Abstract We assessed the growth performance, physiological traits, and gene expressions in steers fed with dietary rumen-protected L-tryptophan (RPT) under a cold environment. Eight Korean native steers were assigned to two dietary groups, no RPT (Control) and RPT (0.1% RPT supplementation on a dry matter basis) for six weeks. Maximum and minimum temperatures throughout the experiment were 6.7 °C and −7.0 °C, respectively. Supplementation of 0.1% RPT to a total mixed ration did not increase body weight but had positive effects of elevating average daily gain (ADG) and reducing the feed conversion ratio (FCR) on days 27 and 48. The metabolic parameter showed a higher glucose level (on day 27) in the 0.1% RPT group compared to the control group. Real-time PCR analysis showed no significant differences in the expression of muscle (MYF6, MyoD, and Desmin) metabolism genes between the two groups, whereas the expression of fat (PPARγ, C/EBPα, and FABP4) metabolism genes was lower in the 0.1% RPT group than in the control group. Thus, we demonstrate that long-term (six weeks) dietary supplementation of 0.1% RPT was beneficial owing to enhanced growth performance by increasing the ADG and glucose level, decreasing FCR, and maintaining homeostasis in immune responses in beef steers in a cold environment.
Collapse
|
20
|
Zhang H, Guan W. The response of gene expression associated with intramuscular fat deposition in the longissimus dorsi muscle of Simmental × Yellow breed cattle to different energy levels of diets. Anim Sci J 2019; 90:493-503. [PMID: 30706583 DOI: 10.1111/asj.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/28/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
This study was designed to estimate dietary energy level on intramuscular fat (IMF) deposition in Simmental × Yellow breed cattle. Results showed that ultimate weight and average daily gain in high and medium energy groups were significantly higher than low-energy group, yet feed conversion ratio was significantly lower. IMF content was significantly increased by dietary energy increasing, whereas longissimus muscle shear force significantly decreased. Serum-free fatty acids, triglycerides and glucose significantly increased by dietary energy increasing, whereas growth hormone (GH) significantly decreased. Enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) significantly increased by dietary energy increasing, whereas hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) significantly diminished. Peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase, adipocyte-fatty acid-binding proteins, ACC, LPL, and FAS gene or protein expression significantly increased by dietary energy increasing, whereas HSL, CPT-1, and GH gene or protein expression significantly decreased. These results indicated that high dietary energy promoting IMF deposition is mainly by downregulating pituitary GH gene expression, decreasing serum GH concentration, increasing lipogenic genes levels of mRNA, enzyme activities and protein expression, and decreasing lipolytic genes levels of mRNA, enzyme activities, and protein expression.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Environmetal Resource, Yichun University, Yichun, China
| | - Weikun Guan
- College of Life Science and Environmetal Resource, Yichun University, Yichun, China
| |
Collapse
|
21
|
Dietary Energy Levels Affect Growth Performance through Growth Hormone and Insulin-Like Growth Factor 1 in Yak ( Bos grunniens). Animals (Basel) 2019; 9:ani9020039. [PMID: 30696034 PMCID: PMC6406270 DOI: 10.3390/ani9020039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to investigate the effects of different dietary energy levels on serum concentrations of growth hormone (GH) and insulin-like growth factor 1 (IGF-1), as well as gene expression of their associated binding proteins and receptors in yak. Fifteen adult male yaks with BW of 276.1 ± 3.5 kg were allotted in three dietary groups and were fed with low (LE), medium (ME), and high energy (HE) level diet having different NEg of 5.5 MJ/kg, 6.2 MJ/kg, 6.9 MJ/kg, respectively. The effects of these treatments on ADG, BW, ADFI, and feed conversion ratio were significant (p < 0.05) throughout the experimental period. Serum GH concentration decreased (p < 0.05) with an increase in dietary energy level on d 30 and d 60. While IGF-1 concentration was higher (p < 0.05) in ME group, as compared to LE and HE groups on d 60. The expression level of growth hormone receptor (GHR) was decreased (p < 0.001) and IGF-1 was increased with the increase in the dietary energy level. The relative expression of insulin-like growth factor binding protein 3 (IGFBP-3) was higher (p < 0.001) in ME and HE groups, except the LE group. In conclusion, our findings provide a first insight into the combined effect of GH and IGF-1 in controlling the metabolism and productivity of yak. It also showed that medium energy level diet contributed to promote growth performance of yak during the cold season.
Collapse
|