1
|
Soumia P, Shirsat DV, Karuppaiah V, Divekar PA, Mahajan V. Unravelling the complete mitochondrial genomes of Thrips tabaci Lindeman and Thrips parvispinus Karny (Thysanoptera: Thripidae) and their phylogenetic implications. FRONTIERS IN INSECT SCIENCE 2025; 5:1536160. [PMID: 40093569 PMCID: PMC11906450 DOI: 10.3389/finsc.2025.1536160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Onion (Allium cepa Linnaeus) is an important vegetable crop valued for its nutritional properties and economics worldwide. Onion cultivation faces serious threats from pests and diseases, particularly onion thrips (Thrips tabaci), which cause substantial yield losses. Recently, Black thrips (Thrips parvispinus), an invasive key pest of chili, have been reported to cause severe damage in onion crop and is likely to devastate the onion cultivation in near future. Therefore, this study was conducted to address the knowledge gap concerning the genetic basis and evolutionary history of T. tabaci and T. parvispinus through sequencing of their mitochondrial genomes. T. tabaci and T. parvispinus were collected from different locations in Maharashtra, India, and reared in the laboratory. The mitochondrial genomes of T. tabaci and T. parvispinus were sequenced to a length of 15,277 and 15,285 bp, respectively. Both genomes exhibited similar gene organization with regard to thirteen protein-coding genes and two rRNA genes. T. tabaci contained 19 tRNA genes whereas T. parvispinus contained 18 tRNA genes. The evolutionary positions of T. tabaci and T. parvispinus within the Thysanoptera order were elucidated through phylogenetic analysis of the mitogenomes of 15 thrips species. These findings provide crucial insights into the genetic makeup and evolutionary dynamics of both the thrips species, thereby aiding the development of novel and sustainable pest management strategies to mitigate their impacts on crops in the changing climate scenario.
Collapse
Affiliation(s)
- P.S. Soumia
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Dhananjay V. Shirsat
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Vadivelu Karuppaiah
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Pratap A. Divekar
- Division of Crop Protection, ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Vijay Mahajan
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| |
Collapse
|
2
|
Ruiz-Mena A, Mora P, Rico-Porras JM, Kaufmann B, Seifert B, Palomeque T, Lorite P. A Comparative Analysis of Mitogenomes in Species of the Tapinoma nigerrimum Complex and Other Species of the Genus Tapinoma (Formicidae, Dolichoderinae). INSECTS 2024; 15:957. [PMID: 39769559 PMCID: PMC11677639 DOI: 10.3390/insects15120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Using next-generation sequencing data, the complete mitogenomes of six species from the genus Tapinoma were assembled. This study explores the mitochondrial genomes of Tapinoma species, among them the five species from the Tapinoma nigerrimum complex, comparing them with each other and with other species from Dolichoderinae subfamily to understand their evolutionary relationships and evolution. Tapinoma mitochondrial genomes contain the typical set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region. A phylogenetic analysis using the protein-coding gene sequences from available Dolichoderinae mitogenomes supports the monophyletic nature of the genus Tapinoma, with the T. nigerrimum complex forming a well-supported clade. Key findings include genetic traits unique to the T. nigerrimum complex, such as a start codon in the atp8 gene and a complete stop codon in cox1, distinguishing them from other Tapinoma species. Additionally, a gene rearrangement involving tRNA-Trp, tRNA-Cys, and tRNA-Tyr was found exclusively in the Tapinoma species, suggesting a potential phylogenetic marker for the genus.
Collapse
Affiliation(s)
- Areli Ruiz-Mena
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaen, Spain; (A.R.-M.); (P.M.); (J.M.R.-P.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaen, Spain; (A.R.-M.); (P.M.); (J.M.R.-P.); (T.P.)
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP—São Paulo State University, Rio Claro 13506-900, SP, Brazil
| | - José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaen, Spain; (A.R.-M.); (P.M.); (J.M.R.-P.); (T.P.)
| | - Bernard Kaufmann
- ENTPE, LEHNA, UMR 5023 CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France;
| | - Bernhard Seifert
- Department of Entomology, Senckenberg Museum of Natural History, 02826 Görlitz, Germany;
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaen, Spain; (A.R.-M.); (P.M.); (J.M.R.-P.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaen, Spain; (A.R.-M.); (P.M.); (J.M.R.-P.); (T.P.)
| |
Collapse
|
3
|
Singh D, Mosahari PV, Sharma P, Neog K, Bora U. Comparative genomic and phylogenetic analysis of the complete mitochondrial genome of Cricula trifenestrata (Helfer) among lepidopteran insects. Genome 2024; 67:424-439. [PMID: 39047299 DOI: 10.1139/gen-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15 425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene, respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 "G-U" and 6 "U-U" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a "TTAGA" motif in the control region, in contrast to the typical "ATAGA" motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Ponnala Vimal Mosahari
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Pragya Sharma
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati 781014, Assam, India
| | - Kartik Neog
- Biotechnology Section, Central Muga Eri Research & Training Institute (CMER&TI), Lahdoigarh 785700, Jorhat, Assam, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Zhang N, Wang J, Pu T, Li C, Song Y. Two new species of Erythroneurini (Hemiptera, Cicadellidae, Typhlocybinae) from southern China based on morphology and complete mitogenomes. PeerJ 2024; 12:e16853. [PMID: 38344292 PMCID: PMC10859084 DOI: 10.7717/peerj.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Erythroneurine leafhoppers (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini) are utilized to resolve the relationship between the four erythroneurine leafhopper (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini): Arboridia (Arboridia) rongchangensis sp. nov., Thaia (Thaia) jiulongensis sp. nov., Mitjaevia bifurcata Luo, Song & Song, 2021 and Mitjaevia diana Luo, Song & Song, 2021, the two new species are described and illustrated. The mitochondrial gene sequences of these four species were determined to update the mitochondrial genome database of Erythroneurini. The mitochondrial genomes of four species shared high parallelism in nucleotide composition, base composition and gene order, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and an AT control region, which was consistent with majority of species in Cicadellidae; all genes revealed common trait of a positive AT skew and negative GC skew. The mitogenomes of four species were ultra-conservative in structure, and which isanalogous to that of others in size and A + T content. Phylogenetic trees based on the mitogenome data of these species and another 24 species were built employing the maximum likelihood and Bayesian inference methods. The results indicated that the four species belong to the tribe Erythroneurini, M. diana is the sister-group relationship of M. protuberanta + M. bifurcata. The two species Arboridia (Arboridia) rongchangensis sp. nov. and Thaia (Thaia) jiulongensis sp. nov. also have a relatively close genetic relationship with the genus Mitjaevia.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region/Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
5
|
Elameen A, Maduna SN, Mageroy MH, van Eerde A, Knudsen G, Hagen SB, Eiken HG. Novel insight into lepidopteran phylogenetics from the mitochondrial genome of the apple fruit moth of the family Argyresthiidae. BMC Genomics 2024; 25:21. [PMID: 38166583 PMCID: PMC10759517 DOI: 10.1186/s12864-023-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. RESULTS The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. CONCLUSIONS Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway.
| | - Simo N Maduna
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Melissa H Mageroy
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Geir Knudsen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Snorre B Hagen
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| |
Collapse
|
6
|
Anggraini E, Vadamalai G, Kong LL, Mat M, Lau WH. Variants in the mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) infected with Oryctes rhinoceros nudivirus in oil palm and coconut plantations. Sci Rep 2023; 13:16850. [PMID: 37803044 PMCID: PMC10558481 DOI: 10.1038/s41598-023-43691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
The CRB (coconut rhinoceros beetle) haplotype was classified into CRB-S and CRB-G, based on the presence of single nucleotide polymorphisms (SNPs) in the mitochondrial cox1 gene. Mitochondrial genomes (mitogenomes) are the most widely used genetic resources for molecular evolution, phylogenetics, and population genetics in relation to insects. This study presents the mitogenome CRB-G and CRB-S which were collected in Johor, Malaysia. The mitogenome of CRB-G collected from oil palm plantations in 2020 and 2021, and wild coconut palms in 2021 was 15,315 bp, 15,475 bp, and 17,275 bp, respectively. The CRB-S was discovered in coconut and oil palms in 2021, and its mitogenome was 15,484 bp and 17,142 bp, respectively. All the mitogenomes have 37 genes with more than 99% nucleotide sequence homology, except the CRB-G haplotype collected from oil palm in 2021 with 89.24% nucleotide sequence homology. The mitogenome of Johor CRBs was variable in the natural population due to its elevated mutation rate. Substitutions and indels in cox1, cox2, nad2 and atp6 genes were able to distinguish the Johor CRBs into two haplotypes. The mitogenome data generated in the present study may provide baseline information to study the infection and relationship between the two haplotypes of Johor CRB and OrNV in the field. This study is the first report on the mitogenomes of mixed haplotypes of CRB in the field.
Collapse
Affiliation(s)
- Erise Anggraini
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Sriwijaya, Indralaya, Ogan Ilir, 30662, South Sumatra, Indonesia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Lih Ling Kong
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mazidah Mat
- Malaysian Agricultural Research and Development Institute, Persiaran MARDI-UPM, 43400, Serdang, Selangor, Malaysia
| | - Wei Hong Lau
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Riyaz M, Shah RA, Ignacimuthu S, Sivasankaran K. Phylogenomics including the newly sequenced mitogenomes of two moths (Noctuoidea, Erebidae) reveals Ischyja manlia (incertae sedis) as a member of subfamily Erebinae. Genetica 2023; 151:105-118. [PMID: 36708484 DOI: 10.1007/s10709-023-00180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
We sequenced the mitogenomes of two Erebid species, namely Ischyja manlia (Cramer, 1776) and Rusicada privata (Walker, 1865) to analyse the phylogenetic relationship and to establish the taxonomic position of incertae sedis members of the family Erebidae. The two circular genomes of I. manlia and R. privata were 15,879 bp and 15,563 bp long, respectively. The gene order was identical, containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T-rich region. The nucleotide compositions of the A + T-rich region of both mitogenomes were similar: 80.65% for R. privata, and 81.09% for I. manlia. The AT skew and GC skew were slightly positive in I. manlia and negative in R. privata. In I. manlia and R. privata, except for cox1 which started with CGA and TTG codons, all the other 12 PCGs started with ATN codon. The A + T-rich regions of I. manlia and R. privata were 433 and 476 bp long, respectively, and contained common characteristics of Noctuoidea moths. At present, Ischyja is treated as Erebinae incertae sedis. However, phylogenetic analysis conducted in the present study reveals that the genus Ischyja is most likely to be a member of the subfamily Erebinae.
Collapse
Affiliation(s)
- Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, 600 034, Tamil Nadu, India
| | - Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, 600 034, Tamil Nadu, India
| | | | - Kuppusamy Sivasankaran
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, 600 034, Tamil Nadu, India.
| |
Collapse
|
8
|
Chen WT, Li M, Hu SY, Wang SH, Yuan ML. Comparative mitogenomic and evolutionary analysis of Lycaenidae (Insecta: Lepidoptera): Potential association with high-altitude adaptation. Front Genet 2023; 14:1137588. [PMID: 37144132 PMCID: PMC10151513 DOI: 10.3389/fgene.2023.1137588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Harsh environments (e.g., hypoxia and cold temperatures) of the Qinghai-Tibetan Plateau have a substantial influence on adaptive evolution in various species. Some species in Lycaenidae, a large and widely distributed family of butterflies, are adapted to the Qinghai-Tibetan Plateau. Here, we sequenced four mitogenomes of two lycaenid species in the Qinghai-Tibetan Plateau and performed a detailed comparative mitogenomic analysis including nine other lycaenid mitogenomes (nine species) to explore the molecular basis of high-altitude adaptation. Based on mitogenomic data, Bayesian inference, and maximum likelihood methods, we recovered a lycaenid phylogeny of [Curetinae + (Aphnaeinae + (Lycaeninae + (Theclinae + Polyommatinae)))]. The gene content, gene arrangement, base composition, codon usage, and transfer RNA genes (sequence and structure) were highly conserved within Lycaenidae. TrnS1 not only lacked the dihydrouridine arm but also showed anticodon and copy number diversity. The ratios of non-synonymous substitutions to synonymous substitutions of 13 protein-coding genes (PCGs) were less than 1.0, indicating that all PCGs evolved under purifying selection. However, signals of positive selection were detected in cox1 in the two Qinghai-Tibetan Plateau lycaenid species, indicating that this gene may be associated with high-altitude adaptation. Three large non-coding regions, i.e., rrnS-trnM (control region), trnQ-nad2, and trnS2-nad1, were found in the mitogenomes of all lycaenid species. Conserved motifs in three non-coding regions (trnE-trnF, trnS1-trnE, and trnP-nad6) and long sequences in two non-coding regions (nad6-cob and cob-trnS2) were detected in the Qinghai-Tibetan Plateau lycaenid species, suggesting that these non-coding regions were involved in high-altitude adaptation. In addition to the characterization of Lycaenidae mitogenomes, this study highlights the importance of both PCGs and non-coding regions in high-altitude adaptation.
Collapse
Affiliation(s)
- Wen-Ting Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
| | - Su-Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
9
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
10
|
Nethavhani Z, Straeuli R, Hiscock K, Veldtman R, Morton A, Oberprieler RG, van Asch B. Mitogenomics and phylogenetics of twelve species of African Saturniidae (Lepidoptera). PeerJ 2022; 10:e13275. [PMID: 35462770 PMCID: PMC9022641 DOI: 10.7717/peerj.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 01/13/2023] Open
Abstract
African Saturniidae (Lepidoptera) include numerous species consumed at the caterpillar stage throughout the continent, and their importance to local communities as a source of nutrition and seasonal income cannot be overestimated. However, baseline genetic data with utility for the characterization of their diversity, phylogeography and phylogenetic relationships have remained scarce compared to their Asian counterparts. To bridge this gap, we sequenced the mitochondrial genomes of 12 species found in southern Africa for comparative mitogenomics and phylogenetic reconstruction of the family, including the first representatives of the tribes Eochroini and Micragonini. Mitochondrial gene content and organization were conserved across all Saturniidae included in the analyses. The phylogenetic positions of the 12 species were assessed in the context of publicly available mitogenomes using Bayesian inference and maximum likelihood (ML) methods. The monophyly of the tribes Saturniini, Attacini, Bunaeini and Micragonini, the sister relationship between Saturniini and Attacini, and the placement of Eochroa trimenii and Rhodinia fugax in the tribes Eochroini and Attacini, respectively, were strongly supported. These results contribute to significantly expanding genetic data available for African Saturniidae and allow for the development of new mitochondrial markers in future studies.
Collapse
Affiliation(s)
- Zwannda Nethavhani
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Rieze Straeuli
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Kayleigh Hiscock
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Ruan Veldtman
- Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, Western Cape, South Africa,Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Western Cape, South Africa
| | | | - Rolf G. Oberprieler
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Barbara van Asch
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
11
|
Chen DB, Zhang RS, Jin XD, Yang J, Li P, Liu YQ. First complete mitochondrial genome of Rhodinia species (Lepidoptera: Saturniidae): genome description and phylogenetic implication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:243-252. [PMID: 34474693 DOI: 10.1017/s0007485321000808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.
Collapse
Affiliation(s)
- Dong-Bin Chen
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Ru-Song Zhang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Xiang-Dong Jin
- Oak Silkmoth Group, Sericultural Institute of Jilin Province, 399 South Songjiang Road, Jilin132200, China
| | - Jian Yang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Peng Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| |
Collapse
|
12
|
Cheng AP, Huang CC, Cheng YT, Tseng YW, Wang CC, Lai IL, Hung KH. Complete mitogenome of Antheraea formosana Sonan, 1937 (Lepidoptera: Saturniidae): an endemic silkmoth in Taiwan. Mitochondrial DNA B Resour 2022; 7:446-447. [PMID: 35274038 PMCID: PMC8903751 DOI: 10.1080/23802359.2022.2034543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complete mitogenome of an endemic silkmoth in Taiwan, Antheraea formosana, was determined using Illumina next-generation sequencing. The mitogenome is 15,318 bp in length and consists of 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs, and one non-coding control region. The overall base composition of the mitogenome showed a high A + T bias, and the A + T content (80.2%) was significantly higher than the G + C content (19.8%). All PCGs use the typical ATN as the initiation codon, with the exception of cox2, which begins with GTG, respectively. The complete mitogenome was used to reconstruct a phylogenetic tree, indicating that A. formosana is more closely related to Antheraea assamensis than other Antheraea species, with 93.19% nucleotide similarity.
Collapse
Affiliation(s)
- An-Ping Cheng
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chi-Chun Huang
- Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - Yu-Tzu Cheng
- Department of Forestry, Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Wei Tseng
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chih-Chiang Wang
- Department of Forestry, Pingtung University of Science and Technology, Pingtung, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Sun SW, Huang JC, Liu YQ. The complete mitochondrial genome of the wild silkmoth Antheraea yamamai from Heilongjiang, China (Lepidoptera: Saturniidae). Mitochondrial DNA B Resour 2021; 6:2209-2211. [PMID: 34345679 PMCID: PMC8284154 DOI: 10.1080/23802359.2021.1945975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Here, we reported the complete mitochondrial genome of Antheraea yamamai Guérin-Méneville (1861) collected in Heilongjiang Province, China. The mitochondrial genome is 15,341 bp and encodes 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. Sequence comparison identified 22 SNVs in the A. yamamai mitochondrial genomes between Chinese and Korean populations, indicating a low intraspecific variation between the two populations . Phylogenetic analyses with maximum-likelihood and Bayesian inference methods revealed a close relationship between A. yamamai and Antheraea frithi and supported the relationship among Antheraea species (((A. yamamai + A. frithi) + A. pernyi) + A. assamensis).
Collapse
Affiliation(s)
- Shu-Wei Sun
- College of Agronomy, Eastern Liaoning University, Dandong, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Liu B, Sun H, Zhan Q, Gai Y. The complete mitochondrial genome of Orthaga achatina (Lepidoptera: Pyralidae). Mitochondrial DNA B Resour 2021; 6:821-823. [PMID: 33763590 PMCID: PMC7954512 DOI: 10.1080/23802359.2021.1884016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orthaga achatina Butler is an important pest of camphor trees in Asia. The complete mitochondrial genome of O. achatina was sequenced in this study, which was 15,150 bp in size and comprised of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region. Besides, we used a phylogenomic approach to infer evolutionary relationships of O. achatina and 23 Lepidoptera species based on 13 conserved protein sequences of the mitochondrial genome. Our results underline the potential importance of mitochondrial genomes in comparative genomic analyses of Lepidoptera species and provide a robust evolutionary insight across the tree of Lepidoptera insects.
Collapse
Affiliation(s)
- Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | | | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Uddin A, Chakraborty S. Analysis of mitochondrial protein-coding genes of Antheraea assamensis: Muga silkworm of Assam. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21750. [PMID: 33075174 DOI: 10.1002/arch.21750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein-coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein-coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Assam, India
| | | |
Collapse
|
16
|
Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci Rep 2020; 10:695. [PMID: 31959910 PMCID: PMC6971079 DOI: 10.1038/s41598-020-57705-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/21/2019] [Indexed: 11/11/2022] Open
Abstract
Prior to this study, complete mitochondrial genomes from Order Thysanoptera were restricted to a single family, the Thripidae, resulting in a biased view of their evolution. Here we present the sequences for the mitochondrial genomes of four additional thrips species, adding three extra families and an additional subfamily, thus greatly improving taxonomic coverage. Thrips mitochondrial genomes are marked by high rates of gene rearrangement, duplications of the control region and tRNA mutations. Derived features of mitochondrial tRNAs in thrips include gene duplications, anticodon mutations, loss of secondary structures and high gene translocation rates. Duplicated control regions are found in the Aeolothripidae and the 'core' Thripinae clade but do not appear to promote gene rearrangement as previously proposed. Phylogenetic analysis of thrips mitochondrial sequence data supports the monophyly of two suborders, a sister-group relationship between Stenurothripidae and Thripidae, and suggests a novel set of relationships between thripid genera. Ancestral state reconstructions indicate that genome rearrangements are common, with just eight gene blocks conserved between any thrips species and the ancestral insect mitochondrial genome. Conversely, 71 derived rearrangements are shared between at least two species, and 24 of these are unambiguous synapomorphies for clades identified by phylogenetic analysis. While the reconstructed sequence of genome rearrangements among the protein-coding and ribosomal RNA genes could be inferred across the phylogeny, direct inference of phylogeny from rearrangement data in MLGO resulted in a highly discordant set of relationships inconsistent with both sequence-based phylogenies and previous morphological analysis. Given the demonstrated rates of genomic evolution within thrips, extensive sampling is needed to fully understand these phenomena across the order.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 750053, India
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 750053, India
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew D Sweet
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 750053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 750053, India.
| |
Collapse
|
17
|
Langley J, Van der Westhuizen S, Morland G, van Asch B. Mitochondrial genomes and polymorphic regions of Gonimbrasia belina and Gynanisa maja (Lepidoptera: Saturniidae), two important edible caterpillars of Southern Africa. Int J Biol Macromol 2019; 144:632-642. [PMID: 31830455 DOI: 10.1016/j.ijbiomac.2019.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
Abstract
Mopane worms are the vernacular designation for the edible caterpillars of the African emperor moths Gonimbrasia belina and Gynanisa maja. Both species, particularly G. belina, are widely harvested in Southern Africa, and their populations are declining. Despite their commercial, nutritional, and cultural importance, their genetic data are currently unavailable. We sequenced two complete mitogenomes from each species using Ion Torrent technology, and identified informative markers in the complete mitogenomes of the two species for use in future studies. Comparing the conspecific mitogenomes allowed the identification of regions with high nucleotide diversity in ATP6, ND1, ND4, ND5, ND6, and CYTB genes. The final panels of markers will allow for the survey of 3117 bp in G. belina, and 3990 bp in Gy. maja. Phylogenetic reconstruction within the family Saturniidae recovered the tribe Bunaeini as monophyletic and basal to Saturniidae, and the tribe Attacini as a monophyletic clade nested within the tribe Saturniini. The G. belina and Gy. maja mitogenomes are the first representatives of African Saturniidae, a taxonomic group with relevance as a food resource on the continent. This study represents the first step towards assessing the genetic diversity, population structure, and phylogeography of African edible caterpillars.
Collapse
Affiliation(s)
- Jethro Langley
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Gail Morland
- Department of Natural Resources Management, Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Private Bag 13388, Windhoek, Namibia
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
18
|
Wang PL, Luchetti A, Alberto Ruggieri A, Xiong XM, Xu MRX, Zhang XG, Zhang HH. Successful Invasions of Short Internally Deleted Elements (SIDEs) and Its Partner CR1 in Lepidoptera Insects. Genome Biol Evol 2019; 11:2505-2516. [PMID: 31384954 PMCID: PMC6740152 DOI: 10.1093/gbe/evz174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 11/28/2022] Open
Abstract
Although DNA transposons often generated internal deleted derivatives such as miniature inverted-repeat transposable elements, short internally deleted elements (SIDEs) derived from nonlong terminal-repeat retrotransposons are rare. Here, we found a novel SIDE, named Persaeus, that originated from the chicken repeat 1 (CR1) retrotransposon Zenon and it has been found widespread in Lepidoptera insects. Our findings suggested that Persaeus and the partner Zenon have experienced a transposition burst in their host genomes and the copy number of Persaeus and Zenon in assayed genomes are significantly correlated. Accordingly, the activity though age analysis indicated that the replication wave of Persaeus coincided with that of Zenon. Phylogenetic analyses suggested that Persaeus may have evolved at least four times independently, and that it has been vertically transferred into its host genomes. Together, our results provide new insights into the evolution dynamics of SIDEs and its partner non-LTRs.
Collapse
Affiliation(s)
- Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Italy
| | | | | | - Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, China
| |
Collapse
|
19
|
Kumar V, Tyagi K, Kundu S, Chakraborty R, Singha D, Chandra K. The first complete mitochondrial genome of marigold pest thrips, Neohydatothrips samayunkur (Sericothripinae) and comparative analysis. Sci Rep 2019; 9:191. [PMID: 30655597 PMCID: PMC6336932 DOI: 10.1038/s41598-018-37889-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
Complete mitogenomes from the order Thysanoptera are limited to representatives of the subfamily Thripinae. Therefore, in the present study, we sequenced the mitochondrial genome of Neohydatothrips samayunkur (15,295 bp), a member of subfamily Sericothripinae. The genome possesses the canonical 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs) as well as two putative control regions (CRs). The majority strand was 77.42% A + T content, and 22.58% G + C with weakly positive AT skew (0.04) and negative GC skew (-0.03). The majority of PCGs start with ATN codons as observed in other insect mitochondrial genomes. The GCG codon (Alanine) was not used in N. samayunkur. Most tRNAs have the typical cloverleaf secondary structure, however the DHU stem and loop were absent in trnV and trnS1, while the TΨC loop was absent in trnR and trnT. The two putative control regions (CR1 and CR2) show 99% sequence similarity indicated a possible duplication, and shared 57 bp repeats were identified. N. samayunkur showed extensive gene rearrangements, with 11 PCGs, 22 tRNAs, and two rRNAs translocated when compared to the ancestral insect. The gene trnL2 was separated from the 'trnL2-cox2' gene block, which is a conserved, ancestral gene order found in all previously sequenced thrips mitogenomes. Both maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees resulted in similar topologies. The phylogenetic position of N. samayunkur indicates that subfamily Sericothripinae is sister to subfamily Thripinae. More molecular data from different taxonomic groups is needed to understand thrips phylogeny and evolution.
Collapse
Affiliation(s)
- Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
20
|
Jiang X, Han X, Liu Q, Hou X. The mitochondrial genome of Forcipomyia makanensis (Insecta: Diptera: Ceratopogonidae). MITOCHONDRIAL DNA PART B 2019; 4:344-345. [DOI: 10.1080/23802359.2018.1544048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/20/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xiaohong Jiang
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiaojing Han
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qiongyou Liu
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiaohui Hou
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
21
|
Chakraborty R, Tyagi K, Kundu S, Rahaman I, Singha D, Chandra K, Patnaik S, Kumar V. The complete mitochondrial genome of Melon thrips, Thrips palmi (Thripinae): Comparative analysis. PLoS One 2018; 13:e0199404. [PMID: 30379813 PMCID: PMC6209132 DOI: 10.1371/journal.pone.0199404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/21/2018] [Indexed: 11/19/2022] Open
Abstract
The melon thrips, Thrips palmi is a serious pest and vector for plant viruses on a wide range of economically important crops. DNA barcoding evidenced the presence of cryptic diversity in T. palmi and that warrants exhaustive molecular studies. Our present study is on decoding the first complete mitochondrial genome of T. palmi (15,333 bp) through next-generation sequencing (NGS). The T. palmi mt genome contains 37 genes, including 13 Protein coding genes (PCGs), two ribosomal RNA (rRNAs), 22 transfer RNA (tRNAs), and two control regions (CRs). The majority strand of T. palmi revealed 78.29% A+T content, and 21.72% G+C content with positive AT skew (0.09) and negative GC skew (-0.06). The ATN initiation codons were observed in 12 PCGs except for cox1 which have unique start codon (TTG). The relative synonymous codon usage (RSCU) analysis revealed Phe, Leu, Ile, Tyr, Asn, Lys and Met were the most frequently used amino acids in all PCGs. The codon (CGG) which is assigned to Arginine in most insects but absent in T. palmi. The Ka/Ks ratio ranges from 0.078 in cox1 to 0.913 in atp8. We observed the typical cloverleaf secondary structure in most of the tRNA genes with a few exceptions; absence of DHU stem and loop in trnV and trnS, absence of DHU loop in trnE, lack of T-arm and loop in trnN. The T. palmi gene order (GO) was compared with ancestral GO and observed an extensive gene arrangement in PCGs, tRNAs and rRNAs. The cox2 gene was separated from the gene block 'cox2-trnL2' in T. palmi as compared with the other thrips mt genomes, including ancestor GO. Further, the nad1, trnQ, trnC, trnL1, trnV, trnF, rrnS, and rrnL were inversely transpositioned in T. palmi GO. The gene blocks 'trnQ-trnS2-trnD' and 'trnN-trnE-trnS1-trnL1' seems to be genus specific. The T. palmi mt genome contained 24 intergenic spacer regions and 12 overlapping regions. The 62 bp of CR2 shows the similarity with CR1 indicating a possible duplication. The occurrence of multiple CRs in thrips mt genomes seems to be a derived trait which needs further investigation. Although, the study depicted extensive gene rearrangements in T. palmi mt genome, but the negative GC skew reflects only strand asymmetry. Both the ML and BI phylogenetic trees revealed the close relationships of Thrips with Scirtothrips as compared to Frankliniella. Thus, more mt genomes of the diverse thrips species are required to understand the in-depth phylogenetic and evolutionary relationships.
Collapse
Affiliation(s)
- Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Iftikar Rahaman
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Liu Q, Jiang X, Hou X, Yang H, Chen W. The mitochondrial genome of Ephestia elutella (Insecta: Lepidoptera: Pyralidae). Mitochondrial DNA B Resour 2018; 3:189-190. [PMID: 33490496 PMCID: PMC7800315 DOI: 10.1080/23802359.2018.1436993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
In this study, the complete mitochondrial genome of the tobacco moth Ephestia elutella was sequenced and analyzed. The mitochondrial genome is 15345 bp long and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. Twenty-three genes were found to be encoded by the majority strand and the other 14 genes by minority strand, those is similar to that of other insects. The nucleotide compositing of the majority strand are 38.6% of A, 11.77% of C, 42.05% of T and 7.58% of G. The phylogenetic analysis by Maximum-likelihood (ML) method revealed that the E. elutella was close to the same genus insect Ephestia kuehniella.
Collapse
Affiliation(s)
- Qiongyou Liu
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Xiaohong Jiang
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Xiaohui Hou
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Hong Yang
- Institute of Entomology, College of Tobacco Science, Guizhou University, Guiyang, Guizhou, P. R. China
| | - Wenlong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, Guizhou, P R China
- Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Institute of Entomology, Guizhou University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
23
|
Liu Q, Jiang X, Hou X, Cai R, Tan J, Chen W. The mitochondrial genome of Lasioderma serricorne (Coleoptera, Anobiidae). Mitochondrial DNA B Resour 2018; 3:64-65. [PMID: 33474067 PMCID: PMC7799969 DOI: 10.1080/23802359.2017.1422400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 11/01/2022] Open
Abstract
In this study, the complete mitochondrial genome of the Lasioderma serricorne was sequenced and analysed. The mitochondrial genome is 14,476 bp long and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and two non-coding region. Twenty three genes were found to be encoded by the majority strand and the other 14 genes by minority strand, those similar to that of other insects. The nucleotide compositing of the majority strand is 39.74% of A, 11.20% of C, 40.47% of T, and 10.39% of G. The phylogenetic analysis by maximum-likelihood (ML) method revealed that the L. serricorne was close to Lasioderma redtenbacheri.
Collapse
Affiliation(s)
- Qiongyou Liu
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiaohong Jiang
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiaohui Hou
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Renlian Cai
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Tan
- Department of Basic Medical Sciences, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Wenlong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Institute of Entomology, Guizhou University, Guiyang, People’s Republic of China
| |
Collapse
|