1
|
Xiang X, Liu H, Zheng C, Jiang N, Huang F, Zhou Q. Flavor Profile of 4-Isothiocyanato-1-butene in Microwave Rapeseed Oil and Its Anti-Inflammatory Properties In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10520-10530. [PMID: 40171632 DOI: 10.1021/acs.jafc.4c11689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
4-Isothiocyanato-1-butene (4-BITC) is a crucial plant isothiocyanate; however, its flavor profile in microwave rapeseed oil and its anti-inflammatory properties have not been elucidated in detail. Therefore, in this study, the distribution of 4-BITC in 45 rapeseed oils was quantitated using selected ion monitoring, with concentrations ranging from 0.29 to 8.63 mg/kg. The odor activity values ranged from 4 to 123. In a lipopolysaccharide (LPS)-induced RAW264.7 cell model, 4-BITC exerted dose-dependent anti-inflammatory effects, which resulted in remarkable differences in 20 lipid mediators between the LPS and 4-BITC groups. Kyoto Encyclopedia of Genes and Genomes analysis revealed that 4-BITC downregulated proinflammatory oxylipins by modulating the CYP, LOX, and COX pathways, thereby preventing arachidonic acid metabolism disorders. Molecular docking further confirmed that 4-BITC inhibited the PI3K/Akt/NF-κB signaling cascade to alleviate inflammation.
Collapse
Affiliation(s)
- Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Huihui Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Nanjie Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| |
Collapse
|
2
|
Sparks BB, Ford H, Michelotti TC, Strieder-Barboza C. Adipose tissue oxylipin profile changes with subclinical ketosis and depot in postpartum dairy cows. J Dairy Sci 2025; 108:781-791. [PMID: 39343228 DOI: 10.3168/jds.2024-25178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Lipolysis of adipose tissue is a natural occurrence during the periparturient period in dairy cows. However, when lipolysis rates exceed the capacity of other tissues to used nonesterified fatty acids, it may lead to the development of ketosis and other diseases. Additionally, PUFA can become oxidized into oxylipins, which modulate inflammation and metabolism. The objective of this work was to identify depot-specific differences on adipose tissue oxylipin profile in dairy cows with and without subclinical ketosis and assess the effects of oxylipins on adipocyte function in vitro. Subcutaneous adipose tissue from the flank (SAT) and visceral adipose tissue from the omentum (VAT) were collected through laparotomy from multiparous dairy cows (5-14 DIM) and grouped according to blood BHB into nonketotic (NK; n = 5; BHB ≤ 0.8 mmol/L) and subclinical ketotic (SCK; n = 5; BHB 1.4 and ≤ 2.6 mmol/L). A targeted lipidome capable of detecting a 154 oxylipins was performed in paired SAT and VAT samples from all animals. Data were analyzed using the PROC GLIMMIX procedure in SAS (v9.4, SAS Institute Inc., Cary, NC) for the effect of depot (SAT, VAT), ketosis status (SCK, NK), and their interaction (depot × ketosis status) on oxylipin abundance. The oxylipins thromboxane-B2 (TXB2), prostaglandin-A2 (PGA2), and 5-hydroxeicostretanoic acid (5-HETE) were selected from lipidomic data based on effects of ketosis status and depot-specificity to further investigate their effects on SAT and VAT adipocyte function. Lipidomic data revealed 50 oxylipins across both adipose tissue depots. SCK was associated with a decreased abundance of TXB2 and tended to associate with an increase in PGA2 and prostaglandin-E1 (PGE1). Additionally, PGE1, 15-keto-prostaglandin-E2, 13,14-dihydro-15-keto-prostaglandin-E2, 5-HETE, and 15-HETE were increased in SAT. Although VAT had a greater abundance of 9,10-dihydroxy-12Z-octadecenoic acid, 12,13-dihydroxy-9Z-octadecenoic acid, 9-oxo-10E,12Z,15Z-octadecatrienoic acid, and 13S-hydroxy-9Z,11E,15Z-octadecatrienoic acid (13[s]-HOTrE). In vitro, an average (AVG) dose of 5-HETE on VAT cells tended to increase proliferation at d 7 compared with the control, HGH dose of TXB2 tended to decrease lipid accumulation in SAT compared with control, and AVG dose of PGA2 on VAT cells tended to lower ROS compared with the control. Overall, postpartum dairy cows have depot-specific adipose tissue lipidomic profiles which are associated with changes in ketosis status.
Collapse
Affiliation(s)
- Bridger B Sparks
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409
| | - Hunter Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409
| | - Tainara C Michelotti
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409; School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106.
| |
Collapse
|
3
|
Chirivi M, Abou-Rjeileh U, Gandy J, Parales-Giron J, Panda V, Terrian L, Bhattacharya S, Lock AL, Contreras GA. Chromium and palmitic acid supplementation modulate adipose tissue insulin sensitivity in postpartum dairy cows. J Dairy Sci 2025; 108:1078-1091. [PMID: 39369891 DOI: 10.3168/jds.2024-24972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Periparturient dairy cows exhibit intense lipolysis driven by reduced DMI, enhanced energy needs, and the loss of adipose tissue (AT) insulin sensitivity. Extended periods of low insulin sensitivity and negative energy balance induce lipolysis dysregulation, leading to increased disease susceptibility and poor lactation performance. Chromium (Cr) supplementation improves systemic insulin sensitivity, whereas palmitic acid (PA) increases energy availability for milk production. However, the effect of supplementing Cr and PA alone or in combination on insulin sensitivity in AT is unknown. A total of 32 multiparous cows were used in a randomized complete block design experiment and randomly assigned to one of 4 diets fed from 1 to 24 DIM: a control diet with no supplementation (CON, n = 8); the Cr diet (Cr propionate at 0.45 mg/kg Cr/kg DM, n = 8); the PA diet (1.5% DM, n = 8); or Cr+PA (n = 8). Plasma samples were collected at -13 ± 5.1 d prepartum (PreP), and at 14.4 ± 1.9 d (PP1) and 21 ± 1.9 d (PP2) after calving for quantification of albumin, BHB, BUN, calcium, cholesterol, glucose, nonesterified fatty acids (NEFA), total protein, iron, transferrin, triglycerides, and oxylipids. Subcutaneous AT (SCAT) explants were collected at PreP, PP1, and PP2 and incubated in the presence of the lipolytic agent isoproterenol (ISO = 1 µM, BAS = 0 µM) for 3 h. The antilipolytic effect of insulin (1 µL/L) on SCAT explants was evaluated during ISO stimulation (ISO+INS). Lipolysis was quantified by glycerol release in the medium (nmol glycerol/mg AT). Macrophage infiltration and adipocyte size were measured using hematoxylin and eosin-stained AT sections and immunohistochemistry. The Cr diet tended to reduce postpartum NEFA concentrations when compared with CON, PA, and Cr+PA. Likewise, Cr increased the percentage of large adipocytes (>9,000 µm2) postpartum compared with other diets. In line with higher lipid content, Cr-fed cows had higher ex vivo BAS lipolysis at PP2 when compared with PA and Cr+PA. Isoproterenol induced higher lipolysis at PP1 and PP2, but it was not affected by Cr and PA. The ISO+INS treatment reduced lipolysis by 29.91% ± 11% in Cr compared with ISO. In contrast, ISO+INS did not affect ISO lipolysis in CON, PA, and Cr+PA. Plasma transferrin was reduced by Cr. At PP2, PA cows had 3.3-fold higher macrophage infiltration in SCAT when compared with CON and Cr. Plasma 9-hydroxyoctadecadienoic acid (HODE) and 9-oxo-octadecadienoic acid (oxoODE) were increased by Cr+PA. Palmitic acid increased plasma 13-oxoODE and Cr increased the ratio of 13-HODE to 13-oxoODE. Palmitic acid increased 5-iso prostaglandin F2α-VI. Our results demonstrate that supplementing Cr during the immediate postpartum enhances SCAT insulin sensitivity and lipid accumulation. Further studies should determine the effects and mechanisms of action of Cr and PA on AT lipogenesis, adipogenesis, and their impact on lactation performance.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824
| | - Vishal Panda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824; Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824
| | - Leah Terrian
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
4
|
Chirivi M, Cortes-Beltran D, Gandy J, Contreras GA. Oxylipin dynamics in dairy cows during clinical ketosis and after treatment with niacin and flunixin meglumine. JDS COMMUNICATIONS 2025; 6:117-121. [PMID: 39877162 PMCID: PMC11770302 DOI: 10.3168/jdsc.2024-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 01/31/2025]
Abstract
Dairy cows with clinical ketosis (CK) exhibit metabolic changes, including intense adipose tissue (AT) lipolysis and systemic insulin resistance, that increase plasma BHB and free fatty acids (FFA). Cows with CK also have systemic inflammation, predisposing them to inflammatory and infectious diseases. This inflammatory process is modulated in part by oxidized fatty acids (oxylipins) that regulate all aspects of inflammation. Oxylipin profiles have been characterized in healthy periparturient cows, but their dynamics during CK are unknown. Clinical ketosis is an acute metabolic disease requiring clinical therapy, commonly including propylene glycol (PG) as a gluconeogenic agent. Recently, we showed that including lipolysis inhibitors such as niacin (NIA) and flunixin meglumine (FM) improved CK recovery. These drugs may modulate oxylipin biosynthesis by regulating the release of PUFA (oxylipin substrates) and cyclooxygenase activity. However, their impact on oxylipin profiles in cows with CK is unknown. The objective of this study was to determine the dynamics of specific linoleic and arachidonic acid-derived oxylipins during CK and following therapy with PG, NIA, and FM. Multiparous Jersey cows (n = 72; 7.1 DIM) with CK from a commercial dairy were sampled. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and reduced rumen fill) and blood BHB ≥ 1.2 mmol/L. The CK cows (n = 24/treatment) were randomly assigned to one of the 3 treatments: (1) PG: 310 g orally once daily for 5 d, (2) PG + NIA (PGNIA): 24 g orally once daily for 3 d, (3) PG + NIA + FM (PGNIAFM): 1.1 mg/kg i.v. once daily for 3 d. Healthy control cows (HC; n = 24) matched by lactation and DIM (±2 d) were also included. Plasma oxylipins were quantified at enrollment and 7 d later using HPLC-MS/MS. At enrollment, CK had higher concentrations of arachidonic acid (ARA)-derived 5- and 20-HETE, 8,9-, 11,12-, and 14-15-DHET, and lower concentrations of linoleic acid (LA)-derived 12,13-EpOME, 13-oxoODE, 9,10- and 12,13-DiHOME. Integrated analysis of biological pathways and oxylipin profiles using Ingenuity Pathway Analysis revealed ARA metabolism as the top pathway activated during CK. By d 7, treatment with PGNIAFM restored plasma PUFA and oxylipins to profiles similar to HC. Ingenuity Pathway Analysis showed that PGNIAFM activated the zinc transporter SLC30A7, associated with reduced activation of the ARA pathway. Results indicate that higher FA availability during CK, driven in part by dysregulated lipolysis, increases the pool of substrates for oxylipin biosynthesis. These oxylipins may play a role in both metabolic dysregulation and restoring homeostasis during CK. Inhibiting lipolysis and cyclooxygenase activity with NIA and FM can alter ARA- and LA-derived oxylipin biosynthesis. These findings underscore the potential use of lipolysis inhibitors NIA and FM in CK therapeutics and highlight the importance of understanding oxylipin pathways in the pathogenesis of CK.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes-Beltran
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
5
|
Farhadi S, Hasanpur K, Shodja Ghias J, Palangi V, Lackner M. Analyzing the expression of the transcriptome in adipose tissue of fat- and thin-tailed sheep. Vet Anim Sci 2024; 25:100387. [PMID: 39253697 PMCID: PMC11381445 DOI: 10.1016/j.vas.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Significant efforts have been made to understand how fat deposition in sheep tail is regulated in genetic, transcriptomic, physiologic, biochemical, and metabolic levels in order to elucidate the complex mechanisms underlying the energy storage, lipid metabolism in adipose tissue, adaptability to harsh environments, and evolutionary domestication. Through RNA-seq data analysis, we are able to compare the gene expression of fat-tailed sheep versus thin-tailed sheep breeds in an acceptable resolution at transcriptome level. The purpose of this study was to compare the transcriptomes of Ghezel (fat-tailed) and Zel (thin-tailed) sheep. Total RNA from subcutaneous and tail tissue samples from healthy lambs was sequenced (150b PE) to identify differentially expressed genes (DEGs) between the two mentioned tissues and between the Ghezel and Zel sheep breeds. Further downstream pathway and network analyses were conducted afterwards. The results uncovered the association of the most important DEGs such as CAV1, ALB, and SOCS3 with cellular signaling pathways of lipids metabolism. It seems that the SOCS3 gene plays an important role in the differential deposition of lipid in the tails of two phenotypically different sheep breeds. Although the detail of gene expression in the tail and subcutaneous tissues of two morphologically different breeds was decoded here, to fully understand how differential expression of the SOCS3 gene affects the fat synthesis, further studies are needed.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
6
|
Zhao X, Zhang Y, Rahman A, Chen M, Li N, Wu T, Qi Y, Zheng N, Zhao S, Wang J. Rumen microbiota succession throughout the perinatal period and its association with postpartum production traits in dairy cows: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:17-26. [PMID: 39022774 PMCID: PMC11253274 DOI: 10.1016/j.aninu.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashikur Rahman
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Wu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Myers MN, Chirivi M, Gandy JC, Tam J, Zachut M, Contreras GA. Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes. J Anim Sci Biotechnol 2024; 15:103. [PMID: 39095900 PMCID: PMC11297689 DOI: 10.1186/s40104-024-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components. RESULTS We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3. CONCLUSIONS Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeff C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization Volcani Institute, Rishon LeZion, 7505101, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
8
|
Chirivi M, Cortes D, Rendon CJ, Contreras GA. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: Effects on adipose tissue metabolic and immune responses. J Dairy Sci 2024; 107:5104-5121. [PMID: 38278290 DOI: 10.3168/jds.2023-23998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Dairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation. Niacin (NIA) can reduce the activation of canonical lipolysis, whereas cyclooxygenase inhibitors such as flunixin meglumine (FM) can limit inflammation and inhibit the inflammatory lipolytic pathway. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on AT function. Multiparous Jersey cows (n = 18; 7.1 ± 3.8 DIM) were selected from a commercial dairy. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and drop in milk yield) and high blood levels of BHB (≥1.2 mmol/L). Cows with CK were randomly assigned to one of 3 treatments: (1) PG: 310 g administered orally once per day for 5 d, (2) PG+NIA: 24 g administered orally once per day for 3 d, and (3) PG+NIA+FM: 1.1 mg/kg administered IV once per day for 3 d. Healthy control cows (HC; n = 6) matched by lactation and DIM (±2 d) were sampled. Subcutaneous AT explants were collected at d 0 and d 7 relative to enrollment. To assess AT insulin sensitivity, explants were treated with insulin (1 µL/L) during lipolysis stimulation with a β-adrenergic receptor agonist (isoproterenol, 1 µM). Lipolysis was quantified by glycerol release in the media. Lipid mobilization and inflammatory gene networks were evaluated using quantitative PCR. Protein biomarkers of lipolysis, insulin signaling, and AT inflammation, including hormone-sensitive lipase, protein kinase B (Akt), and ERK1/2, were quantified by capillary immunoassays. Flow cytometry of AT cellular components was used to characterize macrophage inflammatory phenotypes. Statistical significance was determined by a nonparametric t-test when 2 groups (HC vs. CK) were analyzed and an ANOVA test with Tukey adjustment when 3 treatment groups (PG vs. PG+NIA vs. PG+NIA+FM) were evaluated. At d 0, AT from CK cows showed higher mRNA expression of lipolytic enzymes ABHD5, LIPE, and LPL, as well as increased phosphorylation of hormone-sensitive lipase compared with HC. At d 0, insulin reduced lipolysis by 41% ± 8% in AT from HC, but CK cows were unresponsive (-2.9 ± 4%). Adipose tissue from CK cows exhibited reduced Akt phosphorylation compared with HC. Cows with CK had increased AT expression of inflammatory gene markers, including CCL2, IL8, IL10, TLR4, and TNF, along with ERK1/2 phosphorylation. Adipose tissue from CK cows showed increased macrophage infiltration compared with HC. By d 7, AT from PG+NIA+FM cows had a more robust response to insulin, as evidenced by reduced glycerol release (36.5% ± 8% compared with PG at 26.9% ± 7% and PG+NIA at 7.4% ± 8%) and enhanced phosphorylation of Akt. By d 7, PG+NIA+FM cows presented lower inflammatory markers, including ERK1/2 phosphorylation, and reduced macrophage infiltration, compared with PG and PG+NIA. These data suggest that including NIA and FM in CK treatment improves AT insulin sensitivity and reduces AT inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
9
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
10
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
11
|
Abou-Rjeileh U, Dos Santos Neto JM, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, Contreras GA. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J Dairy Sci 2023; 106:4306-4323. [PMID: 37105874 DOI: 10.3168/jds.2022-22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm2) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows.
Collapse
Affiliation(s)
- Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - José M Dos Santos Neto
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Nial O'Boyle
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - David Salcedo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
12
|
Ma N, Liang Y, Cardoso FF, Parys C, Cardoso FC, Shen X, Loor JJ. Insulin signaling and antioxidant proteins in adipose tissue explants from dairy cows challenged with hydrogen peroxide are altered by supplementation of arginine or arginine plus methionine. J Anim Sci 2022; 100:6523279. [PMID: 35137127 PMCID: PMC8956129 DOI: 10.1093/jas/skac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
Arginine (Arg) and methionine (Met) can elicit anti-inflammatory and antioxidant effects in animals. Unlike Met, however, it is unknown if the supply of Arg can impact key aspects of adipose tissue (AT) function in dairy cows. Since Met and Arg metabolism are linked through the synthesis of polyamines, it is also possible that they have a complementary effect on aspects of AT function during a stress challenge. In this experiment, subcutaneous AT was harvested from four lactating multiparous Holstein cows (~27.0 kg milk per day, body condition score 3.38 ± 0.23) and used for incubations (4 h) with the following: control medium with an "ideal" profile of essential amino acids (IPAA; CTR; Lys:Met 2.9:1), IPAA plus 100 μM H2O2 (HP), H2O2 plus greater Arg supply (HPARG; Lys:Arg 1:1), or H2O2 plus greater Arg and methionine (Met) supply (HPARGMET; Lys:Met 2.5:1 and Lys:Arg 1:1). Western blotting was used to measure abundance of 18 protein targets associated with insulin and AA signaling, nutrient transport, inflammation, and antioxidant response. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess effects on genes associated with Arg metabolism. Among the protein targets measured, although abundance of phosphorylated (p) AKT serine/threonine kinase (P = 0.05) and p-mechanistic target of rapamycin (P = 0.04) were lowest in HP explants, this effect was attenuated in HPARG and especially HPARGMET compared with CTR. Compared with HP, incubation with HPARG led to upregulation of the AA transporter solute carrier family 1 member 3 (L-glutamate transporter; P = 0.03), the reactive oxygen species detoxification-related enzyme glutathione S-transferase mu 1 (GSTM1; P = 0.03), and fatty acid synthase (P = 0.05). Those effects were accompanied by greater abundance of solute carrier family 2 member 4 (insulin-induced glucose transporter) in explants incubated with HPARG and also HPARGMET (P = 0.04). In addition, compared with other treatments, the peak response in abundance of the intracellular energy sensor 5'-prime-AMP-activated protein kinase was detected with HPARGMET (P = 0.003). There was no effect of Arg or Arg plus Met on the mRNA abundance of genes associated with Arg metabolism (ARG1, NOS2, AMD1, SMS, and SRM). Overall, supplementation of Arg alone or with Met partially alleviated the negative effects induced by H2O2. More systematic studies need to be conducted to explore the function of Arg supply with or without Met on AT function.
Collapse
Affiliation(s)
- Nana Ma
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Fabiana F Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Claudia Parys
- Evonik Operations GmbH, Nutrition & Care, 63457 Hanau, Germany
| | - Felipe C Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
13
|
Zachut M, Contreras GA. Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. J Dairy Sci 2022; 105:3670-3686. [DOI: 10.3168/jds.2021-21225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
|
14
|
Changes in the Spectrum of Free Fatty Acids in Blood Serum of Dairy Cows during a Prolonged Summer Heat Wave. Animals (Basel) 2021; 11:ani11123391. [PMID: 34944168 PMCID: PMC8698168 DOI: 10.3390/ani11123391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Heat stress leads to poor welfare, decreased productivity, and poor product quality. It is known that the content of fatty acids in the blood can reflect the physiological state of the body under normal and pathological conditions. They can be biomarkers for the state of biomembranes associated with inflammation and indicate the state of energy imbalance during chronic heat stress. They perform various functions in the body; therefore, the determination of the spectrum of free fatty acids can be used as biomarkers of these processes. The changes in the spectrum of free fatty acids in the blood serum of dairy cows revealed in our study will make it possible to better understand the physiological state of the organism and possibly indicate ways to maintain the health and milk productivity of animals under conditions of prolonged hyperthermia. Abstract This experiment was conducted to study the effect of a prolonged hot period on the fatty acid (FA) composition in blood serum of dairy cows. Eighteen multiparous Holstein cows were randomly assigned to the hyperthermia group (HYP, n = 8) in August (summer season) and the control group (CON, n = 10) in October (autumn season). Blood from animals of the HYP group was collected in one heat wave, which was preceded by a long period of heat stress (HS, temperature-humidity index (THI ≥ 72)). Blood from cows of the CON group was collected under thermal comfort conditions (THI < 68). The spectrum of free fatty acids (FFA) in the blood serum was analyzed by gas chromatography. The concentration of FFA increased, including saturated FAs and monounsaturated FAs, in the blood serum of cows under conditions of prolonged HS. This was associated with the mobilization of FA into the bloodstream from adipose tissue, as a consequence of negative energy balance. An increase in the ratio of n-6/n-3 polyunsaturated FAs may indicate biomembrane dysfunction and adversely affect dairy cows. This study showed that prolonged periods of heat can affect the FA composition of blood. How much this leads to changes in the FA composition of milk and the quality of food products remains to be seen in further research.
Collapse
|
15
|
Chirivi M, Rendon CJ, Myers MN, Prom CM, Roy S, Sen A, Lock AL, Contreras GA. Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows. J Dairy Sci 2021; 105:842-855. [PMID: 34696909 DOI: 10.3168/jds.2021-20855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023]
Abstract
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: -63 ± 18%) and LPS (LPS+INS: -45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: -16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (-3.84 ± 23.6% and -21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Madison N Myers
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Crystal M Prom
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Sambit Roy
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Aritro Sen
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
16
|
Ma N, Liang Y, Coleman DN, Li Y, Ding H, Liu F, Cardoso FF, Parys C, Cardoso FC, Shen X, Loor JJ. Methionine supplementation during a hydrogen peroxide challenge alters components of insulin signaling and antioxidant proteins in subcutaneous adipose explants from dairy cows. J Dairy Sci 2021; 105:856-865. [PMID: 34635354 DOI: 10.3168/jds.2021-20541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022]
Abstract
Enhanced postruminal supply of methionine (Met) during the peripartal period alters protein abundance of insulin, AA, and antioxidant signaling pathways in subcutaneous adipose tissue (SAT). Whether SAT is directly responsive to supply of Met and can induce molecular alterations is unknown. Our objective was to examine whether enhanced Met supply during an oxidative stress challenge in vitro alters insulin, AA, inflammation, and antioxidant signaling-related protein networks. Four late-lactation Holstein cows (average 27.0 kg of milk per day) were used for SAT collection. Tissue was incubated in duplicate for 4 h in a humidified incubator with 5% CO2 at 37°C according to the following experimental design: control medium with an "ideal" profile of essential AA (CTR; Lys:Met 2.9:1), CTR plus 100 μM H2O2 (HP), or CTR with greater Met supply plus 100 μM H2O2 (HPMET; Lys:Met 2.5:1). Molecular targets associated with insulin signaling, lipolysis, antioxidant nuclear factor, erythroid 2 like 2 (NFE2L2), inflammation, and AA metabolism were determined through reverse-transcription quantitative PCR and western blotting. Data were analyzed using the MIXED procedure of SAS 9.4 (SAS Institute Inc.). Among proteins associated with insulin signaling, compared with CTR, HP led to lower abundance of phosphorylated AKT serine/threonine kinase (p-AKT) and solute carrier family 2 member 4 (SLC2A4; insulin-induced glucose transporter). Although incubation with HPMET restored abundance of SLC2A4 to levels in the CTR and upregulated abundance of fatty acid synthase (FASN) and phosphorylated 5'-prime-AMP-activated protein kinase (p-AMPK), it did not alter p-AKT, which remained similar to HP. Among proteins associated with AA signaling, compared with CTR, challenge with HP led to lower abundance of phosphorylated mechanistic target of rapamycin (p-MTOR), and HPMET did not restore abundance to CTR levels. Among inflammation-related targets studied, incubation with HPMET led to greater protein abundance of nuclear factor kappa B subunit p65 (NFKB-RELA). The response in NFKB observed with HPMET was associated with a marked upregulation of the antioxidant transcription regulator NFE2L2 and the antioxidant enzyme glutathione peroxidase 1 (GPX1). No effects of treatment were detected for mRNA abundance of proinflammatory cytokines or antioxidant enzymes, underscoring the importance of post-transcriptional regulation. Overall, data indicated that short-term challenge with H2O2 was particularly effective in reducing insulin and AA signaling. Although a greater supply of Met had little effect on those pathways, it seemed to restore the protein abundance of the insulin-induced glucose transporter. Overall, the concomitant upregulation of key inflammation and antioxidant signaling proteins when a greater level of Met was supplemented to oxidant-challenged SAT highlighted the potential role of this AA in regulating the inflammatory response and oxidant status. Further studies should be conducted to assess the role of postruminal supply of Met and other AA in the regulation of immune, antioxidant, and metabolic systems in peripartal cow adipose tissue.
Collapse
Affiliation(s)
- N Ma
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Y Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Li
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - H Ding
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - F Liu
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450086, Henan, China
| | - F F Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Operations GmbH
- Nutrition & Care, Hanau 63457, Germany
| | - F C Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
17
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
19
|
Wilson JP, Randall LV, Green MJ, Rutland CS, Bradley CR, Ferguson HJ, Bagnall A, Huxley JN. A history of lameness and low body condition score is associated with reduced digital cushion volume, measured by magnetic resonance imaging, in dairy cattle. J Dairy Sci 2021; 104:7026-7038. [PMID: 33773792 DOI: 10.3168/jds.2020-19843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Claw horn lesions (CHL) are the result of a failing of the functional anatomy of the hoof in dairy cows. The digital cushion is understood to be a vital structure in the prevention of CHL. Claw horn lesions have previously been shown to lead to pathological change to the pedal bone; however, their effects on the digital cushion are unknown. The primary aim of this study was to examine associations between the history of CHL through an animal's life and the structure of the digital cushion at slaughter using magnetic resonance imaging. The retrospective cohort study resulted in the scanning of 102 pairs of hindfeet, collected from adult Holstein dairy cows culled from a research herd, using a 3-Tesla research-grade magnetic resonance imaging scanner. Volume and fat measurements were calculated for each digital cushion within each claw from a modified Dixon Quant sequence. Animal-level variables were constructed around the animals' lactating lifetime, with lameness scores and body condition score collected at least every 2 wk. The combined volume of digital cushion in the lateral claws was used as the outcome variable in multivariable linear models. The volume of the digital cushion was negatively associated with the number of lameness events or CHL recorded. Furthermore, animals with body condition score >3, culled later in lactation, or of a greater body weight were more likely to have a higher volume of digital cushion in the lateral claws. We propose that the observations made in the current study are the effects of a range of factors broadly associated with genetic, developmental, and disease-related inputs. Our understanding of how we can select for genetically more robust animals and how we can precondition the hoof before first calving needs to be improved to reduce the risk of future CHL in adult dairy cattle. Furthermore, understanding optimal treatment regimens and their effect on hoof anatomy may reduce the recurrence of CHL in the current lactation and future lactations.
Collapse
Affiliation(s)
- J P Wilson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom, LE12 5RD
| | - L V Randall
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom, LE12 5RD
| | - M J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom, LE12 5RD
| | - C S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom, LE12 5RD
| | - C R Bradley
- Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park Campus, Nottingham, United Kingdom, NG7 2RD
| | - H J Ferguson
- Scotland's Rural College, Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh, United Kingdom, EH9 3JG
| | - A Bagnall
- Scotland's Rural College, Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh, United Kingdom, EH9 3JG
| | - J N Huxley
- School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, 4474, New Zealand.
| |
Collapse
|
20
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Farhadi S, Shodja Ghias J, Hasanpur K, Mohammadi SA, Ebrahimie E. Molecular mechanisms of fat deposition: IL-6 is a hub gene in fat lipolysis, comparing thin-tailed with fat-tailed sheep breeds. Arch Anim Breed 2021; 64:53-68. [PMID: 34084904 PMCID: PMC8130542 DOI: 10.5194/aab-64-53-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Tail fat content affects meat quality and varies significantly among different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important Iranian local sheep breeds with different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two mentioned sheep breeds. Seven (Zel = 4 and Ghezel = 3) 7-month-old male lambs were used for this experiment. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein-protein interaction (PPI) and network and module analyses. Some of the DEGs, such as LIPG, SAA1, SOCS3, HIF-1 α , and especially IL-6, had a close association with lipid metabolism. Furthermore, functional enrichment analysis revealed pathways associated with fat deposition, including "fatty acid metabolism", "fatty acid biosynthesis" and "HIF-1 signaling pathway". The structural classification of proteins showed that major down-regulated DEGs in the Zel (thin-tailed) breed were classified under transporter class and that most of them belonged to the solute carrier transporter (SLC) families. In addition, DEGs under the transcription factor class with an important role in lipolysis were up-regulated in the Zel (thin-tailed) breed. Also, network analysis revealed that IL-6 and JUNB were hub genes for up-regulated PPI networks, and HMGCS1, VPS35 and VPS26A were hub genes for down-regulated PPI networks. Among the up-regulated DEGs, the IL-6 gene seems to play an important role in lipolysis of tail fat in thin-tailed sheep breeds via various pathways such as tumor necrosis factor (TNF) signaling and mitogen-activated protein kinase (MAPK) signaling pathways. Due to the probable role of the IL-6 gene in fat lipolysis and also due to the strong interaction of IL-6 with the other up-regulated DEGs, it seems that IL-6 accelerates the degradation of lipids in tail fat cells.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
22
|
King K, Ticiani E, Sprícigo JFW, Carvalho MR, Mion B, Bertolini M, Contreras GA, Ribeiro ES. Dynamics of lipid droplets in the endometrium and fatty acids and oxylipins in the uterine lumen, blood, and milk of lactating cows during diestrus. J Dairy Sci 2021; 104:3676-3692. [PMID: 33455794 DOI: 10.3168/jds.2020-19196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Our objective was to investigate the lipid content of uterus, blood plasma, and milk at early, mid, and late diestrus. Lactating cows (n = 30) had the estrous cycle and ovulation synchronized by administration of exogenous hormones. Cows were blocked by parity and assigned randomly to receive transcervical uterine flushing and biopsy on d 5 (early diestrus), 10 (mid diestrus) or 15 (late diestrus) of the estrous cycle. Flushing and endometrial biopsy were performed in the uterine horn ipsilateral to the corpus luteum. The recovered flushing was used for analyses of lipid composition by liquid chromatography-tandem mass spectrometry and the biopsy was used for investigation of lipid droplet abundance in endometrial cryosections using a neutral lipid fluorescent dye. In addition, blood and milk samples were collected from all cows on d 5, 10, and 15. All blood samples were used to measure the concentration of progesterone in plasma, and all milk samples were used to determine milk composition. Subsamples of blood plasma and milk were also used to evaluate the composition of fatty acids and oxylipins using the same methodology used for uterine flushing samples. The abundance of lipid droplets in the endometrium increased 1.9-fold from d 5 to 10, and 2-fold from d 10 to 15. Concentration of long-chain fatty acids and oxylipins in uterine flushing were, on average, 2.2 and 2.5 times greater in samples collected on d 15 compared with those collected on d 5 and 10. These differences were not observed in blood and milk, suggesting that accumulation of fatty acids and oxylipins in the uterus is regulated locally. In addition to concentration, the profile of individual fatty acids and oxylipins in uterine lumen changed substantially during diestrus. The main categories with increased abundance at late diestrus were mono- and polyunsaturated fatty acids, and oxylipins derived from arachidonic acid, dihomo-γ-linolenic acid, and docosahexaenoic acid. In conclusion, fatty acids and oxylipins accumulate in the uterine lumen during diestrus and might work as a mechanism to supply these lipids to the developing conceptus at late diestrus, when the onset of elongation occurs and substantial synthesis of biomass and cell signaling by lipid mediators are required.
Collapse
Affiliation(s)
- K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - E Ticiani
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; Animal Sciences Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 91540-000
| | - J F W Sprícigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M Bertolini
- Animal Sciences Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 91540-000
| | - G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, 48824
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
23
|
Kuhn MJ, Mavangira V, Sordillo LM. Invited review: Cytochrome P450 enzyme involvement in health and inflammatory-based diseases of dairy cattle. J Dairy Sci 2020; 104:1276-1290. [PMID: 33358163 DOI: 10.3168/jds.2020-18997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Dairy cattle are at the greatest risk of developing diseases around the time of calving because of compromised immune responses and the occurrence of oxidative stress. Both the development of compromised immunity and oxidative stress are influenced directly or indirectly by the metabolism of polyunsaturated fatty acids (PUFA) and fat-soluble vitamins. The cytochrome P450 (CYP450) family of enzymes is central to the metabolism of both classes of these compounds, but to date, the importance of CYP450 in the health of dairy cattle is underappreciated. As certain CYP450 isoforms metabolize both PUFA and fat-soluble vitamins, potential interactions may occur between PUFA and fat-soluble vitamins that are largely unexplored. For example, one CYP450 that generates anti-inflammatory oxylipids from arachidonic acid additionally contributes to the activation of vitamin D. Other potential substrate interactions between PUFA and vitamins A and E may exist as well. The intersection of PUFA and fat-soluble vitamin metabolism by CYP450 suggest that this enzyme system could provide an understanding of how immune function and oxidant status interconnect, resulting in increased postpartum disease occurrence. This review will detail the known contributions of bovine CYP450 to the regulation of oxylipids with a focus on enzymes that may also be involved in the metabolism of fat-soluble vitamins A, D, and E that contribute to antioxidant defenses. Although the activity of specific CYP450 is generally conserved among mammals, important differences exist in cattle, such as the isoforms primarily responsible for activation of vitamin D that makes their specific study in cattle of great importance. Additionally, a CYP450-driven inflammatory positive feedback loop is proposed, which may contribute to the dysfunctional inflammatory responses commonly found during the transition period. Establishing the individual enzyme isoform contributions to oxylipid biosynthesis and the regulation of vitamins A, D, and E may reveal how the CYP450 family of enzymes can affect inflammatory responses during times of increased susceptibility to disease. Determining the potential effect of each CYP450 on disease susceptibility or pathogenesis may allow for the targeted manipulation of the CYP450 pathways to influence specific immune responses and antioxidant defenses during times of increased risk for health disorders.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - V Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
24
|
Caprarulo V, Erb SJ, Chandler TL, Zenobi MG, Barton BA, Staples CR, White HM. The effects of prepartum energy intake and peripartum rumen-protected choline supplementation on hepatic genes involved in glucose and lipid metabolism. J Dairy Sci 2020; 103:11439-11448. [PMID: 33222856 DOI: 10.3168/jds.2020-18840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Nutritional interventions, either by controlling dietary energy (DE) or supplementing rumen-protected choline (RPC) or both, may mitigate negative postpartum metabolic health outcomes. A companion paper previously reported the effects of DE density and RPC supplementation on production and health outcomes. The objective of this study was to examine the effects of DE and RPC supplementation on the expression of hepatic oxidative, gluconeogenic, and lipid transport genes during the periparturient period. At 47 ± 6 d relative to calving (DRTC), 93 multiparous Holstein cows were randomly assigned in groups to dietary treatments in a 2 × 2 factorial of (1) excess energy (EXE) without RPC supplementation (1.63 Mcal of NEL/kg of dry matter; EXE-RPC); (2) maintenance energy (MNE) without RPC supplementation (1.40 Mcal of NEL/kg dry matter; MNE-RPC); (3) EXE with RPC supplementation (EXE+RPC); and (4) MNE with RPC supplementation (MNE+RPC). To achieve the objective of this research, liver biopsy samples were collected at -14, +7, +14, and +21 DRTC and analyzed for mRNA expression (n = 16/treatment). The interaction of DE × RPC decreased glucose-6-phosphatase and increased peroxisome proliferator-activated receptor α in MNE+RPC cows. Expression of cytosolic phosphoenolpyruvate carboxykinase was altered by the interaction of dietary treatments with reduced expression in EXE+RPC cows. A dietary treatment interaction was detected for expression of pyruvate carboxylase although means were not separated. Dietary treatment interactions did not alter expression of carnitine palmitoyltransferase 1A or microsomal triglyceride transfer protein. The 3-way interaction of DE × RPC × DRTC affected expression of carnitine palmitoyltransferase 1A, glucose-6-phosphatase, and peroxisome proliferator-activated receptor α and tended to affect cytosolic phosphoenolpyruvate carboxykinase. Despite previously reported independent effects of DE and RPC on production variables, treatments interacted to influence hepatic metabolism through altered gene expression.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706; Department of Health, Animal Science and Food Safety, University of Milan, Milan 20134, Italy
| | - S J Erb
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - T L Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - M G Zenobi
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - C R Staples
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - H M White
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
25
|
Miniewska K, Godzien J, Mojsak P, Maliszewska K, Kretowski A, Ciborowski M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J Pharm Biomed Anal 2020; 191:113623. [PMID: 32966938 DOI: 10.1016/j.jpba.2020.113623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.
Collapse
Affiliation(s)
- Katarzyna Miniewska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
26
|
Review: Following the smoke signals: inflammatory signaling in metabolic homeostasis and homeorhesis in dairy cattle. Animal 2020; 14:s144-s154. [PMID: 32024563 DOI: 10.1017/s1751731119003203] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cascades are a critical component of the immune response to infection or tissue damage, involving an array of signals, including water-soluble metabolites, lipid mediators and several classes of proteins. Early investigation of these signaling pathways focused largely on immune cells and acute disease models. However, more recent findings have highlighted critical roles of both immune cells and inflammatory mediators on tissue remodeling and metabolic homeostasis in healthy animals. In dairy cattle, inflammatory signals in various tissues and in circulation change rapidly and dramatically, starting just prior to and at the onset of lactation. Furthermore, several observations in healthy cows point to homeostatic control of inflammatory tone, which we define as a regulatory process to balance immune tolerance with activation to keep downstream effects under control. Recent evidence suggests that peripartum inflammatory changes influence whole-body nutrient flux of dairy cows over the course of days and months. Inflammatory mediators can suppress appetite, even at levels that do not induce acute responses (e.g. fever), thereby decreasing nutrient availability. On the other hand, inhibition of inflammatory signaling with non-steroidal anti-inflammatory drug (NSAID) treatment suppresses hepatic gluconeogenesis, leading to hypoglycemia in some cases. Over the long term, though, peripartum NSAID treatment substantially increases peak and whole-lactation milk synthesis by multiparous cows. Inflammatory regulation of nutrient flux may provide a homeorhetic mechanism to aid cows in adapting to rapid changes in metabolic demand at the onset of lactation, but excessive systemic inflammation has negative effects on metabolic homeostasis through inhibition of appetite and promotion of immune cell activity. Thus, in this review, we provide perspectives on the overlapping regulation of immune responses and metabolism by inflammatory mediators, which may provide a mechanistic underpinning for links between infectious and metabolic diseases in transition dairy cows. Moreover, we point to novel approaches to the management of this challenging phase of the production cycle.
Collapse
|
27
|
Abstract
Coordinated changes in energy metabolism develop to support gestation and lactation in the periparturient dairy cow. Maternal physiology involves the partitioning of nutrients (i.e. glucose, amino acids and fatty acids (FA)) for fetal growth and milk synthesis. However, the inability of the dairy cow to successfully adapt to a productive lactation may trigger metabolic stress characterized by uncontrolled adipose tissue lipolysis and reduced insulin sensitivity. A consequence is lipotoxicity and hepatic triglyceride deposition that favors the development of fatty liver disease (FLD) and ketosis. This review describes contemporary perspectives pertaining to FA surfeit and complex lipid metabolism in the transition dairy cow. The role of saturated and unsaturated FA as bioactive signaling molecules capable of modulating insulin secretion and sensitivity is explored. Moreover, the metabolic fate of FA as influenced by mitochondrial function is considered. This includes the influence of inadequate mitochondrial oxidation on acylcarnitine status and the use of FA for lipid mediator synthesis. Lipid mediators, including the sphingolipid ceramide and diacylglycerol, are evaluated considering their established ability to inhibit insulin signaling and glucose transport in non-ruminant diabetics. The mechanisms of FLD in the transition cow are revisited with attention centered on glycerophospholipid phosphatidylcholine and triglyceride secretion. The relationship between oxidative stress and oxylipids within the context of insulin antagonism, hepatic steatosis and inflammation is also reviewed. Lastly, peripartal hormonal involvement or lack thereof of adipokines (i.e. leptin, adiponectin) and hepatokines (i.e. fibroblast growth factor-21) is described. Similarities and differences in ruminant and non-ruminant physiology are routinely showcased. Unraveling the lipidome of the dairy cow has generated breakthroughs in our understanding of periparturient lipid biology. Therapeutic approaches that target FA and complex lipid metabolism holds promise to enhance cow health, well-being and productive lifespan.
Collapse
|
28
|
Albornoz RI, Sordillo LM, Contreras GA, Nelli R, Mamedova LK, Bradford BJ, Allen MS. Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J Dairy Sci 2020; 103:352-367. [PMID: 31733858 DOI: 10.3168/jds.2019-16398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Our objective was to evaluate the effects of diet starch concentration and starch fermentability on inflammatory response markers and oxidant status during the early postpartum (PP) period and its carryover effects. Fifty-two multiparous Holstein cows were used in a completely randomized block design experiment with a 2 × 2 factorial arrangement of treatments. Treatments were starch concentration and starch fermentability of diets; diets were formulated to 22% (low starch, LS) or 28% (high starch, HS) starch with dry-ground corn (DGC) or high-moisture corn (HMC) as the primary starch source. Treatments were fed from 1 to 23 d PP and then switched to a common diet until 72 d PP to measure carryover (CO) effects. Treatment period (TP) diets were formulated to 22% forage neutral detergent fiber and 17% crude protein. The diet for the CO period was formulated to 20% forage neutral detergent fiber, 17% crude protein, and 29% starch. Coccygeal blood was collected once a week during the TP and every second week during the CO period. Liver and adipose tissue biopsies were performed within 2 d PP and at 20 ± 3 d PP. Blood plasma was analyzed for concentrations of albumin, haptoglobin, reactive oxygen and nitrogen species (RONS), and antioxidant potential (AOP), with lipopolysaccharide-binding protein (LBP) and TNFα evaluated during the TP only. Oxidative stress index (OSi) was calculated as RONS/AOP. Abundance of mRNA from genes involved in inflammation and glucose metabolism in liver and genes involved in lipogenesis in adipose tissue were determined. Data were analyzed separately for the TP and CO periods. During the TP, treatments interacted to affect concentrations of TNFα, haptoglobin, and LBP, with HMC increasing their concentrations for HS (9.38 vs. 7.45 pg/mL, 0.45 vs. 0.37 mg/mL, and 5.94 vs. 4.48 μg/mL, respectively) and decreasing their concentrations for LS (4.76 vs. 12.9 pg/mL, 0.27 vs. 0.41 mg/mL, and 4.30 vs. 5.87 μg/mL, respectively) compared with DGC. Effects of treatments diminished over time for LBP and haptoglobin with no differences by the end of the TP and no main CO effects of treatment for haptoglobin. The opposite treatment interaction was observed for albumin, with HMC tending to decrease its concentration for HS (3.24 vs. 3.34 g/dL) and increase its concentration for LS (3.35 vs. 3.29 g/dL) compared with DGC, with no carryover effect. Feeding DGC increased the OSi during the first week of the TP compared with HMC, with this effect diminishing over time; during the CO period HMC increased OSi for HS and decreased it for LS compared with DGC, with this effect diminishing toward the end of CO. Feeding HMC increased the abundance of genes associated with inflammation and gluconeogenesis in liver for HS and decreased it for LS compared with DGC. Feeding HS increased the mRNA abundance of genes associated with adipose tissue lipogenesis compared with LS. Results during the TP suggest that feeding LS-DGC and HS-HMC elicited a more pronounced inflammatory response and induced an upregulation of genes associated with inflammation and gluconeogenesis in liver, without effects on OSi, but effects on plasma markers of inflammation diminished during the CO period.
Collapse
Affiliation(s)
- R I Albornoz
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - R Nelli
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
29
|
Andres Contreras G, De Koster J, de Souza J, Laguna J, Mavangira V, Nelli RK, Gandy J, Lock AL, Sordillo LM. Lipolysis modulates the biosynthesis of inflammatory lipid mediators derived from linoleic acid in adipose tissue of periparturient dairy cows. J Dairy Sci 2019; 103:1944-1955. [PMID: 31759597 DOI: 10.3168/jds.2019-17256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Oxidized linoleic acid metabolites (OXLAM) are products of adipocyte lipolysis with the potential to modulate adipose tissue (AT) lipid metabolism and inflammation. In periparturient cows, linoleic acid is preferentially mobilized from AT during lipolysis by hormone-sensitive lipase (HSL) compared with other polyunsaturated fatty acids. Enzymatic and nonenzymatic reactions generate OXLAM from linoleic acid. Among OXLAM, 9-, 10-, and 12-hydroxy-octadecadienoic acids (HODE) are associated with pro-inflammatory responses, whereas 9- and 13-oxo-octadecadienoic acids (oxoODE) and 13-HODE can facilitate inflammation resolution and promote lipogenesis. This study evaluated the effect of HSL activity on OXLAM biosynthesis using subcutaneous AT explants collected from multiparous dairy cows at 10 d before and again at 10 and 24 d after calving. Explants were treated for 3 h without or with the β-adrenergic agonist isoproterenol (ISO; 1 µM; MilliporeSigma, Burlington, MA) to induce HSL activity. The contribution of HSL to OXLAM biosynthesis was determined by inhibiting its activity with CAY10499 (2 µM; Cayman Chemical, Ann Arbor, MI). After treatments, media and explants were collected for lipidomic analysis using HPLC-tandem mass spectroscopy. Results indicated that ISO increased the biosynthesis of 9-, 12-, and 13-HODE and 9-oxoODE, and this effect was reduced at 24 d after calving. Inhibiting HSL activity partially reversed ISO effects on HODE and 9-oxoODE. Our ex vivo model demonstrated for the first time a direct effect of HSL activity on the biosynthesis of OXLAM in AT, especially at 10 d before and 10 d after calving. The biosynthesis of anti-inflammatory OXLAM is limited during the first weeks after parturition and may promote AT inflammation and lipolytic responses to negative energy balance. These results indicate that HSL activity releases linoleic acid for OXLAM biosynthesis in concentrations of a magnitude that may bypass the need for the activation of phospholipases linked with the inflammatory cascade and thus supports, in part, lipolysis-driven inflammation within AT of periparturient cows.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| | - Jenne De Koster
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Jonas de Souza
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824; Department of Animal Science, Michigan State University, East Lansing 48824
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Rahul K Nelli
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
30
|
Liang Y, Batistel F, Parys C, Loor JJ. Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. J Dairy Sci 2019; 102:5530-5541. [PMID: 30954259 DOI: 10.3168/jds.2018-15687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/21/2019] [Indexed: 11/19/2022]
Abstract
Enhancing the supply of rumen-protected Met (RPM) during the peripartum period alleviates inflammation and oxidative stress status in dairy cows. We tested the hypothesis that RPM could increase abundance of genes and proteins related to glutathione (GSH) metabolism and the antioxidant transcription factor nuclear factor erythroid 2-like 2 (NFE2L2) in subcutaneous adipose tissue. Multiparous Holstein cows were fed a basal diet [control prepartum diet = 1.47 Mcal/kg of dry matter (DM) and 15.3% crude protein; control postpartum diet = 1.67 Mcal/kg of DM and 17.7% crude protein] or the control plus ethyl-cellulose RPM at a rate of 0.09 and 0.10% of DM intake before expected calving and after calving, respectively. Sixty cows were assigned to treatments based on parity, previous 305-d milk yield, and body condition score at 28 d from parturition. Diets were fed from -28 to 30 d. Biopsies of subcutaneous adipose tissue collected on d -10, 10, and 30 relative to parturition from 7 cows in each group were used for measuring concentrations of GSH, reactive oxygen species, superoxide dismutase, malondialdehyde, and mRNA and protein abundance (Western blotting). A repeated-measures ANOVA was used for statistics. The statistical model included the random effect of block and fixed effects of treatment, time, and its interaction. There was a diet × time effect for reactive oxygen species due to lower concentrations in Met versus control cows specifically at d -10. Cows fed Met also had lower concentrations of malondialdehyde in subcutaneous adipose tissue. Compared with controls, overall mRNA abundance of the GSH metabolism-related genes cystathionine-β-synthase (CBS), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), and glutathione peroxidase 1 (GPX1) was greater in cows fed Met. Furthermore, supply of Met resulted in an overall upregulation of protein abundance of glutathione peroxidase (GPX) 1, GPX3, glutathione S-transferase mu 1 (GSTM1), and glutathione S-transferase α 4 (GSTA4), all related to GSH metabolism. There was a diet × time effect for protein abundance of NFE2L2 and its repressor Kelch-like ECH associated protein 1 (KEAP1) due to lower values at 30 d in cows fed Met versus controls. The abundance of phosphorylated NFE2L2 was lower at 30 d in response to Met. Overall, the data suggest that exogenous Met may play a role in activating GSH metabolism and the antioxidant NFE2L2 pathways in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
31
|
Nelli RK, De Koster J, Roberts JN, de Souza J, Lock AL, Raphael W, Agnew D, Contreras GA. Impact of uterine macrophage phenotype on placental retention in dairy cows. Theriogenology 2019; 127:145-152. [DOI: 10.1016/j.theriogenology.2019.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/26/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
|
32
|
Strieder-Barboza C, Contreras GA. Fetuin-A modulates lipid mobilization in bovine adipose tissue by enhancing lipogenic activity of adipocytes. J Dairy Sci 2019; 102:4628-4638. [PMID: 30827564 DOI: 10.3168/jds.2018-15808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022]
Abstract
Fetuin-A (FetA) is an adipokine and free fatty acid (FFA) carrier linked to adipose tissue (AT) function in monogastrics and ruminants. In dairy cows, plasma and AT FetA decrease after parturition, coinciding with reduced lipogenesis and increased lipolysis. In monogastrics, FetA enhances lipogenesis, but its role on lipid mobilization of ruminants is unclear. We hypothesized that FetA modulates lipid mobilization in bovine AT by enhancing the lipogenic activity of adipocytes. Our objective was to determine the effects of FetA on lipogenesis and lipolysis in cultured primary adipocytes from dairy cows. Preadipocytes from the tailhead subcutaneous AT depot were induced to differentiate in a 7-d coculture in vitro model. The effects of FetA on lipolytic responses of adipocytes were evaluated after a 2-h β-adrenergic stimulation with 1 µM isoproterenol (ISO) alone or combined with 0.1 mg/mL of FetA (FetA+ISO), and in cells treated with medium alone (CON) or with 0.1 mg/mL of FetA (FetA). Lipogenic responses of adipocytes treated with CON or FetA from d 5 to 7 of differentiation were assessed by fatty acid (FA) uptake quantification and triacylglycerol (TAG) accumulation, and the gene and protein expression of lipogenic markers. Bovine adipocytes abundantly expressed FetA gene and protein and secreted 48 ± 3.5 ng/DNA relative fluorescence units (RFU). Adrenergic stimulation with ISO increased lipolysis compared with CON, as reflected in the release of glycerol (0.12 ± 0.04 vs. 0.04 ± 0.02 nM/DNA RFU) and FFA (15 ± 13 vs. 6.2 ± 2.4 nM/DNA RFU). Lipolysis induced by ISO was attenuated by the addition of FetA (FetA+ISO) as reflected by lower glycerol (0.06 ± 0.04 nM/DNA RFU) and FFA (5.7 ± 2.7 nM/DNA RFU) release compared with ISO alone. Compared with CON, FetA enhanced lipogenic responses as demonstrated by higher FA uptake and increased accumulation of TAG. Exposure to FetA upregulated 1-acylglycerol-3-phosphate acyltransferase-2 (AGPAT2) gene expression and protein content, as well as its activity. Adipocytes exposed to FetA increased the secretion of the metabolite of AGPAT2, phosphatidic acid. In conclusion, FetA attenuates lipolytic responses and enhances lipogenesis in bovine adipocytes. The upregulation of the rate-limiting lipogenic enzyme AGPAT2 by FetA suggests a potential pathway by which this adipokine promotes TAG synthesis in adipocytes. These findings suggest that FetA is a potential target for lipid mobilization modulation in AT of dairy cows.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
33
|
Strieder-Barboza C, Thompson E, Thelen K, Contreras GA. Technical note: Bovine adipocyte and preadipocyte co-culture as an efficient adipogenic model. J Dairy Sci 2019; 102:3622-3629. [PMID: 30772027 DOI: 10.3168/jds.2018-15626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Reductionist studies of adipose tissue biology require reliable in vitro adipocyte culturing models. Current protocols for adipogenesis induction in stromal vascular fraction-derived preadipocytes require extended culturing periods and have low adipogenic rates. We compared the adipogenic efficiency of a 7-d co-culture model of visceral (VIS) and subcutaneous (SC) stromal vascular fraction-derived preadipocytes with mature adipocytes with a 14-d standard adipocyte differentiation protocol. We obtained preadipocytes and mature adipocytes from SC and VIS adipose tissue of nonlactating, nongestating Holstein cows (n = 6). Adipogenesis induction was performed using a standard protocol for 7 (SD7; control) or 14 d (SD14), and a co-culture model for 7 d (CC7). Culture conditions, including medium composition, were the same for all treatments. For CC7, 900 primary adipocytes/cm2 were placed in 0.4-μm transwell inserts and co-cultured with preadipocytes for adipogenesis induction. Both CC7 and SD14 similarly stimulated gene expression of adipogenic genes such as ADIPOQ, CEBPA, and CEBPB in VIS and SC. The CC7 increased triacylglycerol accumulation compared with SD14 and SD7. CC7 augmented triacylglycerol accumulation by 40- and 16-fold in SC and VIS compared with 22- and 4-fold increment in SD14, respectively. Lipolytic responses to 2-h β-adrenergic stimulation with 1 µM isoproterenol were higher in CC7 and SD14 than SD7 in SC; CC7 increased glycerol release compared with SD7 in VIS but SD7 and SD14 had similar responses. Overall, CC7 was more efficient in inducing adipogenesis in preadipocytes from VIS and SC than SD14. Furthermore, CC7 stimulated similar lipolysis and lipogenic responses than SD14 but in a shorter time. The adipogenic approach of co-culturing preadipocytes with mature adipocytes will improve the use of reductionist models to study adipocyte physiology in dairy cows and the assessment of pharmacological or nutritional interventions for enhancing dairy cow health and production.
Collapse
Affiliation(s)
| | - Eileen Thompson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| |
Collapse
|
34
|
Thelen K, Watts SW, Contreras GA. Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology 2018; 70:1435-1445. [PMID: 30051281 PMCID: PMC6214855 DOI: 10.1007/s10616-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has the capacity to secrete vasoactive mediators with the potential to regulate vascular function. Given its location adjacent to the vasculature, PVAT dysfunction may be part of the pathophysiology of cardiovascular diseases. To study the mechanisms of PVAT dysfunction, several adipogenic models have been proposed. However, these approaches do not adequately reflect PVAT adipocyte phenotypes variability that depends on their anatomical location. Despite PVAT importance in modulating vascular function, to date, there is not a depot-specific adipogenic model for PVAT adipocytes. We present a model that uses coculturing of PVAT stromal vascular fraction derived preadipocytes with primary adipocytes isolated from the same PVAT. Preadipocytes were isolated from thoracic aorta PVAT and mesenteric resistance artery PVAT (mPVAT). Upon confluency, cells were induced to differentiate for 7 and 14 days using a standard protocol (SP) or standard protocol cocultured with primary adipocytes isolated from the same adipose depots (SPA) for 96, 120, and 144 h. SPA reduced the time for differentiation of stromal vascular fraction derived preadipocytes and increased their capacity to store lipids compared with SP as indicated by lipid accumulation, lipolytic responses, gene marker profile expression, and adiponectin secretion. The coculture system improved adipogenesis efficiency by enhancing lipid accumulation and reducing the time of induction, therefore, is a more efficient method compared to SP alone.
Collapse
Affiliation(s)
- Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep 2018; 8:13378. [PMID: 30190510 PMCID: PMC6127149 DOI: 10.1038/s41598-018-31582-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
Hormone sensitive lipase (HSL) activation is part of the metabolic adaptations to the negative energy balance common to the mammalian periparturient period. This study determined HSL contribution to adipose tissue (AT) lipolysis and how insulin regulates its activity in periparturient dairy cows. Subcutaneous AT (SCAT) samples were collected at 11 d prepartum (dry) and 11 (fresh) and 24 d (lactation) postpartum. Basal and stimulated lipolysis (ISO) responses were determined using explant cultures. HSL contribution to lipolysis was assessed using an HSL inhibitor (CAY). Basal lipolysis was higher in SCAT at dry compared with fresh. CAY inhibited basal lipolysis negligibly at dry, but at fresh and lactation it reduced basal lipolysis by 36.1 ± 4.51% and 43.1 ± 4.83%, respectively. Insulin inhibited lipolysis more pronouncedly in dry compared to fresh. Results demonstrate that HSL contribution to basal lipolysis is negligible prepartum. However, HSL is a major driver of SCAT lipolytic responses postpartum. Lower basal lipolysis postpartum suggests that reduced lipogenesis is an important contributor to fatty acid release from SCAT. Loss of adipocyte sensitivity to the antilipolytic action of insulin develops in the early lactation period and supports a state of insulin resistance in AT of cows during the first month postpartum.
Collapse
|
36
|
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15-F 2t-isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J Dairy Sci 2018; 101:9287-9295. [PMID: 30077444 DOI: 10.3168/jds.2018-14669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023]
Abstract
Oxidative stress contributes to dysfunctional immune responses and predisposes dairy cattle to several metabolic and inflammatory-based diseases. Although the negative effects of oxidative stress on transition cattle are well established, biomarkers that accurately measure oxidative damage to cellular macromolecules are not well defined in veterinary medicine. Measuring 15-F2t-isoprostane, a lipid peroxidation product, is the gold standard biomarker for quantifying oxidative stress in human medicine. The aim of our study was to determine whether changes in 15-F2t-isoprostane concentrations in plasma and milk could accurately reflect changes in oxidant status during different stages of lactation. Using liquid chromatography-tandem mass spectrometry, 15-F2t-isoprostane concentrations were quantified in milk and plasma of 12 multiparous Holstein-Friesian cows that were assigned to 3 different sampling periods, including the periparturient period (1-2 d in milk; n = 4), mid lactation (80-84 d in milk; n = 4), and late lactation (183-215 d in milk; n = 4). Blood samples also were analyzed for indicators of oxidant status, inflammation, and negative energy balance. Our data revealed that 15-F2t-isoprostane concentrations changed at different stages of lactation and coincided with changes in other gauges of oxidant status in both plasma and milk. Interestingly, milk 15-F2t-isoprostane concentrations and other indices of oxidant status did not follow the same trends as plasma values at each stage of lactation. Indeed, during the periparturient period, systemic 15-F2t-isoprostane increased significantly accompanied by an increase in the systemic oxidant status index. Milk 15-F2t-isoprostane was significantly decreased during the periparturient period compared with other lactation stages in conjunction with a milk oxidant status index that trended lower during this period. The results from this study indicate that changes in 15-F2t-isoprostane concentrations in both milk and plasma may be strong indicators of an alteration in redox status both systemically and within the mammary gland.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
37
|
De Koster J, Strieder-Barboza C, de Souza J, Lock AL, Contreras GA. Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. J Dairy Sci 2018; 101:7608-7613. [DOI: 10.3168/jds.2017-14318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
|