1
|
Zajac L, Landrigan PJ. Environmental Issues in Global Pediatric Health: Technical Report. Pediatrics 2025; 155:e2024070076. [PMID: 39832723 DOI: 10.1542/peds.2024-070076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Pediatricians and pediatric trainees in North America are increasingly involved in caring for children and adolescents in or from low- and middle-income countries (LMICs). In many LMICs, toxic environmental exposures-notably outdoor and household air pollution, water pollution, lead, hazardous waste disposal, pesticides, and other manufactured chemicals-are highly prevalent and account for twice as great a proportion of disease and deaths among young children as in North America. Climate change will likely worsen these exposures. It is important that pediatricians and other pediatric health professionals from high-income countries who plan to work in LMICs be aware of the disproportionately severe impacts of environmental hazards, become knowledgeable about the major toxic threats to children's health in the countries and communities where they will be working, and consider environmental factors in their differential diagnoses. Likewise, pediatricians in high-income countries who care for children and adolescents who have emigrated from LMICs need to be aware that these children may be at elevated risk of diseases caused by past exposures to toxic environmental hazards in their countries of origin as well as ongoing exposures in products such as traditional foods, medications, and cosmetics imported from their original home countries. Because diseases of toxic environmental origin seldom have unique physical signatures, the environmental screening history, supplemented by laboratory testing, is the principal diagnostic tool. The goal of this technical report is to enhance pediatricians' ability to recognize, diagnose, and manage disease caused by hazardous environmental exposures, especially toxic chemical exposures, in all countries and especially in LMICs.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Environmental Medicine and Public Health and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Chestnut Hill, Massachusetts; Centre Scientifique de Monaco, Monaco, MC
| |
Collapse
|
2
|
Alter NC, Whitman EM, Bellinger DC, Landrigan PJ. Quantifying the association between PM 2.5 air pollution and IQ loss in children: a systematic review and meta-analysis. Environ Health 2024; 23:101. [PMID: 39551729 PMCID: PMC11572473 DOI: 10.1186/s12940-024-01122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND A growing body of epidemiologic and toxicologic literature indicates that fine airborne particulate matter (PM2.5) pollution is neurotoxic and threatens children's neurobehavioral development, resulting in reduced cognitive function. Understanding the magnitude of this effect is critical for establishing public health policies that will protect children's health, preserve human capital, and support societal progress. OBJECTIVE To quantify the association between ambient PM2.5 air pollution and loss of cognitive function in children, as measured by Intelligence Quotient (IQ) scores, through a systematic literature review and meta-analysis. METHODS Following PRISMA guidelines, we conducted a systematic literature search across seven databases: Agricultural and Environmental Science, BIOSIS Citation Index, Embase, GreenFILE, PubMed, Scopus, and Web of Science to identify original scientific studies that investigated the impact of PM2.5 exposure during pre-and postnatal periods on IQ loss during childhood. Using data from studies included for final review, we conducted a meta-analysis, using a random effects model to compute a beta coefficient that quantifies the overall effect of PM2.5 exposure on Full-Scale IQ (FSIQ), Performance IQ (PIQ), and Verbal IQ (VIQ). FINDINGS Of the 1,107 unique publications identified, six studies met the inclusion criteria for final review, representing 4,860 children across three continents (North America, Europe, and Asia). The mean PM2.5 concentration across all studies was 30.4 ± 24.4 µg/m3. Exposure timing ranged from the prenatal period to mid-childhood. Children were an average of 8.9 years old at the time of cognitive testing. We found that each 1 µg/m3 increase in PM2.5 concentration is associated with a -0.27 point change in FSIQ (p < 0.001), 0.39 point change in PIQ (p = 0.003), and -0.24 point change in VIQ (p = 0.021). CONCLUSION Through a systematic review and meta-analysis, we identified a statistically significant relationship between increased exposure to PM2.5 air pollution and reduced cognitive function in children, with the most pronounced impact on PIQ. This analysis will enable estimation of the burden of adverse neurobehavioral development attributable to PM2.5 in pediatric populations and will inform local and global strategies for exposure prevention.
Collapse
Affiliation(s)
- Naomi C Alter
- Boston College Global Observatory on Planetary Health, Boston, MA, USA
| | - Ella M Whitman
- Boston College Global Observatory on Planetary Health, Boston, MA, USA.
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip J Landrigan
- Boston College Global Observatory on Planetary Health, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, MC, Monaco
| |
Collapse
|
3
|
Dash K, Jena PK, Pattnaik JI, Mishra S, Ravan JR. Profile of cognitive deficits among children residing in areas with high ambient air pollution in Odisha. Ind Psychiatry J 2024; 33:396-400. [PMID: 39898080 PMCID: PMC11784680 DOI: 10.4103/ipj.ipj_337_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 02/04/2025] Open
Abstract
Background The detrimental effects of air pollution on human health, particularly among vulnerable populations such as children, have raised concerns globally. While prior research has explored the association between air pollution and cognitive impairments, it is poorly studied in the Indian population. Aim This study aims to specifically profile the cognitive deficits experienced by children residing in areas with high ambient particulate matter air pollution (PM10 and PM2.5) in Odisha. Material and Methods A total of 30 children aged 6-8 years from Kalinga Nagar, Odisha were sampled, and their cognitive functions covering domains such as memory, attention, IQ, executive function, verbal skills, vocabulary, visuospatial ability, and processing speed and accuracy were assessed using the Malin's Intelligence Scale for Indian Children (MISIC). Results The mean full-scale IQ of the children was 84 as per MISIC, indicating that on average, the children's IQ falls below the normal range. Specifically, the children showed lower performance in tests assessing attention, working memory, general knowledge acquisition, mathematical skills, vocabulary, and spatial reasoning. Conclusion Six- to eight-year-old children residing in areas with high ambient particulate pollution exhibited lower cognitive abilities, including deficits in attention, working memory, mathematical skills, vocabulary, and visual-spatial processing.
Collapse
Affiliation(s)
- Kulumina Dash
- Department of Public Health, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Jena
- Department of Public Health, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Jigyansa Ipsita Pattnaik
- Department of Psychiatry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Sayali Mishra
- Department of Psychiatry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Jayaprakash Russell Ravan
- Department of Psychiatry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
5
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
6
|
Heinz A, Meyer-Lindenberg A. [Climate change and mental health. Position paper of a task force of the DGPPN]. DER NERVENARZT 2023; 94:225-233. [PMID: 36820855 PMCID: PMC9992044 DOI: 10.1007/s00115-023-01457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Climate change and the resulting higher frequency of extreme weather events have a direct negative impact on mental health. Natural disasters are particularly associated with an increase in the prevalence of depression, anxiety and posttraumatic stress disorder. Indirect consequences of climate change, such as food shortages, economic crises, violent conflicts and forced migration, additionally represent severe psychological risk and stress factors. Climate anxiety and solastalgia, the distress induced by environmental change, are new psychological syndromes in the face of the existential threat posed by the climate crisis. Accordingly, a sustainable psychiatry must prepare for increasing and changing demands. The principles of psychiatric treatment need to focus more on prevention to reduce the overall burden on the healthcare system. Waste of resources and CO2 emissions in psychiatric treatment processes as well as infrastructure must be perceived and prevented. Psychiatric education, training and continuing education concepts should be expanded to include the topic of climate change in order to comprehensively inform and sensitize professionals, those affected and the public and to encourage climate-friendly and health-promoting behavior. More in-depth research is needed on the impact of climate change on mental health. The DGPPN becomes a sponsor and aims for climate neutrality by 2030 by committing to climate-friendly and energy-saving measures in the area of finance, in relation to the DGPPN congress as well as the DGPPN office.
Collapse
Affiliation(s)
- Andreas Heinz
- Klinik für Psychiatrie und Psychotherapie CCM, Charité - Universitätsmedizin Berlin, 10117, Charitéplatz 1, Berlin, Deutschland.
| | - Andreas Meyer-Lindenberg
- Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, 68159, J5, Mannheim, Deutschland. .,Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde e.V., Berlin, Deutschland.
| | | |
Collapse
|
7
|
Landrigan PJ, Fisher S, Kenny ME, Gedeon B, Bryan L, Mu J, Bellinger D. A replicable strategy for mapping air pollution's community-level health impacts and catalyzing prevention. Environ Health 2022; 21:70. [PMID: 35843932 PMCID: PMC9288863 DOI: 10.1186/s12940-022-00879-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air pollution was responsible for an estimated 6.7 million deaths globally in 2019 and 197,000 deaths in the United States. Fossil fuel combustion is the major source. HYPOTHESIS Mapping air pollution's health impacts at the community level using publicly available data and open-source software will provide a replicable strategy for catalyzing pollution prevention. METHODS Using EPA's Environmental Benefits Mapping and Analysis (BenMAP-CE) software and state data, we quantified the effects of airborne fine particulate matter (PM2.5) pollution on disease, death and children's cognitive function (IQ Loss) in each city and town in Massachusetts. To develop a first-order estimate of PM2.5 pollution's impact on child IQ, we derived a concentration-response coefficient through literature review. FINDINGS The annual mean PM2.5 concentration in Massachusetts in 2019 was 6.3 μg/M3, a level below EPA's standard of 12 μg/M3 and above WHO's guideline of 5 μg/M3. In adults, PM2.5 pollution was responsible for an estimated 2780 (Confidence Interval [CI] 2726 - 2853) deaths: 1677 (CI, 1346 - 1926) from cardiovascular disease, 2185 (CI, 941-3409) from lung cancer, 200 (CI, 66-316) from stroke, and 343 (CI, 222-458) from chronic respiratory disease. In children, PM2.5 pollution was responsible for 308 (CI, 105-471) low-weight births, 15,386 (CJ, 5433-23,483) asthma cases, and a provisionally estimated loss of nearly 2 million Performance IQ points; IQ loss impairs children's school performance, reduces graduation rates and decreases lifetime earnings. Air-pollution-related disease, death and IQ loss were most severe in low-income, minority communities, but occurred in every city and town in Massachusetts regardless of location, demographics or median family income. CONCLUSION Disease, death and IQ loss occur at air pollution exposure levels below current EPA standards. Prevention of disease and premature death and preservation of children's cognitive function will require that EPA air quality standards be tightened. Enduring prevention will require government-incentivized transition to renewable energy coupled with phase-outs of subsidies and tax breaks for fossil fuels. Highly localized information on air pollution's impacts on health and on children's cognitive function has potential to catalyze pollution prevention.
Collapse
Affiliation(s)
- Philip J Landrigan
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA.
- Centre Scientifique de Monaco, Monaco, MC, Monaco.
| | - Samantha Fisher
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA
- Environmental; Epidemiology Program, City University of New York, New York, USA
| | - Maureen E Kenny
- Lynch School of Education and Human Development, Boston College, Boston, MA, USA
| | - Brittney Gedeon
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Luke Bryan
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Jenna Mu
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - David Bellinger
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Ambient air pollution associated with lower academic achievement among US children: A nationwide panel study of school districts. Environ Epidemiol 2021; 5:e174. [PMID: 34909554 PMCID: PMC8663889 DOI: 10.1097/ee9.0000000000000174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Ambient air pollution is an important environmental exposure and has been linked with impaired cognitive function. Few studies have investigated its impact on children’s academic performance on a nationwide level. We hypothesize that higher ambient air pollution concentrations will be associated with lower average academic test scores. Methods: We investigated three prevalent ambient air pollutants: PM2.5, NO2 and ozone, and their associations with the average academic test scores, at the Geographic School District (GSD) level, of the third to eighth grade students in the United States from 2010 to 2016. We applied multivariate linear regression and controlled for urbanicity, socioeconomic status, student racial/ethnic compositions, and individual intercepts for each district-grade level and each year. Results: We found that an interquartile range increase in PM2.5 concentrations was associated with a 0.007 (95% confidence interval: 0.005, 0.009) SD lower average math test scores, and a 0.004 (95% confidence interval: 0.002, 0.005) SD lower average English language/arts test scores. Similar associations were observed for NO2 and ozone on math, and for NO2 on English language/arts. The magnitudes of these associations are equivalent to the effects of short-term reductions of thousands of dollars in district median household income. The reductions in test scores were larger for GSDs with higher socioeconomic status, though most associations remained negative at all socioeconomic levels. Conclusions: Our results show that ambient air pollution within a GSD is associated with lower academic performance among children. Further improving air quality may benefit children’s overall academic achievement and socioeconomic attainment across the lifespan.
Collapse
|
9
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Abstract
Pregnancy and early childhood are periods with high plasticity in neurological development. Environmental perturbations during these sensitive windows can have lifelong developmental consequences. This review summarizes key findings relevant to the effects of air pollution on neurological development. Mounting evidence suggests that exposure to air pollution, both during pregnancy and childhood, is associated with childhood developmental outcomes ranging from changes in brain structures to subclinical deficits in developmental test scores, and, ultimately, developmental disorders such as attention-deficit/hyperactivity disorders or autism spectrum disorders. Although the biological mechanisms of effects remain to be elucidated, multiple pathways are probably involved and include oxidative stress, inflammation, and/or endocrine disruption. Given the alarming global increase in developmental disorders in recent years, and increased human exposures to pollution, it is critical to reduce personal and community-level exposures through tight collaboration of interdisciplinary and multi-level bodies including community partners, physicians, industry partners, policy makers, public health practitioners, and researchers. WHAT THIS PAPER ADDS: Exposure to air pollution is associated with a range of childhood developmental complications. Biological mechanisms may include oxidative stress, inflammation, and endocrine disruption.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
11
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. Bioessays 2021; 43:e2000288. [PMID: 33751627 DOI: 10.1002/bies.202000288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
The World Health Organisation recently listed air pollution as the most significant threat to human health. Air pollution comprises particulate matter (PM), metals, black carbon and gases such as ozone (O3 ), nitrogen dioxide (NO2 ) and carbon monoxide (CO). In addition to respiratory and cardiovascular disease, PM exposure is linked with increased risk of neurodegeneration as well as neurodevelopmental impairments. Critically, studies suggest that PM crosses the placenta, making direct in utero exposure a reality. Rodent models reveal that neuroinflammation, neurotransmitter imbalance and oxidative stress are triggered following gestational/early life exposure to PM, and may be exacerbated by concomitant mitochondrial dysfunction. Gestational PM exposure (potentiated by mitochondrial impairment in the metabolically active neonatal brain) not only impacts neurodevelopment but may sensitise the brain to subsequent cognitive impairment. Having reviewed this field, we conclude that strategies are urgently required to reduce exposure to PM during this sensitive developmental period.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Pandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, Turkgulu B, Kumar GA, Khare M, Beig G, Gupta T, Krishnankutty RP, Causey K, Cohen AJ, Bhargava S, Aggarwal AN, Agrawal A, Awasthi S, Bennitt F, Bhagwat S, Bhanumati P, Burkart K, Chakma JK, Chiles TC, Chowdhury S, Christopher DJ, Dey S, Fisher S, Fraumeni B, Fuller R, Ghoshal AG, Golechha MJ, Gupta PC, Gupta R, Gupta R, Gupta S, Guttikunda S, Hanrahan D, Harikrishnan S, Jeemon P, Joshi TK, Kant R, Kant S, Kaur T, Koul PA, Kumar P, Kumar R, Larson SL, Lodha R, Madhipatla KK, Mahesh PA, Malhotra R, Managi S, Martin K, Mathai M, Mathew JL, Mehrotra R, Mohan BVM, Mohan V, Mukhopadhyay S, Mutreja P, Naik N, Nair S, Pandian JD, Pant P, Perianayagam A, Prabhakaran D, Prabhakaran P, Rath GK, Ravi S, Roy A, Sabde YD, Salvi S, Sambandam S, Sharma B, Sharma M, Sharma S, Sharma RS, Shrivastava A, Singh S, Singh V, Smith R, Stanaway JD, Taghian G, Tandon N, Thakur JS, Thomas NJ, Toteja GS, Varghese CM, Venkataraman C, Venugopal KN, Walker KD, Watson AY, Wozniak S, Xavier D, Yadama GN, Yadav G, Shukla DK, Bekedam HJ, Reddy KS, et alPandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, Turkgulu B, Kumar GA, Khare M, Beig G, Gupta T, Krishnankutty RP, Causey K, Cohen AJ, Bhargava S, Aggarwal AN, Agrawal A, Awasthi S, Bennitt F, Bhagwat S, Bhanumati P, Burkart K, Chakma JK, Chiles TC, Chowdhury S, Christopher DJ, Dey S, Fisher S, Fraumeni B, Fuller R, Ghoshal AG, Golechha MJ, Gupta PC, Gupta R, Gupta R, Gupta S, Guttikunda S, Hanrahan D, Harikrishnan S, Jeemon P, Joshi TK, Kant R, Kant S, Kaur T, Koul PA, Kumar P, Kumar R, Larson SL, Lodha R, Madhipatla KK, Mahesh PA, Malhotra R, Managi S, Martin K, Mathai M, Mathew JL, Mehrotra R, Mohan BVM, Mohan V, Mukhopadhyay S, Mutreja P, Naik N, Nair S, Pandian JD, Pant P, Perianayagam A, Prabhakaran D, Prabhakaran P, Rath GK, Ravi S, Roy A, Sabde YD, Salvi S, Sambandam S, Sharma B, Sharma M, Sharma S, Sharma RS, Shrivastava A, Singh S, Singh V, Smith R, Stanaway JD, Taghian G, Tandon N, Thakur JS, Thomas NJ, Toteja GS, Varghese CM, Venkataraman C, Venugopal KN, Walker KD, Watson AY, Wozniak S, Xavier D, Yadama GN, Yadav G, Shukla DK, Bekedam HJ, Reddy KS, Guleria R, Vos T, Lim SS, Dandona R, Kumar S, Kumar P, Landrigan PJ, Dandona L. Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. Lancet Planet Health 2021; 5:e25-e38. [PMID: 33357500 PMCID: PMC7805008 DOI: 10.1016/s2542-5196(20)30298-9] [Show More Authors] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The association of air pollution with multiple adverse health outcomes is becoming well established, but its negative economic impact is less well appreciated. It is important to elucidate this impact for the states of India. METHODS We estimated exposure to ambient particulate matter pollution, household air pollution, and ambient ozone pollution, and their attributable deaths and disability-adjusted life-years in every state of India as part of the Global Burden of Disease Study (GBD) 2019. We estimated the economic impact of air pollution as the cost of lost output due to premature deaths and morbidity attributable to air pollution for every state of India, using the cost-of-illness method. FINDINGS 1·67 million (95% uncertainty interval 1·42-1·92) deaths were attributable to air pollution in India in 2019, accounting for 17·8% (15·8-19·5) of the total deaths in the country. The majority of these deaths were from ambient particulate matter pollution (0·98 million [0·77-1·19]) and household air pollution (0·61 million [0·39-0·86]). The death rate due to household air pollution decreased by 64·2% (52·2-74·2) from 1990 to 2019, while that due to ambient particulate matter pollution increased by 115·3% (28·3-344·4) and that due to ambient ozone pollution increased by 139·2% (96·5-195·8). Lost output from premature deaths and morbidity attributable to air pollution accounted for economic losses of US$28·8 billion (21·4-37·4) and $8·0 billion (5·9-10·3), respectively, in India in 2019. This total loss of $36·8 billion (27·4-47·7) was 1·36% of India's gross domestic product (GDP). The economic loss as a proportion of the state GDP varied 3·2 times between the states, ranging from 0·67% (0·47-0·91) to 2·15% (1·60-2·77), and was highest in the low per-capita GDP states of Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh, and Chhattisgarh. Delhi had the highest per-capita economic loss due to air pollution, followed by Haryana in 2019, with 5·4 times variation across all states. INTERPRETATION The high burden of death and disease due to air pollution and its associated substantial adverse economic impact from loss of output could impede India's aspiration to be a $5 trillion economy by 2024. Successful reduction of air pollution in India through state-specific strategies would lead to substantial benefits for both the health of the population and the economy. FUNDING UN Environment Programme; Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India.
Collapse
|
13
|
Cserbik D, Chen JC, McConnell R, Berhane K, Sowell ER, Schwartz J, Hackman DA, Kan E, Fan CC, Herting MM. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. ENVIRONMENT INTERNATIONAL 2020; 143:105933. [PMID: 32659528 PMCID: PMC7708513 DOI: 10.1016/j.envint.2020.105933] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Emerging findings have increased concern that exposure to fine particulate matter air pollution (aerodynamic diameter ≤ 2.5 μm; PM2.5) may be neurotoxic, even at lower levels of exposure. Yet, additional studies are needed to determine if exposure to current PM2.5 levels may be linked to hemispheric and regional patterns of brain development in children across the United States. OBJECTIVES We examined the cross-sectional associations between geocoded measures of concurrent annual average outdoor PM2.5 exposure, regional- and hemisphere-specific differences in brain morphometry and cognition in 10,343 9- and 10- year-old children. METHODS High-resolution structural T1-weighted brain magnetic resonance imaging (MRI) and NIH Toolbox measures of cognition were collected from children at ages 9-10 years. FreeSurfer was used to quantify cortical surface area, cortical thickness, as well as subcortical and cerebellum volumes in each hemisphere. PM2.5 concentrations were estimated using an ensemble-based model approach and assigned to each child's primary residential address collected at the study visit. We used mixed-effects models to examine regional- and hemispheric- effects of PM2.5 exposure on brain estimates and cognition after considering nesting of participants by familial relationships and study site, adjustment for socio-demographic factors and multiple comparisons. RESULTS Annual residential PM2.5 exposure (7.63 ± 1.57 µg/m3) was associated with hemispheric specific differences in gray matter across cortical regions of the frontal, parietal, temporal and occipital lobes as well as subcortical and cerebellum brain regions. There were hemispheric-specific associations between PM2.5 exposures and cortical surface area in 9/31 regions; cortical thickness in 22/27 regions; and volumes of the thalamus, pallidum, and nucleus accumbens. We found neither significant associations between PM2.5 and task performance on individual measures of neurocognition nor evidence that sex moderated the observed associations. DISCUSSION Even at relatively low-levels, current PM2.5 exposure across the U.S. may be an important environmental factor influencing patterns of structural brain development in childhood. Prospective follow-up of this cohort will help determine how current levels of PM2.5 exposure may affect brain development and subsequent risk for cognitive and emotional problems across adolescence.
Collapse
Affiliation(s)
- Dora Cserbik
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Kan
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chun C Fan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| |
Collapse
|
14
|
Loftus CT, Ni Y, Szpiro AA, Hazlehurst MF, Tylavsky FA, Bush NR, Sathyanarayana S, Carroll KN, Young M, Karr CJ, LeWinn KZ. Exposure to ambient air pollution and early childhood behavior: A longitudinal cohort study. ENVIRONMENTAL RESEARCH 2020; 183:109075. [PMID: 31999995 PMCID: PMC8903039 DOI: 10.1016/j.envres.2019.109075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Prenatal and early life air pollution exposure may impair healthy neurodevelopment, increasing risk of childhood behavioral disorders, but epidemiological evidence is inconsistent. Little is known about factors that determine susceptibility. METHODS Participants were mother-child dyads from the CANDLE study, an ECHO PATHWAYS Consortium birth cohort set in the mid-South United States, who completed a preschool visit. We estimated prenatal and childhood exposures to nitrogen dioxide (NO2) and particulate matter less than 10 μm (PM10) at participants' residences using a national annual average universal kriging model (land-use regression with spatial smoothing). Distance to nearest major roadway was used as a proxy for traffic-related pollution. Primary outcomes were children's internalizing and externalizing behavior problems. Regression models were adjusted for individual- and neighborhood-level socioeconomic measures, maternal IQ, and multiple other potential confounders. We tested for effect modification by select maternal and child characteristics. RESULTS The analytic sample (N = 975 of 1503 enrolled) was 64% African American and 53% had a household annual income below $35,000; child mean age was 4.3 years (SD: 0.4). Mean prenatal NO2 and PM10 exposures were 12.0 ppb (SD: 2.4) and 20.8 μg/m3 (SD: 2.0); postnatal exposures were lower. In fully adjusted models, 2 ppb higher prenatal NO2 was positively associated with externalizing behavior (6%; 95% CI: 1, 11%). Associations with postnatal exposure were stronger (8% per 2 ppb NO2; 95%CI: 0, 16%). Prenatal NO2 exposure was also associated with an increased odds of clinically significant internalizing and externalizing behaviors. We found suggestive evidence that socioeconomic adversity and African American race increases susceptibility. PM10 and road proximity were not associated with outcomes. CONCLUSIONS Findings showed that air pollution exposure is positively associated with child behavior problems and that African American and low SES children may be more susceptible. Importantly, associations were observed at exposures below current air quality standards.
Collapse
Affiliation(s)
- Christine T Loftus
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA.
| | - Yu Ni
- Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA
| | - Adam A Szpiro
- Department of Biostatistics, UW, Box 357232, Seattle, WA, 98195, USA
| | - Marnie F Hazlehurst
- Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA
| | - Frances A Tylavsky
- Department of Biostatistics and Epidemiology, 462 Doctors Office Building, 66 N Pauline St, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nicole R Bush
- Department of Psychiatry, University of California (UC), 401 Parnassus Ave, San Francisco, CA, 94143, USA; Department of Pediatrics, 550 16th Street, Box 0110, UC, San Francisco, CA, 94143, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA; Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA; Department of Pediatrics, 1959 NE Pacific St, UW, Seattle, WA, 98195, USA
| | - Kecia N Carroll
- Division of General Pediatrics, 2200 Children's Way, Vanderbilt University Medical Center, Nashville, TN, 27232, USA
| | - Michael Young
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA; Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA; Department of Pediatrics, 1959 NE Pacific St, UW, Seattle, WA, 98195, USA
| | - Kaja Z LeWinn
- Department of Psychiatry, University of California (UC), 401 Parnassus Ave, San Francisco, CA, 94143, USA
| |
Collapse
|
15
|
Air pollution: A systematic review of its psychological, economic, and social effects. Curr Opin Psychol 2020; 32:52-65. [DOI: 10.1016/j.copsyc.2019.06.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022]
|
16
|
Herting MM, Younan D, Campbell CE, Chen JC. Outdoor Air Pollution and Brain Structure and Function From Across Childhood to Young Adulthood: A Methodological Review of Brain MRI Studies. Front Public Health 2019; 7:332. [PMID: 31867298 PMCID: PMC6908886 DOI: 10.3389/fpubh.2019.00332] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Outdoor air pollution has been recognized as a novel environmental neurotoxin. Studies have begun to use brain Magnetic Resonance Imaging (MRI) to investigate how air pollution may adversely impact developing brains. A systematic review was conducted to evaluate and synthesize the reported evidence from MRI studies on how early-life exposure to outdoor air pollution affects neurodevelopment. Using PubMed and Web of Knowledge, we conducted a systematic search, followed by structural review of original articles with individual-level exposure data and that met other inclusion criteria. Six studies were identified, each sampled from 3 cohorts of children in Spain, The Netherlands, and the United States. All studies included a one-time assessment of brain MRI when children were 6–12 years old. Air pollutants from traffic and/or regional sources, including polycyclic aromatic hydrocarbons (PAHs), nitrogen dioxide, elemental carbon, particulate matter (<2.5 or <10 μm), and copper, were estimated prenatally (n = 1), during childhood (n = 3), or both (n = 2), using personal monitoring and urinary biomarkers (n = 1), air sampling at schools (n = 4), or a land-use regression (LUR) modeling based on residences (n = 2). Associations between exposure and brain were noted, including: smaller white matter surface area (n = 1) and microstructure (n = 1); region-specific patterns of cortical thinness (n = 1) and smaller volumes and/or less density within the caudate (n = 3); altered resting-state functional connectivity (n = 2) and brain activity to sensory stimuli (n = 1). Preliminary findings suggest that outdoor air pollutants may impact MRI brain structure and function, but limitations highlight that the design of future air pollution-neuroimaging studies needs to incorporate a developmental neurosciences perspective, considering the exposure timing, age of study population, and the most appropriate neurodevelopmental milestones.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Diana Younan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Claire E Campbell
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Ray JL, Fletcher P, Burmeister R, Holian A. The role of sex in particle-induced inflammation and injury. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1589. [PMID: 31566915 DOI: 10.1002/wnan.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials within various applications such as medicine, electronics, and cosmetics has been steadily increasing; therefore, the rate of occupational and environmental exposures has also increased. Inhalation is an important route of exposure to nanomaterials and has been shown to cause various respiratory diseases in animal models. Human lung disease frequently presents with a sex/gender-bias in prevalence or severity, but investigation of potential sex-differences in the adverse health outcomes associated with nanoparticle inhalation is greatly lacking. Only ~20% of basic research in the general sciences use both male and female animals and a substantial percentage of these do not address differences between sexes within their analyses. This has prevented researchers from fully understanding the impact of sex-based variables on health and disease, particularly the pathologies resulting from the inhalation of particles. The mechanisms responsible for sex-differences in respiratory disease remain unclear, but could be related to a number of variables including sex-differences in hormone signaling, lung physiology, or respiratory immune function. By incorporating sex-based analysis into respiratory nanotoxicology and utilizing human data from other relevant particles (e.g., asbestos, silica, particulate matter), we can improve our understanding of sex as a biological variable in nanoparticle exposures. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Rachel Burmeister
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
18
|
Loftus CT, Hazlehurst MF, Szpiro AA, Ni Y, Tylavsky FA, Bush NR, Sathyanarayana S, Carroll KN, Karr CJ, LeWinn KZ. Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate. ENVIRONMENTAL RESEARCH 2019; 176:108505. [PMID: 31229778 PMCID: PMC6710141 DOI: 10.1016/j.envres.2019.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Animal studies suggest that air pollution is neurotoxic to a developing fetus, but evidence in humans is limited. We tested the hypothesis that higher air pollution is associated with lower child IQ and that effects vary by maternal and child characteristics, including prenatal nutrition. METHODS We used prospective data collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood study. Outdoor pollutant exposure during pregnancy was predicted at geocoded home addresses using a validated national universal kriging model that combines ground-based monitoring data with an extensive database of land-use covariates. Distance to nearest major roadway was also used as a proxy for traffic-related pollution. Our primary outcome was full-scale IQ measured at age 4-6. In regression models, we adjusted for multiple determinants of child neurodevelopment and assessed interactions between air pollutants and child sex, race, socioeconomic status, reported nutrition, and maternal plasma folate in second trimester. RESULTS In our analytic sample (N = 1005) full-scale IQ averaged 2.5 points (95% CI: 0.1, 4.8) lower per 5 μg/m3 higher prenatal PM10, while no associations with nitrogen dioxide or road proximity were observed. Associations between PM10 and IQ were modified by maternal plasma folate (pinteraction = 0.07). In the lowest folate quartile, IQ decreased 6.8 points (95% CI: 1.4, 12.3) per 5-unit increase in PM10; no associations were observed in higher quartiles. CONCLUSIONS Our findings strengthen evidence that air pollution impairs fetal neurodevelopment and suggest a potentially important role of maternal folate in modifying these effects.
Collapse
Affiliation(s)
- Christine T Loftus
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA.
| | - Marnie F Hazlehurst
- Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA
| | - Adam A Szpiro
- Department of Biostatistics, UW, Box 357232, Seattle, WA, 98195, USA
| | - Yu Ni
- Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA
| | - Frances A Tylavsky
- Department of Biostatistics and Epidemiology, 462 Doctors Office Building, 66 N Pauline St, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nicole R Bush
- Department of Psychiatry, University of California (UC) 401 Parnassus Ave, San Francisco, CA, 94143, USA; Department of Pediatrics, 550 16th Street, Box 0110 UC, San Francisco, CA, 94143, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA; Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA; Department of Pediatrics, 1959 NE Pacific St, UW, Seattle, WA, 98195, USA
| | - Kecia N Carroll
- Division of General Pediatrics, 2200 Children's Way, Vanderbilt University Medical Center, Nashville, TN, 27232, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, University of Washington (UW), Seattle, WA, 95105, USA; Department of Epidemiology, 1959 NE Pacific Street, Box 357236, UW, Seattle, WA, 98195, USA; Department of Pediatrics, 1959 NE Pacific St, UW, Seattle, WA, 98195, USA
| | - Kaja Z LeWinn
- Department of Psychiatry, University of California (UC) 401 Parnassus Ave, San Francisco, CA, 94143, USA
| |
Collapse
|
19
|
Schmidt S. Brain Fog: Does Air Pollution Make Us Less Productive? ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:52001. [PMID: 31084450 PMCID: PMC6792460 DOI: 10.1289/ehp4869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|