1
|
Ballal A, Apte SK. Cyanobacterial KdpD modulates in vivo and in vitro activities of a membrane-anchored histidine kinase. Biochim Biophys Acta Gen Subj 2025:130817. [PMID: 40360126 DOI: 10.1016/j.bbagen.2025.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Prokaryotic KdpATPAse complex, encoded by the kdpABC operon, is an inducible, high-affinity K+ transporter. In E. coli, the operon is transcriptionally regulated by a two-component sensor-kinase response-regulator system, constituted by the KdpD and KdpE proteins. In contrast, cyanobacteria exhibit a truncated kdpD gene that encodes a KdpD homolog that is similar to the N-terminal domain (NTD) of E. coli KdpD, but lacks the transmitter, histidine kinase-containing, C-terminal domain (CTD). Here we show that the cyanobacterium Anabaena sp. strain L-31 constitutively transcribes the short kdpD gene, but synthesizes KdpATPase only during potassium starvation. However, unlike E. coli., expression of the kdpD gene remains unaffected by K+ limitation in Anabaena. To gain insight into the possible role of Anabaena KdpD, the chimeric Anacoli KdpD protein, wherein the NTD of E. coli KdpD was replaced with Anabaena KdpD, was functionally analyzed. Detailed investigation has revealed that the Anacoli KdpD (a) responds to a much lower threshold of external K+ than the E. coli KdpD (b) exhibits much reduced ability to induce kdp in response to ionic osmolytes than E. coli KdpD, and therefore shows slower growth in the presence of these osmolytes and (c) displays higher in vitro phosphatase activity than the wild type E. coli KdpD. Thus, Anabaena KdpD modulates properties of E. coli KdpD-CTD in a manner that is quite distinct from the E. coli KdpD-NTD. Based on these evidences, a model for kdp regulation by the short KdpD is proposed.
Collapse
Affiliation(s)
- Anand Ballal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400094 Mumbai, India.
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India
| |
Collapse
|
2
|
Quintero-Yanes A, Léger L, Collignon M, Mignon J, Mayard A, Michaux C, Hallez R. Regulation of potassium uptake in Caulobacter crescentus. J Bacteriol 2024; 206:e0010724. [PMID: 39133005 PMCID: PMC11411941 DOI: 10.1128/jb.00107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Loïc Léger
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Madeline Collignon
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
- WEL Research Institute, University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Silberberg JM, Ketter S, Böhm PJN, Jordan K, Wittenberg M, Grass J, Hänelt I. KdpD is a tandem serine histidine kinase that controls K + pump KdpFABC transcriptionally and post-translationally. Nat Commun 2024; 15:3223. [PMID: 38622146 PMCID: PMC11018627 DOI: 10.1038/s41467-024-47526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.
Collapse
Affiliation(s)
- Jakob M Silberberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Sophie Ketter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Paul J N Böhm
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Kristin Jordan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Marcel Wittenberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Julia Grass
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
4
|
A Novel Glycoside Hydrolase DogH Utilizing Soluble Starch to Maltose Improve Osmotic Tolerance in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24043437. [PMID: 36834856 PMCID: PMC9967864 DOI: 10.3390/ijms24043437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Deinococcus radiodurans is a microorganism that can adjust, survive or thrive in hostile conditions and has been described as "the strongest microorganism in the world". The underlying mechanism behind the exceptional resistance of this robust bacterium still remains unclear. Osmotic stress, caused by abiotic stresses such as desiccation, salt stress, high temperatures and freezing, is one of the main stresses suffered by microorganisms, and it is also the basic response pathway by which organisms cope with environmental stress. In this study, a unique trehalose synthesis-related gene, dogH (Deinococcus radiodurans orphan glycosyl hydrolase-like family 10), which encodes a novel glycoside hydrolase, was excavated using a multi-omics combination method. The content accumulation of trehalose and its precursors under hypertonic conditions was quantified by HPLC-MS. Ours results showed that the dogH gene was strongly induced by sorbitol and desiccation stress in D. radiodurans. DogH glycoside hydrolase hydrolyzes α-1,4-glycosidic bonds by releasing maltose from starch in the regulation of soluble sugars, thereby increasing the concentration of TreS (trehalose synthase) pathway precursors and trehalose biomass. The maltose and alginate content in D. radiodurans amounted to 48 μg mg protein-1 and 45 μg mg protein-1, respectively, which were 9 and 28 times higher than those in E. coli, respectively. The accumulation of greater intracellular concentrations of osmoprotectants may be the true reason for the higher osmotic stress tolerance of D. radiodurans.
Collapse
|
5
|
Joshi S, Ghosh P, Barage S, Basu B, Deobagkar DD. Genome-wide lone strand adenine methylation in Deinococcus radiodurans R1: Regulation of gene expression through DR0643-dependent adenine methylation. Microbiol Res 2022; 257:126964. [PMID: 35042054 DOI: 10.1016/j.micres.2022.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a covalent modification of adenine or cytosine in the genome of an organism and is found in diverse microbes including the radiation resistant bacterium Deinococcus radiodurans R1. Although earlier findings have confirmed repression or de-repression of certain genes in adenine methyltransferase (DR_0643/Dam1DR) deficient D. radiodurans mutant however, the overall regulatory aspects of Dam1DR-mediated adenine methylation remain mostly unexplored. In the present study, we compared the genome-wide methylome and the corresponding transcriptome of D. radiodurans WT and Δdam1 mutant to explore the correlation between methylation and gene expression. In D. radiodurans, deletion of DR_0643 ORF (Δdam1) led to hypomethylation of 512 genes resulting in differential expression of 168 genes (99 genes are upregulated and 69 genes are downregulated). The modification patterns deduced for Dam1DR (DR_0643) and Dam2DR (DR_2267) were non-palindromic and atypical. Moreover, we observed methylation at opportunistic sites that show adenine methylation only in D. radiodurans Δdam1 and not in D. radiodurans WT. Correlation between the methylome and transcriptome suggests that hypomethylation at Dam1DR specific sites had both negative as well as a positive effects on gene expression. Pathways such as amino acid metabolism, transport, oxidative phosphorylation, quorum sensing, signal transduction, two-component system, glycolysis/gluconeogenesis, TCA cycle, glyoxylate and dicarboxylate metabolism were modulated by Dam1DR-mediated adenine methylation in D. radiodurans. Processes such as DNA repair, recombination, ATPase and transmembrane transporter activity were enriched when Dam1DR mutant was subjected to radiation stress. We further evaluated the molecular interactions and mode of binding between Dam1DR protein and S-adenosyl methionine using molecular docking followed by MD simulation. To get a better insight into the methylation mechanism, the Dam1DR-SAM complex was also docked with a DNA molecule to elucidate DNA-Dam1DR structural interaction during methyl-group transfer reaction. In summary, our work presents comprehensive and integrative approaches to investigate both functional and structural aspects of DNA adenine methyltransferase (Dam1DR) in D. radiodurans biology.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post-Somathne, Panvel, Maharashtra, 410206, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
6
|
Raman T, Edwin Raj E, Muthukathan G, Loganathan M, Periyasamy P, Natesh M, Manivasakan P, Kotteeswaran S, Rajendran S, Subbaraya U. Comparative Whole-Genome Sequence Analyses of Fusarium Wilt Pathogen ( Foc R1, STR4 and TR4) Infecting Cavendish (AAA) Bananas in India, with a Special Emphasis on Pathogenicity Mechanisms. J Fungi (Basel) 2021; 7:jof7090717. [PMID: 34575755 PMCID: PMC8469521 DOI: 10.3390/jof7090717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Fusarium wilt is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc) and is the most serious disease affecting bananas (Musa spp.). The fungus is classified into Foc race 1 (R1), Foc race 2, and Foc race 4 based on host specificity. As the rate of spread and the ranges of the devastation of the Foc races exceed the centre of the banana’s origin, even in non-targeted cultivars, there is a possibility of variation in virulence-associated genes. Therefore, the present study investigates the genome assembly of Foc races that infect the Cavendish (AAA) banana group in India, specifically those of the vegetative compatibility group (VCG) 0124 (race 1), 0120 (subtropical race 4), and 01213/16 (tropical race 4). While comparing the general features of the genome sequences (e.g., RNAs, GO, SNPs, and InDels), the study also looked at transposable elements, phylogenetic relationships, and virulence-associated effector genes, and sought insights into race-specific molecular mechanisms of infection based on the presence of unique genes. The results of the analyses revealed variations in the organisation of genome assembly and virulence-associated genes, specifically secreted in xylem (SIX) genes, when compared to their respective reference genomes. The findings contributed to a better understanding of Indian Foc genomes, which will aid in the development of effective Fusarium wilt management techniques for various Foc VCGs in India and beyond.
Collapse
Affiliation(s)
- Thangavelu Raman
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Correspondence:
| | - Esack Edwin Raj
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Research and Development Division, MIRO Forestry SL Ltd., Mile 91, Tonkolili District, Northern Provenance P.O. Box GP20200, Sierra Leone
| | - Gopi Muthukathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Murugan Loganathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Pushpakanth Periyasamy
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Marimuthu Natesh
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Prabaharan Manivasakan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sharmila Kotteeswaran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sasikala Rajendran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Uma Subbaraya
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| |
Collapse
|
7
|
Wang W, Ma Y, He J, Qi H, Xiao F, He S. Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene 2019; 715:144008. [DOI: 10.1016/j.gene.2019.144008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
|
8
|
MacGilvary NJ, Kevorkian YL, Tan S. Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization. PLoS Pathog 2019; 15:e1007591. [PMID: 30716121 PMCID: PMC6375644 DOI: 10.1371/journal.ppat.1007591] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.
Collapse
Affiliation(s)
- Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo L. Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|