1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
3
|
Tamura R, Chen J, De Jaeger M, Morris JF, Scott DA, Vangheluwe P, Looger LL. Genetically encoded fluorescent sensors for visualizing polyamine levels, uptake, and distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609037. [PMID: 39229183 PMCID: PMC11370472 DOI: 10.1101/2024.08.21.609037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
Collapse
|
4
|
Bachmann AS, VanSickle EA, Michael J, Vipond M, Bupp CP. Bachmann-Bupp syndrome and treatment. Dev Med Child Neurol 2024; 66:445-455. [PMID: 37469105 PMCID: PMC10796844 DOI: 10.1111/dmcn.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
Collapse
Affiliation(s)
- André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
| | - Elizabeth A VanSickle
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Julianne Michael
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Marlie Vipond
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Morańska K, Englert-Golon M, Durda-Masny M, Sajdak S, Grabowska M, Szwed A. Why Does Your Uterus Become Malignant? The Impact of the Microbiome on Endometrial Carcinogenesis. Life (Basel) 2023; 13:2269. [PMID: 38137870 PMCID: PMC10744771 DOI: 10.3390/life13122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation cycle, pregnancy maintenance, and immune system support. However, bacteria in the uterus could stimulate inflammation, which when chronic results in malignancy. An altered gut microbiota initiates an inflammatory response through microorganism-associated molecular patterns, which leads to intensified steroidogenesis in the ovaries and cancers. Moreover, intestinal bacteria secreting the enzyme β-glucuronidase may increase the level of circulating estrogen and, as a result, be influential in gynecological cancers. Both the uterine and the gut microbiota play a pivotal role in immune modulation, which is why there is a demand for further investigation from both the diagnostic and the therapeutic perspectives.
Collapse
Affiliation(s)
- Katarzyna Morańska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Monika Englert-Golon
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Magdalena Durda-Masny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Stefan Sajdak
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marlena Grabowska
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Anita Szwed
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| |
Collapse
|
6
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Zhu N, Zhu L, Zhang X, Huang C, Xiang W, Huang B. Triptolide attenuates irritable bowel syndrome via inhibiting ODC1. BMC Gastroenterol 2023; 23:202. [PMID: 37308808 DOI: 10.1186/s12876-023-02847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a chronic disorder of the gut-brain axis with significant morbidity. Triptolide, an active compound extracted from Tripterygium wilfordii Hook F (TwHF), has been widely used as a major medicinal herb in the treatment of inflammatory disease. METHODS The chronic-acute combined stress (CAS) stimulation was used to establish IBS rat model. The model rats were then gavaged with triptolide. Forced swimming, marble-burying, fecal weight and abdominal withdrawal reflex (AWR) score were recorded. Pathologic changes in the ileal and colonic tissues were validated by hematoxylin and eosin staining. The inflammatory cytokines and Ornithine Decarboxylase-1 (ODC1) in the ileal and colonic tissues were performed by ELISA and WB. RESULTS Triptolide didn't have antidepressant- and antianxiety- effects in rats caused by CAS, but decreased fecal weight and AWR score. In addition, Triptolide reduced the release of IL-1, IL-6, and TNF-α and the expression of ODC1 in the ileum and colon. CONCLUSION The therapeutic efficacy of triptolide for IBS induced by CAS was revealed in this study, which may be related to the reduction of ODC1.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Xueliang Zhang
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Wenjun Xiang
- Department of Pathology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
9
|
Zhao T, Zeng J, Yang M, Qiu F, Tang Y, Zeng L, Yang C, He P, Lan X, Chen M, Liao Z, Zhang F. Ornithine decarboxylase regulates putrescine-related metabolism and pollen development in Atropa belladonna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:110-119. [PMID: 36219994 DOI: 10.1016/j.plaphy.2022.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Polyamines, including putrescine, spermidine, and spermine, play critical roles in cell physiology by different forms. As a rate-limiting enzyme that converts ornithine to putrescine, ornithine decarboxylase (ODC, EC 1.1.1.37) has been studied in detail in animals and microorganisms, but its specific functions are poorly understood in plants. In this study, the metabolic and developmental roles of the ODC gene were studied through RNAi-mediated suppression of the ODC gene (AbODC) in A. belladonna. Suppression of AbODC reduced the production of precursors of medicinal tropane alkaloids, including putrescine and N-methylputrescine, as well as hyoscyamine and scopolamine. In AbODC-RNAi roots, the production of putrescine and spermidine in free form was reduced, but in the AbODC-RNAi leaves, the content of free polyamines was not altered. In the roots/leaves of AbODC-RNAi plants, the production of conjugated and bound polyamines was reduced. In addition, suppression of the ODC gene resulted in reduction of polyamines and pollen sterility in AbODC-RNAi flowers. In floral organs, GUS-staining results indicated that AbODC was domainantly expressed in pollen. In summary, ornithine decarboxylase not only plays a key role in regulating the biosynthesis of diverse forms of polyamines and medicinal tropane alkaloids, but also participates in pollen development.
Collapse
Affiliation(s)
- Tengfei Zhao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mei Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yueli Tang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet, 860000, China
| | - Min Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| | - Fangyuan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Hu Y, Rehawi G, Moyon L, Gerstner N, Ogris C, Knauer-Arloth J, Bittner F, Marsico A, Mueller NS. Network Embedding Across Multiple Tissues and Data Modalities Elucidates the Context of Host Factors Important for COVID-19 Infection. Front Genet 2022; 13:909714. [PMID: 35903362 PMCID: PMC9315940 DOI: 10.3389/fgene.2022.909714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is a heterogeneous disease caused by SARS-CoV-2. Aside from infections of the lungs, the disease can spread throughout the body and damage many other tissues, leading to multiorgan failure in severe cases. The highly variable symptom severity is influenced by genetic predispositions and preexisting diseases which have not been investigated in a large-scale multimodal manner. We present a holistic analysis framework, setting previously reported COVID-19 genes in context with prepandemic data, such as gene expression patterns across multiple tissues, polygenetic predispositions, and patient diseases, which are putative comorbidities of COVID-19. First, we generate a multimodal network using the prior-based network inference method KiMONo. We then embed the network to generate a meaningful lower-dimensional representation of the data. The input data are obtained via the Genotype-Tissue Expression project (GTEx), containing expression data from a range of tissues with genomic and phenotypic information of over 900 patients and 50 tissues. The generated network consists of nodes, that is, genes and polygenic risk scores (PRS) for several diseases/phenotypes, as well as for COVID-19 severity and hospitalization, and links between them if they are statistically associated in a regularized linear model by feature selection. Applying network embedding on the generated multimodal network allows us to perform efficient network analysis by identifying nodes close by in a lower-dimensional space that correspond to entities which are statistically linked. By determining the similarity between COVID-19 genes and other nodes through embedding, we identify disease associations to tissues, like the brain and gut. We also find strong associations between COVID-19 genes and various diseases such as ischemic heart disease, cerebrovascular disease, and hypertension. Moreover, we find evidence linking PTPN6 to a range of comorbidities along with the genetic predisposition of COVID-19, suggesting that this kinase is a central player in severe cases of COVID-19. In conclusion, our holistic network inference coupled with network embedding of multimodal data enables the contextualization of COVID-19-associated genes with respect to tissues, disease states, and genetic risk factors. Such contextualization can be exploited to further elucidate the biological importance of known and novel genes for severity of the disease in patients.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Informatics 12 Chair of Bioinformatics, Technical University Munich, Garching, Germany
| | - Ghalia Rehawi
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | - Lambert Moyon
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Nathalie Gerstner
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | - Christoph Ogris
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Janine Knauer-Arloth
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | | | - Annalisa Marsico
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Nikola S. Mueller
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- knowing01 GmbH, Munich, Germany
| |
Collapse
|
11
|
Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J. Tumor-Associated Macrophages and Ovarian Cancer: Implications for Therapy. Cancers (Basel) 2022; 14:2220. [PMID: 35565348 PMCID: PMC9101750 DOI: 10.3390/cancers14092220] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) has been implicated to play an important role in the progression of ovarian cancer. One of the most important components of the TME is tumor associated macrophages (TAMs). Phenotypically, macrophages are broadly categorized as M1 pro-inflammatory or M2 anti-inflammatory, based on the cytokines and chemokines that they secrete. The tumor microenvironment is associated with macrophages of an M2 phenotype which suppress the surrounding immune environment, assist tumor cells in evading immune targeting, and support tumor growth and metastasis. Contrarily, M1 macrophages help mount an immune response against tumors, and are associated with a more favorable prognosis in solid tumors. One of the characteristic indicators of a poor prognosis in ovarian cancer is the overrepresentation of M2-type TAMs. As such, therapeutic modalities targeting TME and TAMs are of increasing interest. Pharmacological approaches to eliminate TAMs, include decreasing macrophage survival and recruitment and increasing phagocytosis, have been underwhelming. Clinical strategies targeting these macrophage subtypes via repolarization to an M1 antitumoral state deserve increasing attention, and may serve as a new modality for immunotherapy.
Collapse
Affiliation(s)
- David Schweer
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Annabel McAtee
- School of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Khaga Neupane
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Christopher Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Frederick Ueland
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Pharmacology and Toxicology, University of Kentucky, Lexington, KY 40202, USA
| |
Collapse
|
12
|
Polyamine Immunometabolism: Central Regulators of Inflammation, Cancer and Autoimmunity. Cells 2022; 11:cells11050896. [PMID: 35269518 PMCID: PMC8909056 DOI: 10.3390/cells11050896] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are ubiquitous, amine-rich molecules with diverse processes in biology. Recent work has highlighted that polyamines exert profound roles on the mammalian immune system, particularly inflammation and cancer. The mechanisms by which they control immunity are still being described. In the context of inflammation and autoimmunity, polyamine levels inversely correlate to autoimmune phenotypes, with lower polyamine levels associated with higher inflammatory responses. Conversely, in the context of cancer, polyamines and polyamine biosynthetic genes positively correlate with the severity of malignancy. Blockade of polyamine metabolism in cancer results in reduced tumor growth, and the effects appear to be mediated by an increase in T-cell infiltration and a pro-inflammatory phenotype of macrophages. These studies suggest that polyamine depletion leads to inflammation and that polyamine enrichment potentiates myeloid cell immune suppression. Indeed, combinatorial treatment with polyamine blockade and immunotherapy has shown efficacy in pre-clinical models of cancer. Considering the efficacy of immunotherapies is linked to autoimmune sequelae in humans, termed immune-adverse related events (iAREs), this suggests that polyamine levels may govern the inflammatory response to immunotherapies. This review proposes that polyamine metabolism acts to balance autoimmune inflammation and anti-tumor immunity and that polyamine levels can be used to monitor immune responses and responsiveness to immunotherapy.
Collapse
|
13
|
Kim HI, Schultz CR, Chandramouli GVR, Geerts D, Risinger JI, Bachmann AS. Pharmacological targeting of polyamine and hypusine biosynthesis reduces tumor activity of endometrial cancer. J Drug Target 2022; 30:623-633. [PMID: 35100927 DOI: 10.1080/1061186x.2022.2036164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endometrial cancer (EC) is a common and deadly cancer in women and novel therapeutic approaches are urgently needed. Polyamines (putrescine, spermidine, spermine) are critical for mammalian cell proliferation and MYC coordinately regulates polyamine metabolism through ornithine decarboxylase (ODC). ODC is a MYC target gene and rate-limiting enzyme of polyamine biosynthesis and the FDA-approved anti-protozoan drug α-difluoromethylornithine (DFMO) inhibits ODC activity and induces polyamine depletion that leads to tumor growth arrest. Spermidine is required for the hypusine-dependent activation of eukaryotic translation initiation factors 5A1 (eIF5A1) and 5A2 (eIF5A2) and connects the MYC/ODC-induced deregulation of spermidine to eIF5A1/2 protein translation, which is increased during cancer cell proliferation. We show that the eIF5A1 is significantly upregulated in EC cells compared to control cells (p = 0.000038) and that combined pharmacological targeting of ODC and eIF5A hypusination with cytostatic drugs DFMO and N1-guanyl-1,7-diaminoheptane (GC7), respectively, reduces eIF5A1 activation and synergistically induces apoptosis in EC cells. In vivo, DFMO/GC7 suppressed xenografted EC tumor growth in mice more potently than each drug alone compared to control (p = 0.002) and decreased putrescine (p = 0.045) and spermidine levels in tumor tissues. Our data suggest DFMO and GC7 combination therapy may be useful in the treatment or prevention of EC.
Collapse
Affiliation(s)
- Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| | | | - Dirk Geerts
- Glycostem Therapeutics, Oss, The Netherlands
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| |
Collapse
|
14
|
Zhou L, Li S, Sun J. Ginkgolic acid induces apoptosis and autophagy of endometrial carcinoma cells via inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro. Hum Exp Toxicol 2021; 40:2156-2164. [PMID: 34132136 DOI: 10.1177/09603271211023789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometrial cancer (EC) is the fourth most common malignancy in women in developed countries. The prognosis of EC is extremely poor, and it is an important factor that contributes to the death of patients. Therefore, studying EC pathogenesis and therapeutic targets, and exploring effective drugs are the primary tasks to improve the prognosis of EC. In the present study, we aimed to explore the function of ginkgolic acid (GA) in EC cell apoptosis and autophagy through PI3K/Akt/mTOR signal pathway in vitro and in vivo. Firstly, MTT assay and clone formation assay were employed to analyze the Ishikawa and HEC-1-B cell viabilities and proliferation after treatment with GA. The results showed that GA inhibited endometrial cancer cell survival. Flow cytometry assay and western blot assay were applied to examine the apoptosis and apoptosis related protein Bcl-2, Bax, Cleaved caspase-3 expression levels of Ishikawa and HEC-1-B cells after treatment with GA. Next, we applied western blot assay to analyze the autophagy associated proteins LC3I, LC3II, p62 and Beclin-1 in GA treated Ishikawa and HEC-1-B cells. We found that GA promoted apoptosis and induced autophagy of endometrial cancer cells. Meanwhile, western blot assay was also used to determine the expression levels of the PI3K/Akt/mTOR signal pathway related protein and the results revealed that GA inhibited the activity of PI3K/Akt/mTOR pathway. Finally, we found that GA inhibited tumor growth in vivo through immunohistochemistry assay. In conclusion, GA induces apoptosis and autophagy of EC cells via inhibiting PI3K/Akt/mTOR pathway in vivo and vitro.
Collapse
Affiliation(s)
- L Zhou
- Department of Gynaecology and Obstetrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - S Li
- Department of Gynaecology and Obstetrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - J Sun
- Department of Gynaecology and Obstetrics, 232830Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| |
Collapse
|
15
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
16
|
Ahn S, Grimes T, Datta S. The Analysis of Gene Expression Data Incorporating Tumor Purity Information. Front Genet 2021; 12:642759. [PMID: 34497631 PMCID: PMC8419469 DOI: 10.3389/fgene.2021.642759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment is composed of tumor cells, stroma cells, immune cells, blood vessels, and other associated non-cancerous cells. Gene expression measurements on tumor samples are an average over cells in the microenvironment. However, research questions often seek answers about tumor cells rather than the surrounding non-tumor tissue. Previous studies have suggested that the tumor purity (TP)-the proportion of tumor cells in a solid tumor sample-has a confounding effect on differential expression (DE) analysis of high vs. low survival groups. We investigate three ways incorporating the TP information in the two statistical methods used for analyzing gene expression data, namely, differential network (DN) analysis and DE analysis. Analysis 1 ignores the TP information completely, Analysis 2 uses a truncated sample by removing the low TP samples, and Analysis 3 uses TP as a covariate in the underlying statistical models. We use three gene expression data sets related to three different cancers from the Cancer Genome Atlas (TCGA) for our investigation. The networks from Analysis 2 have greater amount of differential connectivity in the two networks than that from Analysis 1 in all three cancer datasets. Similarly, Analysis 1 identified more differentially expressed genes than Analysis 2. Results of DN and DE analyses using Analysis 3 were mostly consistent with those of Analysis 1 across three cancers. However, Analysis 3 identified additional cancer-related genes in both DN and DE analyses. Our findings suggest that using TP as a covariate in a linear model is appropriate for DE analysis, but a more robust model is needed for DN analysis. However, because true DN or DE patterns are not known for the empirical datasets, simulated datasets can be used to study the statistical properties of these methods in future studies.
Collapse
Affiliation(s)
| | | | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
18
|
Ahn HS, Yeom J, Yu J, Kwon YI, Kim JH, Kim K. Convergence of Plasma Metabolomics and Proteomics Analysis to Discover Signatures of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12113447. [PMID: 33228226 PMCID: PMC7709037 DOI: 10.3390/cancers12113447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In-time diagnosing ovarian cancer, intractable cancer that has no symptoms can increase the survival of women. The aim of this study was to discover biomarkers from liquid biopsy samples using multi-omics approach, metabolomics and proteomics for the diagnosis of ovarian cancer. To verify our biomarker candidates, we conducted comparative analysis with other previous published studies. Despite the limitations of non-invasive samples, our findings are able to discover emerging properties through the interplay between metabolites and proteins and mechanism-based biomarkers through integrated protein and metabolite analysis. Abstract The 5-year survival rate in the early and late stages of ovarian cancer differs by 63%. In addition, a liquid biopsy is necessary because there are no symptoms in the early stage and tissue collection is difficult without using invasive methods. Therefore, there is a need for biomarkers to achieve this goal. In this study, we found blood-based metabolite or protein biomarker candidates for the diagnosis of ovarian cancer in the 20 clinical samples (10 ovarian cancer patients and 10 healthy control subjects). Plasma metabolites and proteins were measured and quantified using mass spectrometry in ovarian cancer patients and control groups. We identified the differential abundant biomolecules (34 metabolites and 197 proteins) and statistically integrated molecules of different dimensions to better understand ovarian cancer signal transduction and to identify novel biological mechanisms. In addition, the biomarker reliability was verified through comparison with existing research results. Integrated analysis of metabolome and proteome identified emerging properties difficult to grasp with the single omics approach, more reliably interpreted the cancer signaling pathway, and explored new drug targets. Especially, through this analysis, proteins (PPCS, PMP2, and TUBB) and metabolites (L-carnitine and PC-O (30:0)) related to the carnitine system involved in cancer plasticity were identified.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | | | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06237, Korea
- Correspondence: (J.-H.K.); (K.K.); Tel.: +82-2-2019-3436 (J.-H.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (J.-H.K.); (K.K.); Tel.: +82-2-2019-3436 (J.-H.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
19
|
Pathak G, Singh S, Kumari P, Hussain Y, Raza W, Luqman S, Meena A. Cirsilineol inhibits proliferation of lung squamous cell carcinoma by inducing ROS mediated apoptosis. Food Chem Toxicol 2020; 143:111550. [DOI: 10.1016/j.fct.2020.111550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
|
20
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
21
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
22
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
23
|
Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J, Wolf WM. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules 2020; 25:E1135. [PMID: 32138329 PMCID: PMC7179192 DOI: 10.3390/molecules25051135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.
Collapse
Affiliation(s)
- Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Milan Remko
- Remedika, Sustekova, 1 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela D. Madura
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland;
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|
24
|
Du S, Wang S, Zhang F, Lv Y. SKP2, positively regulated by circ_ODC1/miR‐422a axis, promotes the proliferation of retinoblastoma. J Cell Biochem 2019; 121:322-331. [PMID: 31297892 DOI: 10.1002/jcb.29177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Shuai Wang
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Fengyan Zhang
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yong Lv
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
25
|
Li Y, Wang Y, Wu P. 5'-Methylthioadenosine and Cancer: old molecules, new understanding. J Cancer 2019; 10:927-936. [PMID: 30854099 PMCID: PMC6400808 DOI: 10.7150/jca.27160] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
While the metabolic changes in cancer tissues were first observed by Warburg Otto almost a century ago, altered metabolism has recently returned as a focus of cancer research. 5'-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside found in numerous species. While MTA was first isolated several decades ago, a lack of sensitive and specific analytical methodologies designed for its direct quantification has hampered the study of its physiological and pathophysiological features. Many studies indicate that MTA suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. In this review, we assessed the effects of MTA and of related materials on the growth and functions of normal and malignant cells.
Collapse
Affiliation(s)
- Yaofeng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubo Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
26
|
Liu S, Lin M, Ji H, Ding J, Zhu J, Ma R, Meng F. RRBP1 overexpression is associated with progression and prognosis in endometrial endometrioid adenocarcinoma. Diagn Pathol 2019; 14:7. [PMID: 30684972 PMCID: PMC6347782 DOI: 10.1186/s13000-019-0784-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background Currently, ribosome-binding protein 1 (RRBP1) is considered to be a novel oncogene that is overexpressed in colorectal cancer, lung cancer, mammary cancer, esophageal cancer and other carcinomas. However, the relationship between RRBP1 and endometrioid-type endometrial carcinoma (EC) remains unknown. Our purpose is to explore the function of RRBP1 in endometrioid-type endometrial carcinoma. Methods We investigated the expression of RRBP1 protein by immunohistochemistry on paraffin-embedded surgical specimens from one hundred thirty patients with endometrioid-type endometrial carcinoma. We also evaluated the differences in RRBP1 expression between endometrial cancer samples (n = 35) and normal endometrial tissues (n = 19) by western blotting. Results RRBP1 was more highly expressed in endometrial cancer samples than in normal samples (P < 0.05). High levels of expression of RRBP1 were strongly correlated with pathological features, such as the Federation of Gynecology and Obstetrics (FIGO) stage, histological grade, depth of myometrial invasion and lymph node metastasis (P < 0.05). Furthermore, RRBP1 expression was an independent prognostic factor for overall survival (OS) and disease-free survival (DFS) in patients with EC (both P < 0.05). Conclusion This experiment identifies the utility of RRBP1 in predicting EC prognosis, revealing that it may be a potential target for therapeutics of EC.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Mu Lin
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hongying Ji
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jing Ding
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiaqi Zhu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Rong Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Fanling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
27
|
Yuan B, Schafferer S, Tang Q, Scheffler M, Nees J, Heil J, Schott S, Golatta M, Wallwiener M, Sohn C, Koal T, Wolf B, Schneeweiß A, Burwinkel B. A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer 2019; 144:2833-2842. [PMID: 30426507 DOI: 10.1002/ijc.31996] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/19/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
Abstract
In recent years, metabolites have attracted substantial attention as promising novel biomarkers of various diseases. However, breast cancer plasma metabolite studies are still in their infancy. Here, we investigated the potential of metabolites to serve as minimally invasive, early detection markers of primary breast cancer. We profiled metabolites extracted from the plasma of primary breast cancer patients and healthy controls using tandem mass spectrometry (UHPLC-MS/MS and FIA-MS/MS). Two metabolites were found to be upregulated, while 16 metabolites were downregulated in primary breast cancer patients compared to healthy controls in both the training and validation cohorts. A panel of seven metabolites was selected by LASSO regression analysis. This panel could differentiate primary breast cancer patients from healthy controls, with an AUC of 0.87 (95% CI: 0.81 ~ 0.92) in the training cohort and an AUC of 0.80 (95% CI: 0.71 ~ 0.87) in the validation cohort. These significantly differentiated metabolites are mainly involved in the amino acid metabolism and breast cancer cell growth pathways. In conclusion, using a metabolomics approach, we identified metabolites that have potential value for development of a multimarker blood-based test to complement and improve early breast cancer detection. The panel identified herein might be part of a prescreening tool, especially for younger women or for closely observing women with certain risks, to facilitate decision making regarding which individuals should undergo further diagnostic tests. In the future, the combination of metabolites and other blood-based molecular marker sets, such as DNA methylation, microRNA, and cell-free DNA mutation markers, will be an attractive option.
Collapse
Affiliation(s)
- Baowen Yuan
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Qiuqiong Tang
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juliane Nees
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Jörg Heil
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schott
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Michael Golatta
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Markus Wallwiener
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Christof Sohn
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | | | | | - Andreas Schneeweiß
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Abstract
This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the Journal of Biological Chemistry from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (ODC1), an important bona fide gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis. Although notable advances have been made in designing inhibitors against the "undruggable" MYCs, their downstream targets and pathways are currently the main avenue for therapeutic anticancer interventions. To this end, the MYC-ODC axis presents an attractive target for managing cancers such as neuroblastoma, a pediatric malignancy in which MYCN gene amplification correlates with poor prognosis and high-risk disease. ODC and polyamine levels are often up-regulated and contribute to tumor hyperproliferation, especially of MYC-driven cancers. We therefore had proposed to repurpose α-difluoromethylornithine (DFMO), an FDA-approved, orally available ODC inhibitor, for management of neuroblastoma, and this intervention is now being pursued in several clinical trials. We discuss the regulation of ODC and polyamines, which besides their well-known interactions with DNA and tRNA/rRNA, are involved in regulating RNA transcription and translation, ribosome function, proteasomal degradation, the circadian clock, and immunity, events that are also controlled by MYC proteins.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503 and
| | - Dirk Geerts
- the Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
29
|
Leifer BS, Doyle SK, Richters A, Evans HL, Koehler AN. An Array-Based Ligand Discovery Platform for Proteins With Short Half-Lives. Methods Enzymol 2018; 610:191-218. [PMID: 30390799 DOI: 10.1016/bs.mie.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many promising therapeutic protein targets were previously considered "undruggable" due to a deficit in structural information to guide drug design and/or a lack of an obvious binding pocket. Fortunately, array-based methods for evaluating protein binding against large chemical libraries, such as small-molecule microarray screening, have provided one of several emerging inroads to ligand discovery for these elusive targets. Despite the advance in the area of ligand discovery for poorly structured and intrinsically disordered proteins provided by array-based technologies involving cell lysates, the extension of this technology for screening proteins with short half-lives in physiologically relevant conformations has been technically challenging. In this chapter we present a protocol for leveraging in vitro translation strategies to enable array-based screening of short-lived proteins against large small-molecule libraries for ligand discovery.
Collapse
Affiliation(s)
- Becky S Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shelby K Doyle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - André Richters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Helen L Evans
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
30
|
Weicht RR, Schultz CR, Geerts D, Uhl KL, Bachmann AS. Polyamine Biosynthetic Pathway as a Drug Target for Osteosarcoma Therapy. Med Sci (Basel) 2018; 6:E65. [PMID: 30115881 PMCID: PMC6165283 DOI: 10.3390/medsci6030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children. Polyamines (PAs) are ubiquitous cations involved in many cell processes including tumor development, invasion and metastasis. In other pediatric cancer models, inhibition of the PA biosynthesis pathway with ornithine decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) results in decreased cell proliferation and differentiation. In OS, the PA pathway has not been evaluated. DFMO is an attractive, orally administered drug, is well tolerated, can be given for prolonged periods, and is already used in pediatric patients. Three OS cell lines were used to study the cellular effects of PA inhibition with DFMO: MG-63, U-2 OS and Saos-2. Effects on proliferation were analyzed by cell count, flow cytometry-based cell cycle analysis and RealTime-Glo™ MT Cell Viability assays. Intracellular PA levels were measured with high-performance liquid chromatography (HPLC). Western blot analysis was used to evaluate cell differentiation. DFMO exposure resulted in significantly decreased cell proliferation in all cell lines. After treatment, intracellular spermidine levels were drastically decreased. Cell cycle arrest at G₂/M was observed in U-2 OS and Saos-2. Cell differentiation was most prominent in MG-63 and U-2 OS as determined by increases in the terminal differentiation markers osteopontin and collagen 1a1. Cell proliferation continued to be suppressed for several days after removal of DFMO. Based on our findings, DFMO is a promising new adjunct to current osteosarcoma therapy in patients at high risk of relapse, such as those with poor necrosis at resection or those with metastatic or recurrent osteosarcoma. It is a well-tolerated oral drug that is currently in phase II clinical trials in pediatric neuroblastoma patients as a maintenance therapy. The same type of regimen may also improve outcomes in osteosarcoma patients in whom there have been essentially no medical advances in the last 30 years.
Collapse
Affiliation(s)
- Rebecca R. Weicht
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
- Helen DeVos Children’s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI 49503, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
- Helen DeVos Children’s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI 49503, USA
| |
Collapse
|
31
|
Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling Endometrial Cancer: Past, Present, and Future. Int J Mol Sci 2018; 19:E2348. [PMID: 30096949 PMCID: PMC6121384 DOI: 10.3390/ijms19082348] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer is the most common type of cancer of the female reproductive tract. Although prognosis is generally good for patients with low-grade and early-stage diseases, the outcomes for high-grade and metastatic/recurrent cases remain poor, since traditional chemotherapy regimens based on platinum and taxanes have limited effects. No targeted agents have been approved so far, although several new drugs have been tested without striking results in clinical trials. Over the last decades, many efforts have been made towards the establishment and development of preclinical models, aiming at recapitulating the structural and molecular determinants of the disease. Here, we present an overview of the most commonly used in vitro and in vivo models and discuss their peculiar features, describing their main applications and the value in the advancement of both fundamental and translational endometrial cancer research.
Collapse
Affiliation(s)
- Tom Van Nyen
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Cristian P Moiola
- Pathological Oncology Group, Biomedical Research Institute of Lleida (IRBLLEIDA), University Hospital Arnau de Vilanova, 25198 Lleida, Spain.
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Frédéric Amant
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (Avl-NKI) and University Medical Centra (UMC), 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
33
|
Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J, Bachmann AS. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J 2018; 475:531-545. [PMID: 29295892 DOI: 10.1042/bcj20170597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2023]
Abstract
The eukaryotic initiation factor 5A (eIF5A), which contributes to several crucial processes during protein translation, is the only protein that requires activation by a unique post-translational hypusine modification. eIF5A hypusination controls cell proliferation and has been linked to cancer. eIF5A hypusination requires the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase and uniquely depends on the polyamine (PA) spermidine as the sole substrate. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in PA biosynthesis. Both ODC and PAs control cell proliferation and are frequently dysregulated in cancer. Since only spermidine can activate eIF5A, we chose the hypusine-PA nexus as a rational target to identify new drug combinations with synergistic antiproliferative effects. We show that elevated mRNA levels of the two target enzymes DHPS and ODC correlate with poor prognosis in a large cohort of neuroblastoma (NB) tumors. The DHPS inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) and the ODC inhibitor α-difluoromethylornithine (DFMO) are target-specific and in combination induced synergistic effects in NB at concentrations that were not individually cytotoxic. Strikingly, while each drug alone at higher concentrations is known to induce p21/Rb- or p27/Rb-mediated G1 cell cycle arrest, we found that the drug combination induced caspase 3/7/9, but not caspase 8-mediated apoptosis, in NB cells. Hypusinated eIF5A levels and intracellular spermidine levels correlated directly with drug treatments, signifying specific drug targeting effects. This two-pronged GC7/DFMO combination approach specifically inhibits both spermidine biosynthesis and post-translational, spermidine-dependent hypusine-eIF5A activation, offering an exciting clue for improved NB drug therapy.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marie Mooney
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A.
| |
Collapse
|