1
|
Lamphere CC, McCormick EC, Adler LS. Preventative medicine? Examining prophylactic effects of a sunflower pollen diet in Bombus impatiens ([Hymenoptera]: [Apidae]). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf051. [PMID: 40178429 DOI: 10.1093/jee/toaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Widespread decline of pollinator populations is of concern for both natural and agricultural ecosystems. Pathogens have been identified as a major contributor to the decline of some bee species, making understanding host-pathogen dynamics a crucial area of research. Sunflower pollen (Helianthus annuus L.; Asterales: Asteraceae) dramatically and consistently reduces infection by a prevalent gut pathogen, Crithidia bombi Lipa & Triggiani 1988 (Kinetoplastida: Trypanosomatidae), in the common eastern bumble bee (Bombus impatiens Cresson 1863; Hymenoptera: Apidae), when consumed by bees post-infection, but we do not know if sunflower can confer protection when consumed before exposure. We asked whether feeding bumble bees sunflower pollen diets prior to pathogen exposure decreases Crithidia infection compared to buckwheat pollen (Fagopyrum esculentum Moench; Polygonales: Polygonaceae). Buckwheat pollen was used as a comparison since it has a similar protein concentration as sunflower pollen, but results in higher Crithidia counts more comparable to typical wildflower pollen when consumed post-infection. Bumble bees were fed sunflower or buckwheat pollen for 7 d, inoculated with Crithidia, and then fed a wildflower pollen control diet for seven more days before assessing infection. We found that consuming a sunflower pollen diet before inoculation did not reduce Crithidia cell counts compared to buckwheat pollen. Furthermore, bumble bee survival and consumption of sucrose solution and pollen did not differ between these diets. The results show no evidence of sunflower pollen providing prophylactic resistance against Crithidia bombi infection, indicating that the timing at which sunflower pollen is consumed relative to exposure has important consequences for infection.
Collapse
Affiliation(s)
- Cameron C Lamphere
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| | - Elyse C McCormick
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| | - Lynn S Adler
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Tiritelli R, Cilia G, Gómez-Moracho T. The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100106. [PMID: 39925747 PMCID: PMC11803887 DOI: 10.1016/j.cris.2025.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Markowitz LM, Nearman A, Zhao Z, Boncristiani D, Butenko A, de Pablos LM, Marin A, Xu G, Machado CA, Schwarz RS, Palmer-Young EC, Evans JD. Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim. G3 (BETHESDA, MD.) 2025; 15:jkae258. [PMID: 39501754 PMCID: PMC11708234 DOI: 10.1093/g3journal/jkae258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provided evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.
Collapse
Affiliation(s)
- Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Anthony Nearman
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Zexuan Zhao
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Dawn Boncristiani
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Anzhelika Butenko
- Czech Academy of Sciences, Institute of Parasitology, České Budějovice 370 05, Czech Republic
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Luis Miguel de Pablos
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada 18071, Spain
- Institute of Biotechnology, University of Granada, Granada 18071, Spain
| | - Arturo Marin
- Omics Bioinformatics S.L., Calle Senderos 2, Bajo, Granada 18005, Spain
| | - Guang Xu
- Department of Microbiology, University of Massachusetts, Fernald Hall, Amherst MA 01003, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA
| | - Evan C Palmer-Young
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-Dos-Santos A, Marques CA, Black JA, Damasceno J, McCulloch R, Bartholomeu DC, Jeffares DC. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res 2024; 34:441-453. [PMID: 38604731 PMCID: PMC11067883 DOI: 10.1101/gr.278550.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.
Collapse
Affiliation(s)
- João L Reis-Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| | - Samuel A Pimenta-Carvalho
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Laila V Almeida
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Jeziel Damasceno
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniella C Bartholomeu
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
5
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
6
|
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, Záhonová K, Zimmer SL, Yurchenko V, Butenko A. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics 2023; 24:471. [PMID: 37605127 PMCID: PMC10441713 DOI: 10.1186/s12864-023-09591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435, Moscow, Russia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Sara L Zimmer
- Duluth Campus, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Bartolomé C, Buendía-Abad M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae. MICROBIAL ECOLOGY 2022; 84:856-867. [PMID: 34609533 PMCID: PMC9622509 DOI: 10.1007/s00248-021-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
8
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
9
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
10
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
11
|
Rusman F, Floridia-Yapur N, Ragone PG, Diosque P, Tomasini N. Evidence of hybridization, mitochondrial introgression and biparental inheritance of the kDNA minicircles in Trypanosoma cruzi I. PLoS Negl Trop Dis 2020; 14:e0007770. [PMID: 32004318 PMCID: PMC7015434 DOI: 10.1371/journal.pntd.0007770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/12/2020] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Background Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. Methodology/Principal findings In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones had almost the same ploidy and the DNA content was similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared 66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast, the putative parental stocks shared less than 30% of the mHVR clusters between them. Conclusions/significance The results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and explaining the relationships between these three clones are discussed. Chagas disease, an important public health problem in Latin America, is caused by the parasite Trypanosoma cruzi. Despite being a widely studied parasite, several questions on the biology of genetic exchange remain unanswered. Population genomic studies have inferred meiosis in T. cruzi, but this cellular division mechanism has not been observed in laboratory yet. In addition, previous results suggest that mitochondrial DNA (called kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain and its potential parents to address the mechanisms of genetic exchange at nuclear and mitochondrial levels. We observed that the hybrid strain had heterozygous patterns and DNA content compatible with a meiosis event. Also, we observed that the evolutionary histories of nuclear DNA and kDNA maxicircles were discordant and that the three strains shared identical DNA sequences. Mitochondrial introgression of maxicircle DNA from one genotype to another may explain this observation. In addition, we demonstrated that the hybrid strain shared kDNA minicircles with both parental strains. Our results suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Further research is required to address such phenomena in detail.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Paula G. Ragone
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
- * E-mail:
| |
Collapse
|
12
|
Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol 2020; 3:51. [PMID: 32005933 PMCID: PMC6994608 DOI: 10.1038/s42003-020-0775-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
It is still not understood how honey bee parasite changes the gene expression to adapt to the host environment and how the host simultaneously responds to the parasite infection by modifying its own gene expression. To address this question, we studied a trypanosomatid, Lotmaria passim, which can be cultured in medium and inhabit the honey bee hindgut. We found that L. passim decreases mRNAs associated with protein translation, glycolysis, detoxification of radical oxygen species, and kinetoplast respiratory chain to adapt to the anaerobic and nutritionally poor honey bee hindgut during the infection. After the long term infection, the host appears to be in poor nutritional status, indicated by the increase and decrease of take-out and vitellogenin mRNAs, respectively. Simultaneous gene expression profiling of L. passim and honey bee during infection by dual RNA-seq provided insight into how both parasite and host modify their gene expressions.
Collapse
Affiliation(s)
- Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Jing Lei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
13
|
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet 2019; 15:e1008452. [PMID: 31710597 PMCID: PMC6872171 DOI: 10.1371/journal.pgen.1008452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied-despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.
Collapse
Affiliation(s)
- Megan A. Sloan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Karen Brooks
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Thomas D. Otto
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Mandy J. Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - James A. Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Horáková E, Faktorová D, Kraeva N, Kaur B, Van Den Abbeele J, Yurchenko V, Lukeš J. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J 2019; 287:964-977. [PMID: 31593329 DOI: 10.1111/febs.15083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2 O2 ) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2 O2 . Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2 O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic
| | - Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
16
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
17
|
Liu Q, Lei J, Kadowaki T. Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. Front Cell Infect Microbiol 2019; 9:126. [PMID: 31080782 PMCID: PMC6497781 DOI: 10.3389/fcimb.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Two trypanosomatid species, Lotmaria passim and Crithidia mellificae, have been shown to parasitize honey bees to date. L. passim appears to be more prevalent than C. mellificae and specifically infects the honey bee hindgut. Although the genomic DNA has been sequenced, the effects of infection on honey bee health and colony are poorly understood. To identify the genes that are important for infecting honey bees and to understand their functions, we applied the CRISPR/Cas9 system to establish a method to manipulate L. passim genes. By electroporation of plasmid DNA and subsequent selection by drug, we first established an L. passim clone expressing tdTomato or Cas9. We also successfully disrupted the endogenous miltefosine transporter and tyrosine aminotransferase genes by replacement with drug (hygromycin) resistant gene using the CRISPR/Cas9-induced homology-directed repair pathway. The L. passim clone expressing fluorescent marker, as well as the simple method for editing specific genes, could become useful approaches to understand the underlying mechanisms of honey bee-trypanosomatid parasite interactions.
Collapse
Affiliation(s)
| | | | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
18
|
Double-stranded RNA reduces growth rates of the gut parasite Crithidia mellificae. Parasitol Res 2019; 118:715-721. [DOI: 10.1007/s00436-018-6176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
19
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
20
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|
21
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
22
|
Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol 2018; 34:466-480. [PMID: 29605546 DOI: 10.1016/j.pt.2018.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
Abstract
Trypanosomes and leishmanias are widely known parasites of humans. However, they are just two out of several phylogenetic lineages that constitute the family Trypanosomatidae. Although dixeny - the ability to infect two hosts - is a derived trait of vertebrate-infecting parasites, the majority of trypanosomatids are monoxenous. Like their common ancestor, the monoxenous Trypanosomatidae are mostly parasites or commensals of insects. This review covers recent advances in the study of insect trypanosomatids, highlighting their diversity as well as genetic, morphological and biochemical complexity, which, until recently, was underappreciated. The investigation of insect trypanosomatids is providing an important foundation for understanding the origin and evolution of parasitism, including colonization of vertebrates and the appearance of human pathogens.
Collapse
|