1
|
Silva JP, Corrales WA, Catalán J, Olave FA, González-Mori PI, Alarcón M, Guarnieri T, Aliaga E, Maracaja-Coutinho V, Fiedler JL. Comprehensive Analysis of circRNA Expression and circRNA-miRNA-mRNA Networks in the Ventral Hippocampus of the Rat: Impact of Chronic Stress and Biological Sex. ACS Chem Neurosci 2025; 16:1720-1737. [PMID: 40257053 DOI: 10.1021/acschemneuro.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study provides new insights into how sex and chronic stress influence circRNA expression in the rat ventral hippocampus, a region critical for emotional processing. We identified 206 sex-biased circRNAs and 194 stress-responsive circRNAs, highlighting distinct expression profiles. Parental genes of male circRNAs were primarily enriched in synaptic transmission pathways, while those of female circRNAs were associated with axon guidance, emphasizing sex-specific molecular differences. Chronic stress also triggered miRNA changes unique to each sex, revealing divergent regulatory mechanisms. The identified circRNA-miRNA-mRNA axes, modulated under stress, appear to regulate the translation of numerous potential mRNA targets. In males, stress positively regulated neuroprotective pathways, suggesting a compensatory response to mitigate stress-induced damage. In contrast, females exhibited a broader translational network that favored mRNA expression without distinct pathway-specific actions. However, the smaller repressed network in females─characterized by a higher circRNA-to-miRNA and mRNA ratio─may indicate a more selective and targeted regulatory mechanism, with many interactions linked to anti-inflammatory processes. Coexpression analysis revealed two male-specific modules with altered activity under stress. These were associated with processes such as reticulum stress and actin dynamics, the latter linked to dendritic spine loss and depressive-like behaviors, extensively documented in chronically stressed male rats. Conversely, females displayed an activated stress-responsive module, promoting axon guidance and long-term potentiation, which may contribute to improved cognitive outcomes. Among the identified circRNAs, rno-Gabrg3_0001 emerged as stress-sensitive in males. This circRNA exhibited predicted miRNA binding sites and interactions with proteins involved in vesicle trafficking, forming part of a highly active module enriched in genes related to ion transport and membrane protein localization. Overall, these findings uncover sex-dependent regulatory mechanisms driving transcriptomic changes under chronic stress, deepening our understanding of ventral hippocampal molecular functions. Investigating these regulatory networks, which differentially affect the male and female ventral hippocampus, could inform the development of sex-specific therapeutic strategies for stress-related disorders.
Collapse
Affiliation(s)
- Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Julia Catalán
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Felipe A Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Pablo I González-Mori
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Matías Alarcón
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Tatiana Guarnieri
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Esteban Aliaga
- School of Medícal Technology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3460000, Chile
| | - Vinicius Maracaja-Coutinho
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Advanced Center for Chronic Diseases─ACCDiS, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática─CM2B2, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| |
Collapse
|
2
|
Li Y, Ma A, Wang Y, Guo Q, Wang C, Fu H, Liu B, Ma Q. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Brief Bioinform 2024; 25:bbae369. [PMID: 39082647 PMCID: PMC11289686 DOI: 10.1093/bib/bbae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF-enhancer linkage prediction, and enhancer-gene relation discovery. Application of STREAM to an Alzheimer's disease dataset and a diffuse small lymphocytic lymphoma dataset reveals its ability to identify TF-enhancer-gene relations associated with pseudotime, as well as key TF-enhancer-gene relations and TF cooperation underlying tumor cells.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhong Wang
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Makeeva VS, Dyrkheeva NS, Lavrik OI, Zakian SM, Malakhova AA. Mutant-Huntingtin Molecular Pathways Elucidate New Targets for Drug Repurposing. Int J Mol Sci 2023; 24:16798. [PMID: 38069121 PMCID: PMC10706709 DOI: 10.3390/ijms242316798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.
Collapse
Affiliation(s)
- Vladlena S. Makeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
4
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Diagnostic and prognostic value of the RUNXOR/RUNX1 axis in multiple sclerosis. Neurobiol Dis 2023; 178:106032. [PMID: 36754216 DOI: 10.1016/j.nbd.2023.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The runt-related transcription factor-1 (RUNX1) gene with its lncRNA RUNXOR are recently becoming a research focus in various diseases, specifically immune-related diseases as they are implicated in multiple pathways. Interestingly, their role in multiple sclerosis (MS) remains unstudied. The present study explored the role of RUNXOR/RUNX1 in the development and progression of MS and investigated their possible mechanism of action. We measured the serum expression levels of lncRNA RUNXOR, as well as RUNX1, microtubule associated protein 2 (MAP2), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNAs in 30 healthy controls and 120 MS patients subdivided into 4 groups: 30 clinically isolated syndrome patients, 30 relapsing-remitting MS (RRMS) patients in relapse, 30 RRMS patients in remission and 30 secondary progressive MS patients. Additionally, we measured the serum protein levels of RUNX1, MAP2, NGF, BDNF and interleukin-10 (IL-10). All measured RNA expression levels were markedly downregulated and, consequently, the protein levels of RUNX1, MAP2, NGF, BDNF and IL-10 were significantly decreased in MS patients compared to healthy controls. Moreover, the levels of the measured parameters varied significantly within the MS groups. According to receiver-operating-characteristic (ROC) curve and logistic regression analyses, lncRNA RUNXOR, RUNX1 mRNA and its protein levels were predictors of disease progression, in addition to RUNX1 mRNA exhibiting a diagnostic potential. Altogether, this study suggests the implication of the RUNXOR-RUNX1 axis in MS development, progression, and increased MS-related disability, and highlights the potential utility of the studied parameters as promising diagnostic/prognostic biomarkers for MS.
Collapse
|
6
|
Sevoflurane induces microRNA-18a to delay rat neurodevelopment via suppression of the RUNX1/Wnt/β-catenin axis. Cell Death Dis 2022; 8:404. [PMID: 36182925 PMCID: PMC9526732 DOI: 10.1038/s41420-022-01179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Sevoflurane anesthesia is reported to repress neurogenesis of neural stem cells (NSCs), thereby affecting the brain development, but the underlying mechanism of sevoflurane on the proliferation of NSCs remains unclear. Thus, this study aims to discern the relationship between sevoflurane and NSC proliferation. Bioinformatics tools were employed to predict the expression of microRNA-18a (miR-18a) in 9-day-old neonatal rat hippocampal tissues after sevoflurane treatment and the downstream genes of miR-18a, followed by a series of assays to explore the relationship among miR-18a, runt related transcription factor 1 (RUNX1), and β-catenin in the hippocampal tissues. NSCs were isolated from the hippocampal tissues and subjected to gain-/loss-of-function assays to investigate the interactions among miR-18a, RUNX1, and β-catenin in NSCs and their roles in NSC development. Bioinformatics analysis and experimental results confirmed high expression of miR-18a in rat hippocampal tissues and NSCs after sevoflurane treatment. Next, we found that miR-18a downregulated RUNX1 expression, while RUNX1 promoted NSC proliferation by activating the Wnt/β-catenin signaling pathway. The behavioral experiments also showed that sevoflurane caused nerve injury in rats, whilst RUNX1 overexpression protected rat neurodevelopment. Our findings uncovered that sevoflurane attenuated NSC proliferation via the miR-18a-meidated RUNX1/Wnt/β-catenin pathway, thereby impairing rat neurodevelopment.
Collapse
|
7
|
Mollo N, Aurilia M, Scognamiglio R, Zerillo L, Cicatiello R, Bonfiglio F, Pagano P, Paladino S, Conti A, Nitsch L, Izzo A. Overexpression of the Hsa21 Transcription Factor RUNX1 Modulates the Extracellular Matrix in Trisomy 21 Cells. Front Genet 2022; 13:824922. [PMID: 35356434 PMCID: PMC8960062 DOI: 10.3389/fgene.2022.824922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Down syndrome is a neurodevelopmental disorder frequently characterized by other developmental defects, such as congenital heart disease. Analysis of gene expression profiles of hearts from trisomic fetuses have shown upregulation of extracellular matrix (ECM) genes. The aim of this work was to identify genes on chromosome 21 potentially responsible for the upregulation of ECM genes and to pinpoint any functional consequences of this upregulation. By gene set enrichment analysis of public data sets, we identified the transcription factor RUNX1, which maps to chromosome 21, as a possible candidate for regulation of ECM genes. We assessed that approximately 80% of ECM genes overexpressed in trisomic hearts have consensus sequences for RUNX1 in their promoters. We found that in human fetal fibroblasts with chromosome 21 trisomy there is increased expression of both RUNX1 and several ECM genes, whether located on chromosome 21 or not. SiRNA silencing of RUNX1 reduced the expression of 11 of the 14 ECM genes analyzed. In addition, collagen IV, an ECM protein secreted in high concentrations in the culture media of trisomic fibroblasts, was modulated by RUNX1 silencing. Attenuated expression of RUNX1 increased the migratory capacity of trisomic fibroblasts, which are characterized by a reduced migratory capacity compared to euploid controls.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ferdinando Bonfiglio
- CEINGE-Advanced Biotechnologies, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Pasqualina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Antonella Izzo,
| |
Collapse
|
8
|
Guan W, Xu DW, Ji CH, Wang CN, Liu Y, Tang WQ, Gu JH, Chen YM, Huang J, Liu JF, Jiang B. Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacol Res 2021; 174:105932. [PMID: 34628001 DOI: 10.1016/j.phrs.2021.105932] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
As a widely-known neuropsychiatric disorder, the exact pathogenesis of depression remains elusive. MiRNA-206 (miR-206) is conventionally known as one of the myomiRs and has two forms: miR-206-3p and miR-206-5p. Recently, miR-206 has been demonstrated to regulate the biosynthesis of brain-derived neurotrophic factor (BDNF), a very popular target involved in depression and antidepressant responses. Here we assumed that miR-206 may play a role in depression, and various methods including the chronic social defeat stress (CSDS) model of depression, quantitative real-time reverse transcription PCR, western blotting, immuofluorescence and virus-mediated gene transfer were used together. It was found that CSDS robustly increased the level of miR-206-3p but not miR-206-5p in the hippocampus. Both genetic overexpression of hippocampal miR-206-3p and intranasal administration of AgomiR-206-3p induced not only notable depressive-like behaviors but also significantly decreased hippocampal BDNF signaling cascade and neurogenesis in naïve C57BL/6J mice. In contrast, both genetic knockdown of hippocampal miR-206-3p and intranasal administration of AntagomiR-206-3p produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, it was found that the antidepressant-like effects induced by miR-206-3p inhibition require the hippocampal BDNF-TrkB system. Taken together, hippocampal miR-206-3p participates in the pathogenesis of depression by regulating BDNF biosynthesis and is a feasible antidepressant target.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Da-Wei Xu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University; Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jian-Feng Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
9
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Muskens IS, Li S, Jackson T, Elliot N, Hansen HM, Myint SS, Pandey P, Schraw JM, Roy R, Anguiano J, Goudevenou K, Siegmund KD, Lupo PJ, de Bruijn MFTR, Walsh KM, Vyas P, Ma X, Roy A, Roberts I, Wiemels JL, de Smith AJ. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat Commun 2021; 12:821. [PMID: 33547282 PMCID: PMC7865055 DOI: 10.1038/s41467-021-21064-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Thomas Jackson
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Natalina Elliot
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Priyatama Pandey
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Ritu Roy
- Computational Biology and Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Joaquin Anguiano
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Goudevenou
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Anindita Roy
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA.
| |
Collapse
|
11
|
Pavlinkova G. Molecular Aspects of the Development and Function of Auditory Neurons. Int J Mol Sci 2020; 22:ijms22010131. [PMID: 33374462 PMCID: PMC7796308 DOI: 10.3390/ijms22010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
12
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
13
|
Malgulwar PB, Sharma V, Tomar AS, Verma C, Nambirajan A, Singh M, Suri V, Sarkar C, Sharma MC. Transcriptional co-expression regulatory network analysis for Snail and Slug identifies IL1R1, an inflammatory cytokine receptor, to be preferentially expressed in ST-EPN- RELA and PF-EPN-A molecular subgroups of intracranial ependymomas. Oncotarget 2018; 9:35480-35492. [PMID: 30464804 PMCID: PMC6231457 DOI: 10.18632/oncotarget.26211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
Recent molecular subgrouping of ependymomas (EPN) by DNA methylation profiling has identified ST-EPN-RELA and PF-EPN-A subgroups to be associated with poor outcome. Snail/Slug are cardinal epithelial-to-mesenchymal transcription factors (EMT-TFs) and are overexpressed in several CNS tumors, including EPNs. A systematic analysis of gene-sets/modules co-expressed with Snail and Slug genes using published expression microarray dataset (GSE27279)identified 634 genes for Snail with enriched TGF-β, PPAR and PI3K signaling pathways, and 757 genes for Slug with enriched focal adhesion, ECM-receptor interaction and regulation of actin cytoskeleton related pathways. Of 37 genes commonly expressed with both Snail and Slug, IL1R1, a cytokine receptor of interleukin-1 receptor family, was positively correlated with Snail (r=0.43) and Slug (r=0.51), preferentially expressed in ST-EPN-RELA and PF-EPN-A molecular groups, and enriched for pathways related to inflammation, angiogenesis and glycolysis. IL1R1 expression was fairly specific to EPNs among various CNS tumors analyzed. It also showed significant positive correlation with EMT, stemness and MDSC (myeloid derived suppressor cell) markers. Our study reports IL1R1 as a poor prognostic marker associated with EMT-like phenotype and stemness in EPNs. Our findings emphasize the need to further examine and validate IL1R1 as a novel therapeutic target in aggressive subsets of intracranial EPNs.
Collapse
Affiliation(s)
- Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vikas Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ashutosh Singh Tomar
- Center for Cellular and Molecular Biology-Council of Scientific and Industrial Research (CCMB-CSIR), Hyderabad, Telangana-500007, India
| | - Chaitenya Verma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|