1
|
Muduli C, Choudhary P, Sahoo SN, Mishra SS, Swain P. Immune-oxidative and apoptotic response to titanium dioxide nanoparticle (TiO 2-NP) exposure in an aquatic lower vertebrate, rohu ( Labeo rohita). Nanotoxicology 2025:1-17. [PMID: 40384437 DOI: 10.1080/17435390.2025.2503265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/14/2025] [Accepted: 05/04/2025] [Indexed: 05/20/2025]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are one of the most commercially manufactured and widely applied NPs. However, often TiO2-NPs leak into the environment and make aquatic animals exposure inevitable. Consequently, a deeper comprehension of TiO2-NPs toxicity is utmost important. The 96-hour lethal concentration of TiO2-NP in rohu (Labeo rohita) was 77.49 mg/L. An in-vivo toxicity assessment of TiO2-NP was conducted at sub lethal concentration of 1 mg/L (2%), 2.5 mg/L (5%), and 5 mg/L (10%) at 24 hours post exposure (hpe), 4 days post exposure (dpe), and 14 dpe in an aquatic lower vertebrate, rohu. Quantitative bioaccumulation analysis showed highest TiO2-NPs bioaccumulation in intestine followed by liver, gill, kidney, spleen, and negligible in muscle. TiO2-NP at 5 mg/L concentration induced the immunotoxic response by destabilization of serum lysozyme and antiprotease activity which was further potentiated by increased production of myeloperoxidase, respiratory burst activity leading to higher production of reactive oxygen species that contribute to oxidative stress, inflammation and cellular damage. Molecular study demonstrated that TiO2-NP is recognized and processed by signaling PRR, TLR22 leading to initiation of the downstream immune-signaling cascade and pro-inflammatory cytokines production. The TiO2-NP induced the oxidative stress gene (SOD, CAT, and GPx) expression significantly at 1, 2.5 and 5 mg/L. Nevertheless, apoptotic biomarker (caspase3, BAX and p53) were induced significantly on 14th dpe at 5 mg/L dose exposure. Our study infer that TiO2-NP induced immunotoxic response at higher concentration of 5 mg/L, nevertheless it acts as immunostimulator at lower concentration of 1 mg/L in L. rohita.
Collapse
Affiliation(s)
- Chinmayee Muduli
- Fish Health Management Division (FHMD), ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, Odisha, India
| | - Pushpa Choudhary
- Fish Health Management Division (FHMD), ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, Odisha, India
| | - Satya Narayan Sahoo
- Fish Health Management Division (FHMD), ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, Odisha, India
| | - Sudhansu Sekhar Mishra
- Fish Health Management Division (FHMD), ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, Odisha, India
| | - Priyabrat Swain
- Fish Health Management Division (FHMD), ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W, Zhang Q, Zhang X, Liang H, Lee APW, Shao L, Xiu J. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21:140. [PMID: 37118804 PMCID: PMC10148422 DOI: 10.1186/s12951-023-01899-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/16/2023] [Indexed: 04/30/2023] Open
Abstract
Atherosclerosis is one of the most common types of cardiovascular disease and is driven by lipid accumulation and chronic inflammation in the arteries, which leads to stenosis and thrombosis. Researchers have been working to design multifunctional nanomedicines with the ability to target, diagnose, and treat atherosclerosis, but recent studies have also identified that nanomaterials can cause atherosclerosis. Therefore, this review aims to outline the molecular mechanisms and physicochemical properties of nanomaterials that promote atherosclerosis. By analyzing the toxicological effects of nanomaterials on cells involved in the pathogenesis of atherosclerosis such as vascular endothelial cells, vascular smooth muscle cells and immune cells, we aim to provide new perspectives for the prevention and treatment of atherosclerosis, and raise awareness of nanotoxicology to advance the clinical translation and sustainable development of nanomaterials.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiming Xiu
- Guangdong Medical University, Dongguan, 523808, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinlu Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Alex Pui-Wai Lee
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Jiancheng Xiu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnology 2022; 20:127. [PMID: 35279135 PMCID: PMC8917374 DOI: 10.1186/s12951-022-01343-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle (NP) is an emerging tool applied in the biomedical field. With combination of different materials and adjustment of their physical and chemical properties, nanoparticles can have diverse effects on the organism and may change the treating paradigm of multiple diseases in the future. More and more results show that nanoparticles can function as immunomodulators and some formulas have been approved for the treatment of inflammation-related diseases. However, our current understanding of the mechanisms that nanoparticles can influence immune responses is still limited, and systemic clinical trials are necessary for the evaluation of their security and long-term effects. This review provides an overview of the recent advances in nanoparticles that can interact with different cellular and molecular components of the immune system and their application in the management of inflammatory diseases, which are caused by abnormal immune reactions. This article focuses on the mechanisms of interaction between nanoparticles and the immune system and tries to provide a reference for the future design of nanotechnology for the treatment of inflammatory diseases.
Collapse
|
4
|
Hunt NJ, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Opportunities and Challenges for Nanotherapeutics for the Aging Population. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.832524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotherapeutics utilize the properties of nanomaterials to alter the pharmacology of the drugs and therapies being transported, leading to changes in their biological disposition (absorption, distribution, cellular uptake, metabolism and elimination) and ultimately, their pharmacological effect. This provides an opportunity to optimize the pharmacology of drugs, particularly for those that are dependent on hepatic action. Old age is associated with changes in many pharmacokinetic processes which tend to impair drug efficacy and increase risk of toxicity. While these age-related changes are drug-specific they could be directly addressed using nanotechnology and precision targeting. The benefits of nanotherapeutics needs to be balanced against toxicity, with future use in humans dependent upon the gathering of information about the clearance and long-term safety of nanomaterials.
Collapse
|
5
|
Lundqvist M, Cedervall T. Three Decades of Research about the Corona Around Nanoparticles: Lessons Learned and Where to Go Now. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000892. [PMID: 33107223 DOI: 10.1002/smll.202000892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The research about how a nanoparticle (NP) interacts with a complex biological solution has been conducted, according to the literature, for almost three decades. A significant amount of data has been generated, especially in the last one and a half decade. First, it became its own research field which was later divided into many subresearch fields. This outlook does not aim to be a comprehensive review of the field or any of its subresearch fields. There is too much data published to attempt that. Instead, here it has been tried to highlight what, in the opinion, is the main step taken during these three decades. Thereafter, the weaknesses and end are pointed out with what needs to be the main focus for the future to understand the protein corona formation in the bloodstream, which is a prerequisite for the developing of true target specific drug-delivering nanoparticles.
Collapse
|
6
|
Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles. Sci Rep 2020; 10:1129. [PMID: 31980686 PMCID: PMC6981174 DOI: 10.1038/s41598-020-57943-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
When in contact with biological fluids, nanoparticles dynamically absorb biomolecules like proteins and lipids onto their surface, forming a "corona". This biocorona is a dynamic and complex structure that determines how host cells respond to nanoparticles. Despite the common use of mouse models in pre-clinical and toxicological experiments, the impact of corona formed in mouse serum on the biophysical and biological properties of different size NP has not been thoroughly explored. Furthering the knowledge on the corona formed on NP exposed to mouse serum proteins can help in understanding what role it might have in in vivo studies at systemic, tissue, and cellular levels. To investigate biocorona formation, different sized polystyrene NP were exposed to mouse serum. Our data show a size- and time-dependent protein and lipid corona formation. Several proteins were identified and apolipoproteins were by far the most common group on the NPs surfaces. Moreover, we observed that cholesterol and triglycerides effectively bind to NP emphasizing that proteins are not the only biomolecules with high-affinity binding to nanomaterial surfaces. These results highlight that further knowledge on NP interactions with mouse serum is necessary regarding the common use of this model to predict the in vivo efficiency of NP.
Collapse
Affiliation(s)
- Tânia Lima
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Manuel Vilanova
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tommy Cedervall
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. Curr Pharm Des 2019; 25:3960-3982. [DOI: 10.2174/1381612825666190926161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles have gained ground in several fields. However, it is important to consider their potentially
hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally
in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors,
proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or
suppression). Here, we present different studies that have been carried out to evaluate the response of immune
cells in the presence of nanoparticles and their possible applications in the biomedical field.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Martín F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Gulin-Sarfraz T, Jonasson S, Wigenstam E, von Haartman E, Bucht A, Rosenholm JM. Feasibility Study of Mesoporous Silica Particles for Pulmonary Drug Delivery: Therapeutic Treatment with Dexamethasone in a Mouse Model of Airway Inflammation. Pharmaceutics 2019; 11:pharmaceutics11040149. [PMID: 30939753 PMCID: PMC6523761 DOI: 10.3390/pharmaceutics11040149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Diseases in the respiratory tract rank among the leading causes of death in the world, and thus novel and optimized treatments are needed. The lungs offer a large surface for drug absorption, and the inhalation of aerosolized drugs are a well-established therapeutic modality for local treatment of lung conditions. Nanoparticle-based drug delivery platforms are gaining importance for use through the pulmonary route. By using porous carrier matrices, higher doses of especially poorly soluble drugs can be administered locally, reducing their side effects and improving their biodistribution. In this study, the feasibility of mesoporous silica particles (MSPs) as carriers for anti-inflammatory drugs in the treatment of airway inflammation was investigated. Two different sizes of particles on the micron and nanoscale (1 µm and 200 nm) were produced, and were loaded with dexamethasone (DEX) to a loading degree of 1:1 DEX:MSP. These particles were further surface-functionalized with a polyethylene glycol–polyethylene imine (PEG–PEI) copolymer for optimal aqueous dispersibility. The drug-loaded particles were administered as an aerosol, through inhalation to two different mice models of neutrophil-induced (by melphalan or lipopolysaccharide) airway inflammation. The mice received treatment with either DEX-loaded MSPs or, as controls, empty MSPs or DEX only; and were evaluated for treatment effects 24 h after exposure. The results show that the MEL-induced airway inflammation could be treated by the DEX-loaded MSPs to the same extent as free DEX. Interestingly, in the case of LPS-induced inflammation, even the empty MSPs significantly down-modulated the inflammatory response. This study highlights the potential of MSPs as drug carriers for the treatment of diseases in the airways.
Collapse
Affiliation(s)
- Tina Gulin-Sarfraz
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
- School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Sofia Jonasson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
| | - Elisabeth Wigenstam
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
| | - Eva von Haartman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Anders Bucht
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
- Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, 90182 Umeå, Sweden.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
9
|
Abukabda AB, McBride CR, Batchelor TP, Goldsmith WT, Bowdridge EC, Garner KL, Friend S, Nurkiewicz TR. Group II innate lymphoid cells and microvascular dysfunction from pulmonary titanium dioxide nanoparticle exposure. Part Fibre Toxicol 2018; 15:43. [PMID: 30413212 PMCID: PMC6230229 DOI: 10.1186/s12989-018-0280-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/24/2018] [Indexed: 01/16/2023] Open
Abstract
Background The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. Methods Female, virgin, Sprague-Dawley rats (8–12 weeks) were exposed to 100 μg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. Results Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. Conclusions These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alaeddin Bashir Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Carroll Rolland McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas Paul Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William Travis Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth Compton Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista Lee Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Robert Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
10
|
Fraser JA, Kemp S, Young L, Ross M, Prach M, Hutchison GR, Malone E. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci Rep 2018; 8:7506. [PMID: 29760395 PMCID: PMC5951814 DOI: 10.1038/s41598-018-25854-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophil surveillance is central to nanoparticle clearance. Silver nanoparticles (AgNP) have numerous uses, however conflicting evidence exists as to their impact on neutrophils and whether they trigger damaging inflammation. Neutrophil’s importance in innate defence and regulating immune networks mean it’s essential we understand AgNP’s impact on neutrophil function. Human neutrophil viability following AgNP or Ag Bulk treatment was analysed by flow cytometry and AnV/PI staining. Whilst AgNP exposure did not increase the total number of apoptotic neutrophils, the number of late apoptotic neutrophils was increased, suggesting AgNP increase transit through apoptosis. Mature (CD16bright/CD62Lbright), immature (CD16dim/CD62Lbright) and apoptotic (CD16dim/CD62Ldim) neutrophil populations were evident within isolated neutrophil preparations. AgNP exposure significantly reduced CD62L staining of CD16bright/CD62Lbright neutrophils, and increased CD16 staining of CD16dim/CD62Lbright populations, suggesting AgNPs trigger neutrophil activation and maturation, respectively. AgNP exposure dramatically increased IL-8, yet not classical pro-inflammatory cytokine release, suggesting AgNP triggers neutrophil activation, without pro-inflammation or damaging, necrotic cell death. For the first time, we show AgNPs differentially affect distinct sub-populations of circulating human neutrophils; activating mature neutrophils with the emergence of CD16bright/CD62Ldim neutrophils. This may stimulate particle clearance without harmful inflammation, challenging previous assumptions that silver nanomaterials induce neutrophil toxicity and damaging inflammatory responses.
Collapse
Affiliation(s)
- Jennifer A Fraser
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK.
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Lesley Young
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Morag Prach
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Eva Malone
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK.
| |
Collapse
|