1
|
Chari A, Hernan AE, Mahoney JM, Thornton R, Tahir MZ, Tisdall MM, Scott RC. Single unit-derived connectivity networks in tuberous sclerosis complex reveal propensity for network hypersynchrony driven by tuber-tuber interactions. Sci Rep 2024; 14:31654. [PMID: 39738230 PMCID: PMC11686100 DOI: 10.1038/s41598-024-80634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy. However, at the level of functional networks (cross-correlation), there is a much larger propensity towards hypersynchrony of tuber-tuber neurons than in neurons from any other anatomical site. This suggests that tubers are the primary drivers of adverse outcomes in children with tuberous sclerosis.
Collapse
Affiliation(s)
- Aswin Chari
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Amanda E Hernan
- Division of Neuroscience, Nemours Children's Hospital, 1600 Rockland Road, Wilmington, Delaware, DE, 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware (Newark, Delaware, USA
| | | | - Rachel Thornton
- Department of Clinical Neurophysiology, Addenbrookes Hopsital, Cambridge, UK
| | - M Zubair Tahir
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Martin M Tisdall
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Rod C Scott
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Division of Neuroscience, Nemours Children's Hospital, 1600 Rockland Road, Wilmington, Delaware, DE, 19803, USA.
- Department of Psychological and Brain Sciences, University of Delaware (Newark, Delaware, USA.
| |
Collapse
|
2
|
Ouardouz M, Jasinski P, Khalife M, Mahoney JM, Hernan AE, Scott RC. Disrupted Hippocampal-Prefrontal Networks in a Rat Model of Fragile X Syndrome: A Study Linking Neural Dynamics to Autism-Like Behavioral Impairments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.617900. [PMID: 39464036 PMCID: PMC11507762 DOI: 10.1101/2024.10.15.617900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X Syndrome (FXS) is associated with autism spectrum disorder (ASD) symptoms that are associated with cognitive, learning, and behavioral challenges. We investigated how known molecular disruptions in the Fmr1 knockout (FMR-KO) rat model of FXS negatively impact hippocampal-prefrontal cortex (H-PFC) neural network activity and consequent behavior. Methods FMR-KO and control rats underwent a battery of behavioral tests assessing sociability, memory, and anxiety. Single-unit electrophysiology recordings were then conducted to measure patterns of neural activity in H-PFC circuit. Advanced mathematical models were used to characterize the patterns that were then compared between groups using generalized linear mixed models. Results FMR-KO rats demonstrated significant behavioral deficits in sociability, spatial learning, and anxiety, aligning with symptoms of ASD. At the neural level, these rats exhibited abnormal firing patterns in the H-PFC circuit that is critical for learning, memory, and social behavior. The neural networks in FMR-KO rats were also less densely connected and more fragmented, particularly in hippocampal-PFC correlated firing. These findings suggest that disruptions in neural network dynamics underlie the observed behavioral impairments in FMR-KO rats. Conclusion FMR-KO significantly disrupts several characteristics of action potential firing in the H-PFC network, leading to deficits in social behavior, memory, and anxiety, as seen in FXS. This disruption is characterized by less organized and less resilient hippocampal-PFC networks. These findings suggest that therapeutic strategies aimed at normalizing neural dynamics, such as with brain stimulation, could potentially improve behavior and cognitive functions in autistic individuals. HIGHLIGHTS Fragile X Syndrome is associated with autism, cognitive challenges and anxietyThe loss of Fmr1 protein disrupts processes involved in building neural networksThe consequence is abnormal neural dynamics in hippocampal-prefrontal cortex networksNormalization of dynamics could improve outcomes in FXS and ASD.
Collapse
|
3
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
4
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
5
|
Nair KP, Salaka RJ, Srikumar BN, Kutty BM, Rao BSS. Enriched environment rescues impaired sleep-wake architecture and abnormal neural dynamics in chronic epileptic rats. Neuroscience 2022; 495:97-114. [DOI: 10.1016/j.neuroscience.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
6
|
Sarmashghi M, Jadhav SP, Eden U. Efficient spline regression for neural spiking data. PLoS One 2021; 16:e0258321. [PMID: 34644315 PMCID: PMC8513896 DOI: 10.1371/journal.pone.0258321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
Point process generalized linear models (GLMs) provide a powerful tool for characterizing the coding properties of neural populations. Spline basis functions are often used in point process GLMs, when the relationship between the spiking and driving signals are nonlinear, but common choices for the structure of these spline bases often lead to loss of statistical power and numerical instability when the signals that influence spiking are bounded above or below. In particular, history dependent spike train models often suffer these issues at times immediately following a previous spike. This can make inferences related to refractoriness and bursting activity more challenging. Here, we propose a modified set of spline basis functions that assumes a flat derivative at the endpoints and show that this limits the uncertainty and numerical issues associated with cardinal splines. We illustrate the application of this modified basis to the problem of simultaneously estimating the place field and history dependent properties of a set of neurons from the CA1 region of rat hippocampus, and compare it with the other commonly used basis functions. We have made code available in MATLAB to implement spike train regression using these modified basis functions.
Collapse
Affiliation(s)
- Mehrad Sarmashghi
- Systems Engineering/Systems Engineering/Boston University, Boston, Massachusetts, United States of America
| | - Shantanu P. Jadhav
- Psychology/Neuroscience/Brandeis University, Waltham, Massachusetts, United States of America
| | - Uri Eden
- Mathematics and Statistics/Mathematics and Statistics/Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Scott RC. Brains, complex systems and therapeutic opportunities in epilepsy. Seizure 2021; 90:155-159. [PMID: 33582003 DOI: 10.1016/j.seizure.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of epilepsy remains extremely challenging for the thirty percent of people that do not become seizure free. This is despite the introduction of multiple new drugs over that last several decades, highlighting the need for new approaches to identifying novel therapeutic strategies. Conceptualizing the brain as a complex adaptive system and applying the tools that are used in addressing such systems provides an opportunity for expanding the space in which to search for new therapies. Epilepsy has long been considered a network disease at the level of whole brain connectivity, but the application of the concepts to gene and protein expression networks as well as to the dynamic behaviors of microcircuits has been underexplored. These levels of the brain complex adaptive system will be reviewed and a case made for the epilepsy community to embrace these concepts in order to reap to enormous potential rewards.
Collapse
Affiliation(s)
- Rod C Scott
- University of Vermont, 95 Carrigan Drive, Burlington, VT, 05405, United States; University of Vermont Medical Center, United States; Great Ormond Street Hospital for Children NHS Trust, United Kingdom.
| |
Collapse
|
8
|
Zhu X, Grace AA. Prepubertal Environmental Enrichment Prevents Dopamine Dysregulation and Hippocampal Hyperactivity in MAM Schizophrenia Model Rats. Biol Psychiatry 2021; 89:298-307. [PMID: 33357630 PMCID: PMC7927755 DOI: 10.1016/j.biopsych.2020.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder with a progressive, prolonged course. Early prevention for SCZ is promising but overall lacks support from preclinical evidence. Previous studies have tested environmental enrichment (EE) in certain models of SCZ and discovered a broadly beneficial effect in preventing behavioral abnormalities relevant, yet not specific, to the disorder. Nonetheless, whether EE can prevent dopamine (DA) dysregulation, a hallmark of psychosis and SCZ, had not been tested. METHODS Using the MAM (methylazoxymethanol acetate) rat model of schizophrenia and saline-treated control animals, we investigated the long-term electrophysiological effects of prepubertal (postnatal day 21-40) EE on DA neurons, pyramidal neurons in the ventral hippocampus, and projection neurons in the basolateral amygdala. Anxiety-related behaviors in the elevated plus maze and locomotor responses to amphetamine were also analyzed. RESULTS Prepubertal EE prevented the increased population activity of DA neurons and the associated increase in locomotor response to amphetamine. Prepubertal EE also prevented hyperactivity in the ventral hippocampus but did not prevent hyperactivity in the basolateral amygdala. Anxiety-like behaviors in MAM rats were not ameliorated by prepubertal exposure to EE. CONCLUSIONS Twenty-day prepubertal EE is sufficient to prevent DA hyperresponsivity in the MAM model, measured by electrophysiological recordings and locomotor response to amphetamine. This effect is potentially mediated by normalizing excessive firing in the ventral hippocampus without affecting anxiety-like behaviors and basolateral amygdala firing. This study identified EE as a useful preventative approach that may protect against the pathophysiological development of SCZ.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Hernan AE, Mahoney JM, Curry W, Mawe S, Scott RC. Fine Spike Timing in Hippocampal-Prefrontal Ensembles Predicts Poor Encoding and Underlies Behavioral Performance in Healthy and Malformed Brains. Cereb Cortex 2020; 31:147-158. [PMID: 32860415 DOI: 10.1093/cercor/bhaa216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022] Open
Abstract
Spatial working memory (SWM) is a central cognitive process during which the hippocampus and prefrontal cortex (PFC) encode and maintain spatial information for subsequent decision-making. This occurs in the context of ongoing computations relating to spatial position, recall of long-term memory, attention, among many others. To establish how intermittently presented information is integrated with ongoing computations we recorded single units, simultaneously in hippocampus and PFC, in control rats and those with a brain malformation during performance of an SWM task. Neurons that encode intermittent task parameters are also well modulated in time and incorporated into a functional network across regions. Neurons from animals with cortical malformation are poorly modulated in time, less likely to encode task parameters, and less likely to be integrated into a functional network. Our results implicate a model in which ongoing oscillatory coordination among neurons in the hippocampal-PFC network describes a functional network that is poised to receive sensory inputs that are then integrated and multiplexed as working memory. The background temporal modulation is systematically altered in disease, but the relationship between these dynamics and behaviorally relevant firing is maintained, thereby providing potential targets for stimulation-based therapies.
Collapse
Affiliation(s)
- Amanda E Hernan
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA.,Department of Computer Science, University of Vermont, Burlington VT 05401, USA
| | - Willie Curry
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - Seamus Mawe
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA.,Neurosciences Unit University College London, Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
10
|
Kim MJ, Yum MS, Jo Y, Lee M, Kim EJ, Shim WH, Ko TS. Delayed Functional Networks Development and Altered Fast Oscillation Dynamics in a Rat Model of Cortical Malformation. Front Neurosci 2020; 14:711. [PMID: 32973422 PMCID: PMC7461924 DOI: 10.3389/fnins.2020.00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 11/13/2022] Open
Abstract
Malformations of cortical development (MCD) is associated with a wide range of developmental delay and drug resistant epilepsy in children. By using resting-state functional magnetic resonance imaging (RS-fMRI) and event-related spectral perturbation (ERSP) of cortical electroencephalography (EEG) data, we tried to investigate the neural changes of spatiotemporal functional connectivity (FC) and fast oscillation (FO) dynamics in a rat model of methylazoxymethanol (MAM)-induced MCD. A total of 28 infant rats with prenatal exposure to MAM and those of age matched 28 controls with prenatal saline exposure were used. RS-fMRI were acquired at postnatal day 15 (P15) and 29 (P29), and correlation coefficient analysis of eleven region of interests (ROI) was done to find the differences of functional networks between four groups. Two hour-cortical EEGs were also recorded at P15 and P29 and the ERSP of gamma (30–80 Hz) and ripples (80–200 Hz) were analyzed. The rats with MCD showed significantly delayed development of superior colliculus-brainstem network compared to control rats at P15. In contrast to marked maturation of default mode network (DMN) in controls from P15 to P29, there was no clear development in MCD rats. The MCD rats showed significantly higher cortical gamma and ripples-ERSP at P15 and lower cortical ripples-ERSP at P29 than those of control rats. This study demonstrated delayed development of FC and altered cortical FO dynamics in rats with malformed brain. The results should be further investigated in terms of the epileptogenesis and cognitive dysfunction in patients with MCD.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngheun Jo
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jin Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Ewell L. Disrupted Spatial Maps in Epilepsy Highlight the Importance of Timing in Neural Codes. Epilepsy Curr 2020; 20:160-161. [PMID: 32345042 PMCID: PMC7281898 DOI: 10.1177/1535759720919682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Breakdown of Spatial Coding and Interneuron Synchronization in Epileptic
Mice Shuman T, Aharoni D, Cai DJ, et al. Nat Neurosci. 2020;23:229-238.
doi:10.1038/s41593-019-0559-0. Temporal lobe epilepsy causes severe cognitive deficits, but the circuit mechanisms
remain unknown. Interneuron death and reorganization during epileptogenesis may
disrupt the synchrony of hippocampal inhibition. To test this, we simultaneously
recorded from the CA1 and dentate gyrus in pilocarpine-treated epileptic mice with
silicon probes during head-fixed virtual navigation. We found desynchronized
interneuron firing between the CA1 and dentate gyrus in epileptic mice. Since
hippocampal interneurons control information processing, we tested whether CA1 spatial
coding was altered in this desynchronized circuit, using a novel wire-free miniscope.
We found that CA1 place cells in epileptic mice were unstable and completely remapped
across a week. This spatial instability emerged around 6 weeks after status
epilepticus, well after the onset of chronic seizures and interneuron death. Finally,
CA1 network modeling showed that desynchronized inputs can impair the precision and
stability of CA1 place cells. Together, these results demonstrate that temporally
precise intrahippocampal communication is critical for spatial processing.
Collapse
|
12
|
Dabaghian Y. Through synapses to spatial memory maps via a topological model. Sci Rep 2019; 9:572. [PMID: 30679520 PMCID: PMC6345962 DOI: 10.1038/s41598-018-36807-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Various neurophysiological and cognitive functions are based on transferring information between spiking neurons via a complex system of synaptic connections. In particular, the capacity of presynaptic inputs to influence the postsynaptic outputs–the efficacy of the synapses–plays a principal role in all aspects of hippocampal neurophysiology. However, a direct link between the information processed at the level of individual synapses and the animal’s ability to form memories at the organismal level has not yet been fully understood. Here, we investigate the effect of synaptic transmission probabilities on the ability of the hippocampal place cell ensembles to produce a cognitive map of the environment. Using methods from algebraic topology, we find that weakening synaptic connections increase spatial learning times, produce topological defects in the large-scale representation of the ambient space and restrict the range of parameters for which place cell ensembles are capable of producing a map with correct topological structure. On the other hand, the results indicate a possibility of compensatory phenomena, namely that spatial learning deficiencies may be mitigated through enhancement of neuronal activity.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
O'Reilly KC, Levy ERJ, Patino AV, Perica MI, Fenton AA. Sub-circuit alterations in dorsal hippocampus structure and function after global neurodevelopmental insult. Brain Struct Funct 2018; 223:3543-3556. [PMID: 29951917 PMCID: PMC6278823 DOI: 10.1007/s00429-018-1704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Patients with neuropsychiatric and neurological disorders often express limbic circuit abnormalities and deficits in information processing. While these disorders appear to have diverse etiologies, their common features suggest neurodevelopmental origins. Neurodevelopment is a prolonged process of diverse events including neurogenesis/apoptosis, axon pathfinding, synaptogenesis, and pruning, to name a few. The precise timing of the neurodevelopmental insult to these processes likely determines the resulting functional outcome. We used the epilepsy and schizophrenia-related gestational day 17 methylazoxymethanol acetate model to examine the impact of this timed neurodevelopmental insult on principal cell morphology and synaptic network function of the dorsal hippocampus (dHPC) circuit. Our observed structural and functional alterations in dHPC are compartment specific, indicating that adverse global exposure during gestation can produce specific alterations and distort information processing in neural circuits that underlie cognitive abilities.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Dr, New York, NY, 10032, USA.
| | - Eliott R J Levy
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Alejandra V Patino
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Maria I Perica
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - André A Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Neuroscience Institute at the New York University Langone Medical Center, New York, NY, 10016, USA.
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Neuroscience, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|