1
|
Ham SY, Chun JY, Song KH, Kang CK, Park JS, Jo HB, Ryu CM, Choi Y, Choi SJ, Lee E, Choe PG, Moon SM, Park WB, Bang J, Park SW, Park KU, Kim NJ, Oh MD, Kim ES, Kim HB. Limited impact of bacterial virulence on early mortality risk factors in Acinetobacter baumannii bacteremia observed in a Galleria mellonella model. Sci Rep 2024; 14:14960. [PMID: 38942780 PMCID: PMC11213897 DOI: 10.1038/s41598-024-65940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Acinetobacter baumannii (AB) has emerged as a major pathogen in vulnerable and severely ill patients. It remains unclear whether early mortality (EM) due to AB bacteremia is because of worse clinical characteristics of the infected patients or the virulence of the pathogen. In this study, we aimed to investigate the effect of AB virulence on EM due to bacteremia. This retrospective study included 138 patients with AB bacteremia (age: ≥ 18 years) who were admitted to a tertiary care teaching hospital in South Korea between 2015 and 2019. EM was defined as death occurring within 7 days of bacteremia onset. The AB clinical isolates obtained from the patients' blood cultures were injected into 15 Galleria mellonella larvae each, which were incubated for 5 days. Clinical isolates were classified into high- and low-virulence groups based on the number of dead larvae. Patients' clinical data were combined and subjected to multivariate Cox regression analyses to identify the risk factors for EM. In total, 48/138 (34.8%) patients died within 7 days of bacteremia onset. The Pitt bacteremia score was the only risk factor associated with EM. In conclusion, AB virulence had no independent effect on EM in patients with AB bacteremia.
Collapse
Affiliation(s)
- Sin Young Ham
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Internal Medicine, Korea Veterans Hospital, Seoul, Republic of Korea
| | - June Young Chun
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Bum Jo
- Division of Infectious Diseases, Department of Internal Medicine, Incheon Sejong Hospital, Incheon, Republic of Korea
| | - Choong-Min Ryu
- Infection Disease Research Center, KRIBB, Daejeon, Republic of Korea
| | - Yunsang Choi
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Seong Jin Choi
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Boramae Hospital, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Song Mi Moon
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihwan Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Boramae Hospital, Seoul, Republic of Korea
| | - Sang-Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Boramae Hospital, Seoul, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hong Bin Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Altharawi A, Alqahatani SM, Alanazi MM, Tahir Ul Qamar M. Unveiling MurE ligase potential inhibitors for treating multi-drug resistant Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2358-2368. [PMID: 37099644 DOI: 10.1080/07391102.2023.2204499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen with ability to cause serious infection such as bacteremia, ventilator associated pneumonia, and wound infections. As strains of A. baumannii are resistant to almost all clinically used antibiotics and with the emergence of carbapenems resistant phenotypes warrants the search for novel antibiotics. Considering this, herein, a series of computer aided drug designing approach was utilized to search novel chemical scaffolds that bind stronger to MurE ligase enzyme of A. baumannii, which is involved peptidoglycan synthesis. The work identified LAS_22461675, LAS_34000090 and LAS_51177972 compounds as promising binding molecules with MurE enzyme having binding energy score of -10.5 kcal/mol, -9.3 kcal/mol and -8.6 kcal/mol, respectively. The compounds were found to achieve docked inside the MurE substrate binding pocket and established close distance chemical interactions. The interaction energies were dominated by van der Waals and less contributions were seen from hydrogen bonding energy. The dynamic simulation assay predicted the complexes stable with no major global and local changes noticed. The docked stability was also validated by MM/PBSA and MM/GBSA binding free energy methods. The net MM/GBSA binding free energy of LAS_22461675 complex, LAS_34000090 complex and LAS_51177972 complex is -26.25 kcal/mol, -27.23 kcal/mol and -29.64 kcal/mol, respectively. Similarly in case of MM-PBSA, the net energy value was in following order; LAS_22461675 complex (-27.67 kcal/mol), LAS_34000090 complex (-29.94 kcal/mol) and LAS_51177972 complex (-27.32 kcal/mol). The AMBER entropy and WaterSwap methods also confirmed stable complexes formation. Further, molecular features of the compounds were determined that predicted compounds to have good druglike properties and pharmacokinetic favorable. The study concluded the compounds to good candidates to be tested by in vivo and in vitro experimental assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahatani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Pakistan
| |
Collapse
|
3
|
Nithichanon A, Kewcharoenwong C, Da-oh H, Surajinda S, Khongmee A, Koosakunwat S, Wren BW, Stabler RA, Brown JS, Lertmemongkolchai G. Acinetobacter nosocomialis Causes as Severe Disease as Acinetobacter baumannii in Northeast Thailand: Underestimated Role of A. nosocomialis in Infection. Microbiol Spectr 2022; 10:e0283622. [PMID: 36227120 PMCID: PMC9769887 DOI: 10.1128/spectrum.02836-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
Infections by Acinetobacter species are recognized as a serious global threat due to causing severe disease and their high levels of antibiotic resistance. Acinetobacter baumannii is the most prevalent pathogen in the genus, but infection by Acinetobacter nosocomialis has been reported widely. Diagnosis of patients with A. baumannii infection is often misdiagnosed with other Acinetobacter species, especially A. nosocomialis. This study investigated whether there were significant differences in clinical outcomes between patients infected with A. baumannii versus A. nosocomialis in Northeast Thailand, and to characterize serological responses to infection with these pathogens. The results show that A. baumannii had higher levels of multidrug resistance. Despite this, clinical outcomes for infection with A. baumannii or A. nosocomialis were similar with mortalities of 33% and 36%, respectively. Both pathogens caused community-acquired infections (A. baumannii 35% and A. nosocomialis 29% of cases). Plasma from uninfected healthy controls contained IgG antibody that recognized both organisms, and infected patients did not show a significantly enhanced antibody response from the first week versus 2 weeks later. Finally, the patterns of antigen recognition for plasma IgG were similar for patients infected with A. baumannii or A. nosocomialis infection, and distinct to the pattern for patients infected with non-Acinetobacter. In conclusion, our data revealed that infection with A. nosocomialis was associated with a similarly high level of mortality as infection with A. baumannii, the high rate of community-acquired infection and antibodies in uninfected individuals suggesting that there is significant community exposure to both pathogens. IMPORTANCE Bacterial infections by Acinetobacter species are global threats due to their severity and high levels of antibiotic resistance. A. baumannii is the most common pathogen in the genus; however, infection by A. nosocomialis has also been widely reported but is thought to be less severe. In this study, we have prospectively investigated 48 reported cases of A. baumannii infection in Northeast Thailand, and characterized the serological responses to infection. We found that 14 (29%) of these infections were actually caused by A. nosocomialis. Furthermore, the incidence of antibiotic resistance among A. nosocomialis strains, APACHE II scores, and mortality for patients infected with A. nosocomialis were much higher than published data. Both A. baumannii and A. nosocomialis had unexpectedly mortality rates of over 30%, and both pathogens caused a high rate of community-acquired infections. Importantly, background antibodies in uninfected individuals suggest significant community exposure to both pathogens in the environment.
Collapse
Affiliation(s)
- Arnone Nithichanon
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Hudadini Da-oh
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sirithorn Surajinda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aranya Khongmee
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, London, United Kingdom
| | - Richard A. Stabler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Profiling Antibiotic Resistance in Acinetobacter calcoaceticus. Antibiotics (Basel) 2022; 11:antibiotics11070978. [PMID: 35884232 PMCID: PMC9312123 DOI: 10.3390/antibiotics11070978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Acinetobacter spp. have emerged as troublesome pathogens due to their multi-drug resistance. The majority of the work to date has focused on the antibiotic resistance profile of Acinetobacter baumannii. Although A. calcoaceticus strains are isolated in the hospital setting, limited information is available on these closely related species. Methods & Results: The computational analysis of antibiotic resistance genes in 1441 Acinetobacter genomes revealed that A. calcoaceticus harbored a similar repertoire of multi-drug efflux pump and beta-lactam resistance genes as A. baumannii, leading us to speculate that A. calcoaceticus would have a similar antibiotic resistance profile to A. baumannii. To profile the resistance patterns of A. calcoaceticus, strains were examined by Kirby−Bauer disk diffusion and phenotypic microarrays. We found that Acinetobacter strains were moderately to highly resistant to certain antibiotics within fluoroquinolones, aminoglycosides, tetracyclines, and other antibiotic classes. These data indicate that A. calcoaceticus has a similar antibiotic resistance profile as A. baumannii ATCC 19606. We also identified that all Acinetobacter species were sensitive to 5-fluoroorotic acid, novobiocin, and benzethonium chloride. Conclusion: Collectively, these data provide new insights into the antibiotic resistance in A. calcoaceticus and identify several antibiotics that could be beneficial in treating Acinetobacter infections.
Collapse
|
5
|
Genetic Resistance Determinants in Clinical Acinetobacter pittii Genomes. Antibiotics (Basel) 2022; 11:antibiotics11050676. [PMID: 35625320 PMCID: PMC9137642 DOI: 10.3390/antibiotics11050676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to β-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.
Collapse
|
6
|
Ullah A, Ahmad S, Ismail S, Afsheen Z, Khurram M, Tahir ul Qamar M, AlSuhaymi N, Alsugoor MH, Allemailem KS. Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10961. [PMID: 34682706 PMCID: PMC8535705 DOI: 10.3390/ijerph182010961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Morganella morganii is one of the main etiological agents of hospital-acquired infections and no licensed vaccine is available against the pathogen. Herein, we designed a multi-epitope-based vaccine against M. morganii. Predicted proteins from fully sequenced genomes of the pathogen were subjected to a core sequences analysis, followed by the prioritization of non-redundant, host non-homologous and extracellular, outer membrane and periplasmic membrane virulent proteins as vaccine targets. Five proteins (TonB-dependent siderophore receptor, serralysin family metalloprotease, type 1 fimbrial protein, flagellar hook protein (FlgE), and pilus periplasmic chaperone) were shortlisted for the epitope prediction. The predicted epitopes were checked for antigenicity, toxicity, solubility, and binding affinity with the DRB*0101 allele. The selected epitopes were linked with each other through GPGPG linkers and were joined with the cholera toxin B subunit (CTBS) to boost immune responses. The tertiary structure of the vaccine was modeled and blindly docked with MHC-I, MHC-II, and Toll-like receptors 4 (TLR4). Molecular dynamic simulations of 250 nanoseconds affirmed that the designed vaccine showed stable conformation with the receptors. Further, intermolecular binding free energies demonstrated the domination of both the van der Waals and electrostatic energies. Overall, the results of the current study might help experimentalists to develop a novel vaccine against M. morganii.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Muhammad Khurram
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | | | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Wolf S, Barth-Jakschic E, Birkle K, Bader B, Marschal M, Liese J, Peter S, Oberhettinger P. Acinetobacter geminorum sp. nov., isolated from human throat swabs. Int J Syst Evol Microbiol 2021; 71. [PMID: 34633923 PMCID: PMC8604166 DOI: 10.1099/ijsem.0.005018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Two isolates of a non-fermenting, Gram-negative bacterial strain were cultured from two throat swabs that were taken from a pair of twins during routine microbiological surveillance screening. As these isolates could not be unambiguously identified using routine diagnostic methods, whole genome sequencing was performed followed by phylogenetic analysis based on the rpoB gene sequence and by whole genome datasets. The two strains compose a separate branch within the clade formed by the Acinetobacter calcoaceticus–baumannii (ACB) complex with Acinetobacter pittii CIP 70.29T as the most closely related species. The average nucleotide identity compared to all other species of the ACB complex was below 94.2% and digital DNA–DNA hybridization values were less than 60%. Biochemical characteristics confirm affiliation to the ACB complex with some specific phenotypic differences. As a result of the described data, a new Acinetobacter species is introduced, for which the name Acinetobacter geminorum sp. nov. is proposed. The type strain is J00019T with a G+C DNA content of 38.8 mol% and it is deposited in the DSMZ Germany (DSM 111094T) and CCUG Sweden (CCUG 74625T).
Collapse
Affiliation(s)
- Sophia Wolf
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Elisabeth Barth-Jakschic
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Karolin Birkle
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Baris Bader
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Jan Liese
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| | - Philipp Oberhettinger
- Institute of Medical Microbiology and Hygiene, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Govender R, Amoah ID, Kumari S, Bux F, Stenström TA. Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:213-225. [PMID: 33378222 DOI: 10.1080/10934529.2020.1865747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
9
|
Castro-Jaimes S, Bello-López E, Velázquez-Acosta C, Volkow-Fernández P, Lozano-Zarain P, Castillo-Ramírez S, Cevallos MA. Chromosome Architecture and Gene Content of the Emergent Pathogen Acinetobacter haemolyticus. Front Microbiol 2020; 11:926. [PMID: 32670207 PMCID: PMC7326120 DOI: 10.3389/fmicb.2020.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.
Collapse
Affiliation(s)
- Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Elena Bello-López
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Patricia Lozano-Zarain
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Angel Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
10
|
Genetic Diversity of Imipenem-Resistant Acinetobacter baumannii Infections at an Intensive Care Unit. Crit Care Res Pract 2020; 2020:3290316. [PMID: 32148955 PMCID: PMC7054769 DOI: 10.1155/2020/3290316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction. Imipenem-resistant Acinetobacter baumannii (IRAB) represents a major clinical threat. Dissemination in critical care areas necessitates effective action measures including genotyping tools to study the clonality of these strains and trace their origin. The main aim of this study is to assess the genetic relatedness between IRAB isolates in our institution intensive care units (ICU) which are at a particular risk of outbreaks.
Collapse
|
11
|
Cosgaya C, Ratia C, Marí-Almirall M, Rubio L, Higgins PG, Seifert H, Roca I, Vila J. In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group. Front Microbiol 2019; 10:2429. [PMID: 31708900 PMCID: PMC6821683 DOI: 10.3389/fmicb.2019.02429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/08/2019] [Indexed: 01/30/2023] Open
Abstract
The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined.
Collapse
Affiliation(s)
- Clara Cosgaya
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | | | - Laia Rubio
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Ignasi Roca
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Abstract
Acinetobacter species have emerged as one of the most clinically important pathogens. The phenotypic techniques which are currently available are insufficient in accurately identifying and differentiating the closely related and clinically important Acinetobacter species. Here, we discuss the advantages and limitations of the conventional phenotypic methods, automated identification systems, molecular methods and MALDI-TOF in the precise identification and differentiation of Acinetobacter species. More specifically, several species of this genus are increasingly reported to be of high clinical importance. Molecular characterization such as of blaOXA-51-like PCR together with rpoB sequencing has high discriminatory power over the conventional methods for Acinetobacter species identification, especially within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Acinetobacter species are considered to be one of the most important pathogens and associated with increased mortality. The species within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex have emerged as high priority pathogens, especially in intensive care units, thereby posing a challenge to infection management practices. However, identification of Acinetobacter to the species level is difficult. Clear differentiation among various Acinetobacter species with available standard biochemical methods and automated systems is challenging. Although various molecular methods are available, they are not regularly used in diagnostic laboratories. The advantages and disadvantages of different methods useful in the accurate identification of Acinetobacter species are discussed in this review.
Collapse
|
13
|
Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland. Front Vet Sci 2019; 6:17. [PMID: 30805352 PMCID: PMC6370676 DOI: 10.3389/fvets.2019.00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: We investigated a collection of strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex obtained from a veterinary clinic with regard to their genetic relatedness, presence of antibiotic resistance genes and antimicrobial susceptibility profiles. Methods: Fifty-eight ACB-complex strains from animals treated at a veterinary clinic between 2006 and 2017, and seven strains collected from the hospital environment during 2012 were analyzed. Assignment to sequence types (ST) and international complexes (IC) was done by multilocus sequence typing (MLST) according to the Pasteur scheme. Genes encoding carbapenemases, aminoglycoside-modifying enzymes, macrolide-, quinolone- and co-trimoxazole resistance genes, the ISAba1 element, virulence associated intI1 genes and plasmid associated toxin-antitoxin markers were identified by microarray. Genes encoding blaOXA−51-like carbapenemases were amplified by PCR and sequenced. Susceptibility profiles were determined by disc diffusion or by broth microdilution. Results: Among 50 A. baumannii isolates from animals, two predominant clones were observed linked to CC1 (n = 27/54% of the isolates) and CC25 (n = 14/28%), respectively. Strains of IC I harbored blaOXA−69, aac(3′)-la, aadA1, sul1, intI1, and splA/T genes. Isolates belonging to CC25 possessed blaOXA−64. Six (12%) isolates belonging to CC2 and carrying blaOXA−66 were also noted. One isolate belonged to CC10 (blaOXA−68), one to CC149 (blaOXA−104), the remaining isolate was assigned to ST1220 and possessed blaOXA−116. Of six environmental A. baumannii, four (66.7%) belonged to CC25 (blaOXA−64), one (16.7%) to CC2 (blaOXA−66) and one to CC3 (blaOXA−71). Nine isolates (eight from animals and one environmental strain) were non-baumannii strains and did not harbor blaOXA−51-like genes. None of the isolates carried blaOXA−23, blaOXA−48, or blaOXA−58, and none were resistant to carbapenems. Conclusions: Clonal lineages of the veterinary A. baumannii isolates in our collection are identical to those globally emerging in humans but do not harbor blaOXA−23. A. baumannii CC25 may be specific for this particular veterinary clinic environment.
Collapse
Affiliation(s)
- Sabrina Püntener-Simmen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Schmitt
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|