1
|
Everingham SE, Offord CA, Sabot MEB, Moles AT. Leaf morphological traits show greater responses to changes in climate than leaf physiological traits and gas exchange variables. Ecol Evol 2024; 14:e10941. [PMID: 38510539 PMCID: PMC10951557 DOI: 10.1002/ece3.10941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024] Open
Abstract
Adaptation to changing conditions is one of the strategies plants may use to survive in the face of climate change. We aimed to determine whether plants' leaf morphological and physiological traits/gas exchange variables have changed in response to recent, anthropogenic climate change. We grew seedlings from resurrected historic seeds from ex-situ seed banks and paired modern seeds in a common-garden experiment. Species pairs were collected from regions that had undergone differing levels of climate change using an emerging framework-Climate Contrast Resurrection Ecology, allowing us to hypothesise that regions with greater changes in climate (including temperature, precipitation, climate variability and climatic extremes) would be greater trait responses in leaf morphology and physiology over time. Our study found that in regions where there were greater changes in climate, there were greater changes in average leaf area, leaf margin complexity, leaf thickness and leaf intrinsic water use efficiency. Changes in leaf roundness, photosynthetic rate, stomatal density and the leaf economic strategy of our species were not correlated with changes in climate. Our results show that leaves do have the ability to respond to changes in climate, however, there are greater inherited responses in morphological leaf traits than in physiological traits/variables and greater responses to extreme measures of climate than gradual changes in climatic means. It is vital for accurate predictions of species' responses to impending climate change to ensure that future climate change ecology studies utilise knowledge about the difference in both leaf trait and gas exchange responses and the climate variables that they respond to.
Collapse
Affiliation(s)
- Susan E. Everingham
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Catherine A. Offord
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
| | - Manon E. B. Sabot
- Climate Change Research CentreUNSWSydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Climate ExtremesUNSWSydneyNew South WalesAustralia
| | - Angela T. Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Jonasson J, Harkonen T, Sundkvist L, Edwards SV, Harding KC. A unifying framework for estimating generation time in age-structured populations: implications for phylogenetics and conservation biology. Am Nat 2022; 200:48-62. [DOI: 10.1086/719667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Sousa A, Alves F, Arranz P, Dinis A, Fernandez M, González García L, Morales M, Lettrich M, Encarnação Coelho R, Costa H, Capela Lourenço T, Azevedo NMJ, Frazão Santos C. Climate change vulnerability of cetaceans in Macaronesia: Insights from a trait-based assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148652. [PMID: 34247086 DOI: 10.1016/j.scitotenv.2021.148652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Over the last decades global warming has caused an increase in ocean temperature, acidification and oxygen loss which has led to changes in nutrient cycling and primary production affecting marine species at multiple trophic levels. While knowledge about the impacts of climate change in cetacean's species is still scarce, practitioners and policymakers need information about the species at risk to guide the implementation of conservation measures. To assess cetacean's vulnerability to climate change in the biogeographic region of Macaronesia, we adapted the Marine Mammal Climate Vulnerability Assessment (MMCVA) method and applied it to 21 species management units using an expert elicitation approach. Results showed that over half (62%) of the units assessed presented Very High (5 units) or High (8 units) vulnerability scores. Very High vulnerability scores were found in archipelago associated units of short-finned pilot whales (Globicephala macrorhynchus) and common bottlenose dolphins (Tursiops truncatus), namely in the Canary Islands and Madeira, as well as Risso's dolphins (Grampus griseus) in the Canary Islands. Overall, certainty scores ranged from Very High to Moderate for 67% of units. Over 50% of units showed a high potential for distribution, abundance and phenology changes as a response to climate change. With this study we target current and future information needs of conservation managers in the region, and guide research and monitoring efforts, while contributing to the improvement and validation of trait-based vulnerability approaches under a changing climate.
Collapse
Affiliation(s)
- A Sousa
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - F Alves
- MARE - Marine and Environmental Sciences Centre/ARDITI, Portugal; Oceanic Observatory of Madeira, Funchal, Portugal.
| | - P Arranz
- BIOECOMAC, Research group on Biodiversity, Marine Ecology and Conservation, University of La Laguna, Tenerife, Spain.
| | - A Dinis
- MARE - Marine and Environmental Sciences Centre/ARDITI, Portugal; Oceanic Observatory of Madeira, Funchal, Portugal.
| | - M Fernandez
- MARE - Marine and Environmental Sciences Centre/ARDITI, Portugal; Oceanic Observatory of Madeira, Funchal, Portugal; Azores Biodiversity Group and Centre for Ecology, Evolution and Environmental Changes (CE3C), University of the Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
| | - L González García
- Azores Biodiversity Group and Centre for Ecology, Evolution and Environmental Changes (CE3C), University of the Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal; Futurismo Azores Adventures, Portas do Mar, loja 24-26, 9500-771, Ponta Delgada, São Miguel, Azores, Portugal
| | - M Morales
- Biosean Whale Watching & Marine Science, Marina Del Sur, Las Galletas, 38631 Tenerife, Spain.
| | - M Lettrich
- ECS, NOAA Fisheries Office of Science and Technology, United States of America.
| | - R Encarnação Coelho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - H Costa
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - T Capela Lourenço
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - N M J Azevedo
- Azores Biodiversity Group and Centre for Ecology, Evolution and Environmental Changes (CE3C), University of the Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal.
| | - C Frazão Santos
- Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, Rua da Holanda 1, 2775-405 Carcavelos, Portugal.
| |
Collapse
|
4
|
James TD, Salguero-Gómez R, Jones OR, Childs DZ, Beckerman AP. Bridging gaps in demographic analysis with phylogenetic imputation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1210-1221. [PMID: 33068013 DOI: 10.1111/cobi.13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.
Collapse
Affiliation(s)
- Tamora D James
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, U.K
| | - Owen R Jones
- Interdisciplinary Centre on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Odense, Denmark
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| |
Collapse
|
5
|
Bird JP, Martin R, Akçakaya HR, Gilroy J, Burfield IJ, Garnett ST, Symes A, Taylor J, Şekercioğlu ÇH, Butchart SHM. Generation lengths of the world's birds and their implications for extinction risk. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1252-1261. [PMID: 32058610 DOI: 10.1111/cobi.13486] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations-over which population declines are assessed under criterion A-was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.
Collapse
Affiliation(s)
- Jeremy P Bird
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert Martin
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
- IUCN Species Survival Commission, IUCN, Rue Mauverney 28, Gland, 1196, Switzerland
| | - James Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
| | - Ian J Burfield
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Darwin, Northern Territory, 0909, Australia
| | - Andy Symes
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Joseph Taylor
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Çağan H Şekercioğlu
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, U.S.A
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- KuzeyDoğa Derneği, Ortakapı Mah. Şehit Yusuf Bey Cad. No: 93 Kars, Turkey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K
| | - Stuart H M Butchart
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K
| |
Collapse
|
6
|
|
7
|
Cooke RSC, Eigenbrod F, Bates AE. Projected losses of global mammal and bird ecological strategies. Nat Commun 2019; 10:2279. [PMID: 31123264 PMCID: PMC6533255 DOI: 10.1038/s41467-019-10284-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Species, and their ecological strategies, are disappearing. Here we use species traits to quantify the current and projected future ecological strategy diversity for 15,484 land mammals and birds. We reveal an ecological strategy surface, structured by life-history (fast-slow) and body mass (small-large) as one major axis, and diet (invertivore-herbivore) and habitat breadth (generalist-specialist) as the other. We also find that of all possible trait combinations, only 9% are currently realized. Based on species' extinction probabilities, we predict this limited set of viable strategies will shrink further over the next 100 years, shifting the mammal and bird species pool towards small, fast-lived, highly fecund, insect-eating, generalists. In fact, our results show that this projected decline in ecological strategy diversity is much greater than if species were simply lost at random. Thus, halting the disproportionate loss of ecological strategies associated with highly threatened animals represents a key challenge for conservation.
Collapse
Affiliation(s)
- Robert S C Cooke
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK.
- Marwell Wildlife, Thompson's Lane, Colden Common, Winchester, SO21 1JH, UK.
| | - Felix Eigenbrod
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
- Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Southampton, SO14 3ZH, UK
| |
Collapse
|
8
|
Staerk J, Conde DA, Ronget V, Lemaitre J, Gaillard J, Colchero F. Performance of generation time approximations for extinction risk assessments. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Staerk
- Species360 Conservation Science Alliance Bloomington Minnesota
- Interdisciplinary Centre on Population DynamicsUniversity of Southern Denmark Odense M Denmark
- Department of BiologyUniversity of Southern Denmark Odense M Denmark
- Max Planck Institute for Demographic Research Rostock Germany
| | - Dalia A. Conde
- Species360 Conservation Science Alliance Bloomington Minnesota
- Interdisciplinary Centre on Population DynamicsUniversity of Southern Denmark Odense M Denmark
- Department of BiologyUniversity of Southern Denmark Odense M Denmark
| | | | | | | | - Fernando Colchero
- Interdisciplinary Centre on Population DynamicsUniversity of Southern Denmark Odense M Denmark
- Department of Mathematics and Computer ScienceUniversity of Southern Denmark Odense M Denmark
| |
Collapse
|