1
|
Gopal A, Farragher J, Jassal SV, Mucsi I. Sleep Disorders in CKD: A Review. Am J Kidney Dis 2025:S0272-6386(25)00706-1. [PMID: 40024468 DOI: 10.1053/j.ajkd.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 03/04/2025]
Abstract
Sleep disorders are highly prevalent in patients with chronic kidney disease (CKD) but are often underrecognized. The most common sleep disturbances in people with CKD include insomnia, sleep apnea syndrome, restless legs syndrome, and periodic limb movement disorder. The presence of sleep disorders in CKD can further worsen the burden of high morbidity and mortality in a patient population with already high mortality rates. The detection and management of sleep disorders in patients with CKD are often challenging because the classic symptoms of sleep disorders (poor concentration, daytime sleepiness, and insomnia) overlap with CKD symptomatology. The treatment of one symptom may have a negative impact on others; hence treatment of these disorders is challenging and may need to be individualized and modified based on the response to treatment and the development of adverse effects. However, treatment of sleep disorders may have significant clinical benefits, leading to improved health-related quality of life. This Review presents an overview of sleep disorders in patients with CKD, with emphasis on relevant pathophysiology, diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Anjana Gopal
- Ajmera Transplant Centre, University Health Network and Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Janine Farragher
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Sarbjit V Jassal
- Division of Nephrology, University Health Network and Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Istvan Mucsi
- Multi-Organ Transplant Program, University Health Network and Division of Nephrology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Lyons OD. Sleep disorders in chronic kidney disease. Nat Rev Nephrol 2024; 20:690-700. [PMID: 38789686 DOI: 10.1038/s41581-024-00848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Sleep disorders are highly prevalent in chronic kidney disease (CKD) but are often under-recognized. Restless legs syndrome, which is common in CKD owing to issues with dopamine metabolism and is exacerbated by iron deficiency and uraemia, can lead to poor sleep quality and increased daytime fatigue. Insomnia is also prevalent in CKD, particularly in patients requiring dialysis, with increased sleep latency and sleep fragmentation being reported. The cause of insomnia in CKD is multifactorial - poor sleep habits and frequent napping during dialysis, uraemia, medications and mood disorders have all been suggested as potential contributing factors. Sleep apnoea and CKD are also now recognized as having a bi-directional relationship. Sleep apnoea is a risk factor for accelerated progression of CKD, and fluid overload, which is associated with kidney failure, can lead to both obstructive and central sleep apnoea. The presence of obstructive sleep apnoea in CKD can exacerbate the already heightened cardiovascular morbidity and mortality in these patients, as well as leading to daytime fatigue and reduced quality of life. Increased awareness, timely diagnosis and appropriate therapeutic interventions are essential to reduce the negative impact of sleep disorders in patients with kidney disease.
Collapse
Affiliation(s)
- Owen D Lyons
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine, Women's College Hospital, Toronto, Canada.
- Women's College Research Institute, Toronto, Ontario, Canada.
- Sleep Research Laboratory, Toronto Rehabilitation Institute, KITE-UHN, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Koritala BSC, Gaspar LS, Bhadri SS, Massie KS, Lee YY, Paulose J, Smith DF. Murine Pro-Inflammatory Responses to Acute and Sustained Intermittent Hypoxia: Implications for Obstructive Sleep Apnea Research. Laryngoscope 2024; 134 Suppl 4:S1-S11. [PMID: 37540033 PMCID: PMC10838350 DOI: 10.1002/lary.30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) is characterized by chronic systemic inflammation; however, the mechanisms underlying these pathologic consequences are incompletely understood. Our objective was to determine the effects of short- versus long-term exposure to intermittent hypoxia (IH) on pro-inflammatory mediators within vulnerable organs impacted by OSA. STUDY DESIGN Experimental animal study. METHODS A total of 8-10 week old C57BL/6J mice were exposed to normoxic or IH conditions for 7 days (short-term) or 6 weeks (long-term) under 12 h light, 12 h dark cycles. After exposure, multiple tissues were collected over a 24 h period. These tissues were processed and evaluated for gene expression and protein levels of pro-inflammatory mediators from peripheral tissues. RESULTS We observed a global decrease in immune response pathways in the heart, lung, and liver compared with other peripheral organs after short-term exposure to IH. Although there were tissue-specific alterations in the gene expression of pro-inflammatory mediators, with down-regulation in the lung and up-regulation in the heart, we also observed reduced protein levels of pro-inflammatory mediators in the serum, lung, and heart following short-term exposure to IH. Long-term exposure to IH resulted in an overall increase in the levels of inflammatory mediators in the serum, lung, and heart. CONCLUSIONS We demonstrated novel, longitudinal changes in the inflammatory cascade in a mouse model of OSA. The duration of exposure to IH led to significant variability of inflammatory responses within blood and cardiopulmonary tissues. Our findings further elucidate how inflammatory responses change over the course of the disease in vulnerable organs. LEVEL OF EVIDENCE NA Laryngoscope, 134:S1-S11, 2024.
Collapse
Affiliation(s)
- Bala S. C. Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Laetitia S. Gaspar
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Shweta S. Bhadri
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyla S. Massie
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of California San Diego, San Diego, California, 92093, USA
| | - Yin Yeng Lee
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiffin Paulose
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David F. Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- The Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- The Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Khalyfa A, Marin JM, Sanz-Rubio D, Lyu Z, Joshi T, Gozal D. Multi-Omics Analysis of Circulating Exosomes in Adherent Long-Term Treated OSA Patients. Int J Mol Sci 2023; 24:16074. [PMID: 38003263 PMCID: PMC10671639 DOI: 10.3390/ijms242216074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Jose M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
- Department of Health Management and Informatics, MU Institute for Data Science and Informatics and Christopher S Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - David Gozal
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
6
|
Jung SM, Lee MR. Association between Obstructive Sleep Apnea and Chronic Kidney Disease According to Sex, Long Working Hours: The Korean National Health and Nutrition Examination Survey (2019-2020). Life (Basel) 2023; 13:1625. [PMID: 37629482 PMCID: PMC10455091 DOI: 10.3390/life13081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate whether obstructive sleep apnea (OSA) is associated with an increased risk of chronic kidney disease (CKD) and to perform subgroup analysis by sex and working hours. This cross-sectional study was conducted on 8157 subjects who participated in the Korea National Health and Nutrition Examination Survey (KNHANES). The adults completed the STOP-BANG score to measure their risk of OSA, and blood and urine samples were collected to ascertain the severity of CKD based on the estimated glomerular filtration rate and urine albumin-to-creatinine ratio. Multivariate logistic regression was used for complex sample analysis. After fully adjusting for the confounding variables, the high-risk OSA group showed a significantly higher risk of developing albuminuria and CKD than the low-risk group, particularly among men. Odds ratio (OR) 1.72, 95% confidence interval (CI) 1.13-2.6 and (OR 1.67, 95% CI 1.14-2.45), respectively. Additionally, men who worked for 40 h/week showed a significant association between OSA, CKD, and albuminuria. This study supports the link between OSA and the risk of kidney disease, especially among men and those who work long hours. Screening and treating OSA may be a crucial strategy for preventing kidney disease, particularly in high-risk populations.
Collapse
Affiliation(s)
- Sung-Min Jung
- Department of Surgery, Inje University, Ilsan Paik Hospital, Goyang-si 10380, Republic of Korea;
| | - Mee-Ri Lee
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan-si 31151, Republic of Korea
| |
Collapse
|
7
|
Arceri L, Nguyen TK, Gibson S, Baker S, Wingert RA. Cannabinoid Signaling in Kidney Disease. Cells 2023; 12:1419. [PMID: 37408253 DOI: 10.3390/cells12101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.
Collapse
Affiliation(s)
- Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sophia Baker
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Moriya R, Hokari S, Ohshima Y, Suzuki R, Nagai A, Fujito N, Takahashi A, Aoki N, Watanabe S, Koya T, Nakayama H, Izumizaki M, Kikuchi T. Continuous positive airway pressure treatment reduces renal tubular damage in patients with obstructive sleep apnea: A retrospective single-center cohort study. Sleep Med 2023; 106:106-115. [PMID: 37087824 DOI: 10.1016/j.sleep.2023.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Chronic intermittent hypoxia (IH) plays a significant role in the pathogenesis of obstructive sleep apnea (OSA) comorbidities. The prevalence of chronic kidney disease is higher in patients with OSA than the general population, and renal function decline is well correlated with renal tubular injury. However, little is known about the impact of OSA-induced chronic IH on the renal tubules. METHODS We conducted a retrospective survey of clinical records performing multiple regression analysis and cluster analysis with particular attention to the 3% oxygen desaturation index (ODI) and urinary N-acetyl-β-d-glucosaminidase (NAG). RESULTS In patients with suspicion of OSA, urinary NAG creatinine ratio (UNCR) was elevated as their 3% ODI increased (n = 197, p < 0.001), and the elevated UNCR decreased following CPAP treatment in patients with OSA (n = 46, p = 0.014). Multiple regression analysis showed that 3% ODI was associated with UNCR. Cluster analysis identified three clusters of patients with OSA, including two younger age clusters, one of which was characterized by high BMI, high 3% ODI, and high prevalence of major comorbidities. In a comparative analysis of younger age cases (age ≤ 55, n = 82), the UNCR level was higher in patients with severe 3% ODI (3% ODI > 40 events/h, n = 24) (p = 0.014). CONCLUSIONS Our results indicate that even at younger ages, OSA patients with severe chronic IH and major comorbidities are susceptible to renal tubular damage. Early treatment with CPAP may attenuate renal tubular injury and progression toward end-stage renal disease.
Collapse
Affiliation(s)
- Rika Moriya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Hokari
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan.
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Ryoko Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Asuka Nagai
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Nobuhiro Fujito
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Atsunori Takahashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Nobumasa Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| | - Hideaki Nakayama
- Department of Somnology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8520, Japan
| |
Collapse
|
9
|
Hanly PJ, Unruh ML. Continuous Positive Airway Pressure Therapy for Chronic Kidney Disease in Patients with Obstructive Sleep Apnea: The Jury Is Still Out. Am J Respir Crit Care Med 2023; 207:657-659. [PMID: 36480960 PMCID: PMC10037486 DOI: 10.1164/rccm.202211-2171ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Patrick J Hanly
- Sleep Centre Foothills Medical Centre Calgary, Alberta, Canada and Cumming School of Medicine University of Calgary Calgary, Alberta, Canada
| | - Mark L Unruh
- Department of Internal Medicine University of New Mexico Albuquerque, New Mexico and Section of Nephrology New Mexico VA Health Care System Albuquerque, New Mexico
| |
Collapse
|
10
|
Gembillo G, Calimeri S, Tranchida V, Silipigni S, Vella D, Ferrara D, Spinella C, Santoro D, Visconti L. Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions. J Pers Med 2023; 13:286. [PMID: 36836520 PMCID: PMC9966880 DOI: 10.3390/jpm13020286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects > 10% of the total population worldwide or >800 million people. CKD poses a particularly heavy burden in low- and middle-income countries, which are least able to cope with its consequences. It has become one of the leading causes of death worldwide and is one of the few non-communicable diseases where the number of related deaths has increased over the last two decades. The high number of people affected, and the significant negative impact of CKD should be a reason to increase efforts to improve prevention and treatment. The interaction of lung and kidney leads to highly complex and difficult clinical scenarios. CKD significantly affects the physiology of the lung by altering fluid homeostasis, acid-base balance and vascular tone. In the lung, haemodynamic disturbances lead to the development of alterations in ventilatory control, pulmonary congestion, capillary stress failure and pulmonary vascular disease. In the kidney, haemodynamic disturbances lead to sodium and water retention and the deterioration of renal function. In this article, we would like to draw attention to the importance of harmonising the definitions of clinical events in pneumology and renal medicine. We would also like to highlight the need for pulmonary function tests in routine clinical practise for the management of patients with CKD, in order to find new concepts for pathophysiological based disease-specific management strategies.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Calimeri
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Valeria Tranchida
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Salvatore Silipigni
- Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico “G. Martino’’, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy
| | - Davide Vella
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Domenico Ferrara
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Visconti
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| |
Collapse
|
11
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
12
|
Chen Q, Hong Z, Chen Z, Chen Y, Liu D. CircRNA expression profiles and functional analysis in a mouse model of chronic intermittent hypoxia-induced renal injury: new insight into pathogenesis. PeerJ 2023; 11:e14957. [PMID: 36874972 PMCID: PMC9983420 DOI: 10.7717/peerj.14957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
Increasing evidence has demonstrated that circular RNAs (circRNAs) play crucial roles in the pathogenesis of multiple diseases. However, the functions of circRNAs in renal injury induced by obstructive sleep apnea (OSA) are poorly understood. The aim of this current study is to identify the global changes of circRNAs expression in OSA-induced renal damage. The mouse model of OSA treated by chronic intermittent hypoxia (CIH) was established. We assessed the expression profiles of circRNAs in CIH caused renal injury by microarray analysis. Bioinformatic analyses were further performed by us to assess those differentially expressed circRNAs. Quantitative realtime PCR (qRT-PCR) were then conducted to assure the data of microarray. Finally, a circRNA-miRNA -mRNA competing endogenous RNA (ceRNA) regulatory network was constructed. We found 11 upregulated and 13 downregulated circRNAs in CIH-induced renal injury. The qRT-PCR validated that the six selected circRNAs were identical to the results of microarray. Both Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were further employed to annotate the potential functions of dysregulated circRNAs. Finally, we established a ceRNA network to predict the target genes of circRNAs. In general, our results first illustrate that circRNAs are aberrantly expressed in OSA-induced renal injury, which might aid in offering novel genetic insights into this disease and potential therapeutic targets for OSA-associated chronic kidney disease.
Collapse
Affiliation(s)
- Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhenzhen Hong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhiyu Chen
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanfeng Chen
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dexin Liu
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
13
|
Allen AJH, Peres BU, Liu Y, Jen R, Shah A, Laher I, Almeida F, Taylor C, Ghafoor AA, Ayas NT. Circulating markers of oxidative stress and risk of incident cardiovascular events in obstructive sleep apnea. Sleep Biol Rhythms 2022; 20:533-540. [PMID: 38468626 PMCID: PMC10899996 DOI: 10.1007/s41105-022-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
The identification of which patients with obstructive sleep apnea (OSA) are more likely to develop cardiovascular disease (CVD) remains a challenge. OSA causes oxidative stress (OS) which may contribute to CVD pathogenesis. Therefore, OS markers could be useful in risk-stratifying cardiovascular (CV) risk in OSA patients. The purpose of this pilot study was to assess whether three OS marker levels could be associated with incident CVD in suspected OSA patients. Morning plasma levels of 8-isoprostane, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and superoxide dismutase (SOD) were measured in patients with suspected OSA referred for a polysomnogram (PSG). A composite outcome of CV events was defined by linkage with provincial administrative health databases. Cox proportional hazards models were used to assess the relationship between the levels of OS markers and events. 352 patients were included (mean age of 51.4 years, 68% male, median apnea hypopnea index of 16/h). Thirty-one first CV events occurred over an 8-year follow-up. In univariate or fully adjusted models, none of the OS markers were significantly associated with incident CV events (hazard ratio in adjusted models of: 1.25 (95% CI 0.56-2.80, p = 0.59), 1.15 (0.52-2.57, p = 0.73), 0.77 (0.37-1.61, p = 0.48), for 8-OHdG, 8-isoprostane and SOD; however, confidence intervals were wide. In this small preliminary study, oxidative stress markers were not significantly associated with risk of CV events. However, moderate associations between these markers and risk of CV events are possible and should be the focus of future larger studies. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-022-00399-0.
Collapse
Affiliation(s)
- A. J. Hirsch Allen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Bernardo U. Peres
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Yu Liu
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Rachel Jen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Aditi Shah
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Ismail Laher
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Fernanda Almeida
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Carolyn Taylor
- Division of Cardiology, Department of Medicine, University of British Columbia and Providence Health Care, Vancouver, Canada
| | - Ali Abdul Ghafoor
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Najib T. Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
- Canadian Sleep and Circadian Network, Montréal, Canada
| |
Collapse
|
14
|
Zhang XB, Chen GP, Huang MH, Chen XX, Zhan FF, He XZ, Cai L, Zeng HQ. Bcl-2 19-kDa Interacting Protein 3 (BNIP3)-Mediated Mitophagy Attenuates Intermittent Hypoxia-Induced Human Renal Tubular Epithelial Cell Injury. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e936760. [PMID: 35836356 PMCID: PMC9295414 DOI: 10.12659/msm.936760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a novel pathophysiological characteristic of obstructive sleep apnea, intermittent hypoxia (IH) contributes to human renal tubular epithelial cells impairment. The underlying pathological mechanisms remain unrevealed. The present study aimed to evaluate the influence of Bcl-2 19-kDa interacting protein 3 (BNIP3)-mediated mitophagy on IH-induced renal tubular epithelial cell impairment. Material/Methods Human kidney proximal tubular (HK-2) cells were exposed to IH condition. IH cycles were as follows: 21% oxygen for 25 min, 21% descended to 1% for 35 min, 1% oxygen sustaining for 35 min, and 1% ascended to 21% for 25 min. The IH exposure lasted 24 h with 12 cycles of hypoxia and re-oxygenation. Both the siBNIP3 and BNIP3 vector were transfected to cells. Cell viability and apoptosis, mitochondrial morphology and function, and mitophagy were detected by cell counting kit-8, flow cytometry and TUNEL staining, transmission electron microscopy, western blotting, and immunofluorescence, respectively. Results In the IH-induced HK-2 cells, inhibition of BNIP3 further aggravated mitochondrial structure damage, and decreased mitophagy level, leading to increased cell apoptosis and decreased cell viability. While overexpression of BNIP3 enhanced mitophagy, which protected mitochondrial structure, it can decrease cell death in HK-2 cells exposed to IH. Conclusions The present study showed that BNIP3-mediated mitophagy plays a protective role against IH-induced renal tubular epithelial cell impairment.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Gong-Ping Chen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Mao-Hong Huang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiang-Xing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Feng-Fu Zhan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiu-Zhen He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Ling Cai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
15
|
Badran M, Gozal D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int J Mol Sci 2022; 23:5516. [PMID: 35628326 PMCID: PMC9141273 DOI: 10.3390/ijms23105516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea is a chronic and prevalent condition that is associated with endothelial dysfunction, atherosclerosis, and imposes excess overall cardiovascular risk and mortality. Despite its high prevalence and the susceptibility of CVD patients to OSA-mediated stressors, OSA is still under-recognized and untreated in cardiovascular practice. Moreover, conventional OSA treatments have yielded either controversial or disappointing results in terms of protection against CVD, prompting the need for the identification of additional mechanisms and associated adjuvant therapies. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (tPA) and urinary-type plasminogen activator (uPA), is a key regulator of fibrinolysis and cell migration. Indeed, elevated PAI-1 expression is associated with major cardiovascular adverse events that have been attributed to its antifibrinolytic activity. However, extensive evidence indicates that PAI-1 can induce endothelial dysfunction and atherosclerosis through complex interactions within the vasculature in an antifibrinolytic-independent matter. Elevated PAI-1 levels have been reported in OSA patients. However, the impact of PAI-1 on OSA-induced CVD has not been addressed to date. Here, we provide a comprehensive review on the mechanisms by which OSA and its most detrimental perturbation, intermittent hypoxia (IH), can enhance the transcription of PAI-1. We also propose causal pathways by which PAI-1 can promote atherosclerosis in OSA, thereby identifying PAI-1 as a potential therapeutic target in OSA-induced CVD.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
16
|
Beaudin AE, Raneri JK, Ahmed SB, Hirsch Allen AJM, Nocon A, Gomes T, Gakwaya S, Series F, Kimoff J, Skomro RP, Ayas NT, Hanly PJ. Risk of chronic kidney disease in patients with obstructive sleep apnea. Sleep 2021; 45:6425062. [PMID: 34757390 DOI: 10.1093/sleep/zsab267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Chronic kidney disease (CKD) is a global health concern and a major risk factor for cardiovascular morbidity and mortality. Obstructive sleep apnea (OSA) may exacerbate this risk by contributing to the development of CKD. This study investigated the prevalence and patient awareness of the risk of CKD progression in individuals with OSA. METHODS Adults referred to five Canadian academic sleep centers for suspected OSA completed a questionnaire, a home sleep apnea test or in-lab polysomnography and provided blood and urine samples for measurement of estimated glomerular filtration rate (eGFR) and the albumin:creatinine ratio (ACR), respectively. The risk of CKD progression was estimated from a heat map incorporating both eGFR and ACR. RESULTS 1295 adults (42% female, 54±13y) were categorized based on the oxygen desaturation index (4% desaturation): <15 (no/mild OSA, n=552), 15-30 (moderate OSA, n=322), and >30 (severe OSA, n=421). After stratification, 13.6% of the no/mild OSA group, 28.9% of the moderate OSA group, and 30.9% of the severe OSA group had a moderate-to-very high risk of CKD progression (p<0.001), which was defined as an eGFR < 60 mL/min/1.73m2, an ACR ≥3 mg/mmol, or both. Compared to those with no/mild OSA, the odds ratio for moderate-to-very high risk of CKD progression was 2.63 (95% CI: 1.79-3.85) for moderate OSA and 2.96 (2.04-4.30) for severe OSA after adjustment for CKD risk factors. Among patients at increased risk of CKD progression, 73% were unaware they had abnormal kidney function. CONCLUSION Patients with moderate and severe OSA have an increased risk of CKD progression independent of other CKD risk factors; most patients are unaware of this increased risk.
Collapse
Affiliation(s)
- Andrew E Beaudin
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill K Raneri
- Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Sofia B Ahmed
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, , Canada.,Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, , Canada
| | - A J Marcus Hirsch Allen
- Department of Medicine, Respiratory and Critical Care Division, University of British Columbia, Vancouver, BC, Canada
| | - Andrhea Nocon
- Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teresa Gomes
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, Montreal, QC, Canada
| | - Simon Gakwaya
- Unité de recherche en pneumologie, Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Fréderic Series
- Unité de recherche en pneumologie, Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, Montreal, QC, Canada
| | - Robert P Skomro
- Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Najib T Ayas
- Department of Medicine, Respiratory and Critical Care Division, University of British Columbia, Vancouver, BC, Canada
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, , Canada
| | | |
Collapse
|
17
|
Correia MJ, Pimpão AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Gonçalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J, Monteiro EC, Pereira SA. Aryl Hydrocarbon Receptor and Cysteine Redox Dynamics Underlie (Mal)adaptive Mechanisms to Chronic Intermittent Hypoxia in Kidney Cortex. Antioxidants (Basel) 2021; 10:antiox10091484. [PMID: 34573115 PMCID: PMC8469308 DOI: 10.3390/antiox10091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Filipa Lopes-Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Nuno R. Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Clara Gonçalves-Dias
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Robert Barouki
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Correspondence:
| |
Collapse
|
18
|
Zangaladze A, Cai CL, Marcelino M, Aranda JV, Beharry KD. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol 2021; 22:299. [PMID: 34481475 PMCID: PMC8418040 DOI: 10.1186/s12882-021-02507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. METHODS At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). RESULTS Histopathology showed increased renal damage with 8-12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. CONCLUSIONS Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Anano Zangaladze
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- SUNY Eye Institute, New York, NY, USA.
- Department of Pediatrics & Ophthalmology, Neonatal-Perinatal Medicine Clinical & Translational Research Labs, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY, 11203, USA.
| |
Collapse
|
19
|
Voulgaris A, Bonsignore MR, Schiza S, Marrone O, Steiropoulos P. Is kidney a new organ target in patients with obstructive sleep apnea? Research priorities in a rapidly evolving field. Sleep Med 2021; 86:56-67. [PMID: 34474225 DOI: 10.1016/j.sleep.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The bidirectional relationship between sleep disordered breathing and chronic kidney disease (CKD) has recently gained a lot of interest. Several lines of evidence suggest the high prevalence of coexistent obstructive sleep apnea (OSA) in patients with CKD and end-stage renal disease (ESRD). In addition, OSA seems to result in loss of kidney function in some patients, especially in those with cardio-metabolic comorbidities. Treatment of CKD/ESRD and OSA can alter the natural history of each other; still better phenotyping with selection of appropriate treatment approaches is urgently needed. The aim of this narrative review is to provide an update of recent studies on epidemiological associations, pathophysiological interactions, and management of patients with OSA and CKD or ESRD.
Collapse
Affiliation(s)
- Athanasios Voulgaris
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece; Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria R Bonsignore
- Institute of Biomedicine and Molecular Immunology, CNR, Palermo, Italy; Sleep Disordered Breathing and Chronic Respiratory Failure Clinic, PROMISE Department, University of Palermo, and IRIB, National Research Council (CNR), Palermo, Italy
| | - Sophia Schiza
- Sleep Disorders Center, Department of Respiratory Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Oreste Marrone
- Institute of Biomedicine and Molecular Immunology, CNR, Palermo, Italy
| | - Paschalis Steiropoulos
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece; Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
20
|
Association of Sleep Disordered Breathing and Blood Pressure with Albuminuria: The Nagahama Study. Ann Am Thorac Soc 2021; 19:451-461. [PMID: 34347565 DOI: 10.1513/annalsats.202105-528oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Although sleep disordered breathing (SDB) may increase urinary albumin excretion (UAE) by raising nocturnal blood pressure (BP) in addition to diurnal BP, the correlation has not been investigated in a general population. OBJECTIVES To evaluate the relationships among UAE, SDB and BP during sleep in a large population cohort. METHODS Among 9,850 community residents, UAE was assessed by the urinary albumin creatinine ratio (UACR) in spot urine. Sleep duration and SDB were evaluated by a wearable actigraph and pulse oximeter, respectively. We calculated the actigraphy-modified 3% oxygen desaturation index (Acti-3%ODI) by correcting the time measured by pulse oximetry according to sleep duration obtained by actigraphy. Further, participants were instructed to measure morning and sleep BP at home by a timer-equipped oscillometric device. RESULTS Measurements of sleep parameters, UAE and office BP were completed in 6,568 participants. The multivariate analysis that included confounders showed a significant association of Acti-3%ODI with UACR. (β=0.06, p<0.001) Further, a positive interaction between office systolic BP (SBP) and Acti-3%ODI for UACR was found. (β=0.06, p<0.001) Among the 6,568 persons enrolled in the analysis, 5,313 completed measurements of BP at home. In this cohort, the association of Acti-3%ODI with UACR remained significant (β=0.06, p<0.001) even after morning and sleep SBP were included in the analysis. Further, mediation analysis revealed that 28.3% (95% confidence interval: 14.9-41.7%, p<0.001) of the association of Acti-3%ODI with UACR was explained by the mediation of morning and sleep SBP metrics. CONCLUSIONS SDB and office SBP were independently and synergistically associated with UAE, which is considered as a risk factor for chronic kidney disease and cardiovascular events. SDB may raise UAE not only by increasing BP but involving other pathologic pathways.
Collapse
|
21
|
Conte L, Greco M, Toraldo DM, Arigliani M, Maffia M, De Benedetto M. A review of the "OMICS" for management of patients with obstructive sleep apnoea. ACTA ACUST UNITED AC 2021; 40:164-172. [PMID: 32773777 PMCID: PMC7416376 DOI: 10.14639/0392-100x-n0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnaea (OSA) syndrome is a condition characterised by the presence of complete or partial collapse of the upper airways during sleep, resulting in fragmentation of sleep associated with rapid episodes of intermittent hypoxia (IH), activation of the sympathetic nervous system and oxidative stress. OSA is associated with a broad spectrum of cardiovascular, metabolic and neurocognitive comorbidities that appear to be particularly evident in obese patients, while affecting both sexes in a different manner and varying in severity according to gender and age. In recent years, studies on OSA have increased considerably, but in clinical practice, it is still a highly underdiagnosed disease. To date, the gold standard for the diagnosis of OSA is nocturnal polysomnography (PSG). However, since it is not well suited for a large number of patients, the Home Sleep Test (HST) is also an accepted diagnostic method. Currently, the major aim of research is to identify non-invasive methods to achieve a highly predictive, non-invasive screening system for these subjects. The most recent reports indicate that research in this field has made significant progress in identifying possible biomarkers in OSA, using -OMIC approaches, particularly in the fields of proteomics and metabolomics. In this review, we analyse these OMIC biomarkers found in the literature.
Collapse
Affiliation(s)
- Luana Conte
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Advanced Data Analysis for Medicine (ADAM), Department of Mathematics and Physics "E. De Giorgi", University of Salento, Lecce, Italy
| | - Marco Greco
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Domenico Maurizio Toraldo
- Department Rehabilitation "V. Fazzi" Hospital, Cardio-Respiratory Unit Care, ASL-Lecce, San Cesario di Lecce (LE), Italy
| | | | - Michele Maffia
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy.,Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Michele De Benedetto
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, Lecce, Italy
| |
Collapse
|
22
|
Rimke AN, Ahmed SB, Turin TC, Pendharkar SR, Raneri JK, Lynch EJ, Hanly PJ. Recruitment of patients with chronic kidney disease and obstructive sleep apnoea for a clinical trial. J Sleep Res 2021; 30:e13384. [PMID: 33973687 DOI: 10.1111/jsr.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
Obstructive sleep apnoea is common in chronic kidney disease (CKD) and may accelerate the decline in kidney function. Recruitment for a randomised controlled trial to address whether treatment of sleep apnoea with continuous positive airway pressure (CPAP) slows the progression of kidney failure may be challenging because sleep apnoea is often asymptomatic in this patient population. The present report outlines recruitment challenges and how to address them. Adult patients with CKD were recruited for a 12-month randomised, controlled, non-blinded, parallel clinical trial to evaluate the impact of CPAP therapy on kidney function. Patients completed a home sleep apnoea test and those that met pre-specified sleep apnoea and nocturnal hypoxaemia severity criteria were randomised to receive CPAP or no therapy. Although 1,665 patients were eligible to participate in the study over 3 years, only 57 (3.4%) were ultimately randomised. The sequential reasons (and number of patients) for recruitment failure were: no show at clinic appointment (137), insufficient recruiters to approach every eligible patient (461), on therapy for sleep apnoea (122), unable to provide informed consent (67), refused consent (645), home sleep apnoea test not completed (47) or inclusion criteria not met (116), and declined pre-randomisation education session (12). Many challenges limit effective recruitment, which may be addressed by hiring additional recruiters and increasing the awareness of sleep apnoea among patients with CKD. These findings can be used to improve recruitment strategies and the design of future studies.
Collapse
Affiliation(s)
- Alex N Rimke
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Sofia B Ahmed
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Kidney Disease Network, Calgary, AB, Canada
| | - Tanvir C Turin
- Department of Family Medicine, University of Calgary, Calgary, AB, Canada
| | - Sachin R Pendharkar
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill K Raneri
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Emma J Lynch
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Gonçalves-Dias C, Sequeira CO, Vicente JB, Correia MJ, Coelho NR, Morello J, Antunes AMM, Soto K, Monteiro EC, Pereira SA. A Mechanistic-Based and Non-invasive Approach to Quantify the Capability of Kidney to Detoxify Cysteine-Disulfides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:109-120. [PMID: 33959909 DOI: 10.1007/978-3-030-63908-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our general goal was to non-invasively evaluate kidney tubular dysfunction. We developed a strategy based on cysteine (Cys) disulfide stress mechanism that underlies kidney dysfunction. There is scarce information regarding the fate of Cys-disulfides (CysSSX), but evidence shows they might be detoxified in proximal tubular cells by the action of N-acetyltransferase 8 (NAT8). This enzyme promotes the addition of an N-acetyl moiety to cysteine-S-conjugates, forming mercapturates that are eliminated in urine. Therefore, we developed a strategy to quantify mercapturates of CysSSX in urine as surrogate of disulfide stress and NAT8 activity in kidney tubular cells. We use a reduction agent for the selective reduction of disulfide bonds. The obtained N-acetylcysteine moiety of the mercapturates from cysteine disulfides was monitored by fluorescence detection. The method was applied to urine from mice and rat as well as individuals with healthy kidney and kidney disease.
Collapse
Affiliation(s)
- Clara Gonçalves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M João Correia
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Nuno R Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Judit Morello
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Karina Soto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Hospital Prof. Dr. Fernando da Fonseca, EPE, Amadora, Portugal
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
24
|
Sarkar S, Lee H, Ryu HG, Singha S, Lee YM, Reo YJ, Jun YW, Kim KH, Kim WJ, Ahn KH. A Study on Hypoxia Susceptibility of Organ Tissues by Fluorescence Imaging with a Ratiometric Nitroreductase Probe. ACS Sens 2021; 6:148-155. [PMID: 33334101 DOI: 10.1021/acssensors.0c01989] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, a condition of oxygen deficiency in tissues, features various diseases including solid tumor. Under hypoxia, several reductases such as nitroreductases are elevated. Based on this fact, we have investigated an indirect way to assess the hypoxia susceptibility of different organ tissues (mouse lung, heart, spleen, kidney, and liver) by detecting nitroreductase present within. Among the organs, the kidney showed a notable susceptibility to hypoxia, which was due to the renal medulla, not due to the renal cortex, as observed by ratiometric fluorescence imaging with a probe. The probe features ratiometric signaling, NIR-emitting, two-photon absorbing, and pH-insensitive emission properties, offering a practical tool for studying the nitroreductase activity and, furthermore, hypoxia-associated biological processes.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Hyori Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Hye Gun Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Subhankar Singha
- Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Yeong Mi Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyeong Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
25
|
AlMarabeh S, O'Neill J, Cavers J, Lucking EF, O'Halloran KD, Abdulla MH. Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney. Am J Physiol Renal Physiol 2021; 320:F1-F16. [PMID: 33166181 DOI: 10.1152/ajprenal.00377.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jeremy Cavers
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
VDAC1 in the diseased myocardium and the effect of VDAC1-interacting compound on atrial fibrosis induced by hyperaldosteronism. Sci Rep 2020; 10:22101. [PMID: 33328613 PMCID: PMC7744539 DOI: 10.1038/s41598-020-79056-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) is a key player in mitochondrial function. VDAC1 serves as a gatekeeper mediating the fluxes of ions, nucleotides, and other metabolites across the outer mitochondrial membrane, as well as the release of apoptogenic proteins initiating apoptotic cell death. VBIT-4, a VDAC1 oligomerization inhibitor, was recently shown to prevent mitochondrial dysfunction and apoptosis, as validated in mouse models of lupus and type-2 diabetes. In the present study, we explored the expression of VDAC1 in the diseased myocardium of humans and rats. In addition, we evaluated the effect of VBIT-4 treatment on the atrial structural and electrical remodeling of rats exposed to excessive aldosterone levels. Immunohistochemical analysis of commercially available human cardiac tissues revealed marked overexpression of VDAC1 in post-myocardial infarction patients, as well as in patients with chronic ventricular dilatation\dysfunction. In agreement, rats exposed to myocardial infarction or to excessive aldosterone had a marked increase of VDAC1 in both ventricular and atrial tissues. Immunofluorescence staining indicated a punctuated appearance typical for mitochondrial-localized VDAC1. Finally, VBIT-4 treatment attenuated the atrial fibrotic load of rats exposed to excessive aldosterone without a notable effect on the susceptibility to atrial fibrillation episodes induced by burst pacing. Our results indicate that VDAC1 overexpression is associated with myocardial abnormalities in common pathological settings. Our data also indicate that inhibition of the VDAC1 can reduce excessive fibrosis in the atrial myocardium, a finding which may have important therapeutic implications. The exact mechanism\s of this beneficial effect need further studies.
Collapse
|
27
|
Rimke AN, Ahmed SB, Turin TC, Pendharkar SR, Raneri JK, Lynch EJ, Hanly PJ. Effect of CPAP Therapy on Kidney Function in Patients With Chronic Kidney Disease: A Pilot Randomized Controlled Trial. Chest 2020; 159:2008-2019. [PMID: 33316238 DOI: 10.1016/j.chest.2020.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND OSA is common in chronic kidney disease (CKD) and may accelerate a decline in kidney function. It is not clear whether treatment of OSA with CPAP improves kidney function. RESEARCH QUESTION Does treatment with CPAP improve kidney function in patients with CKD and coexisting OSA? STUDY DESIGN AND METHODS A randomized, controlled, nonblinded, parallel clinical trial was performed of patients with stages 3 and 4 CKD and coexisting OSA comparing the effect of CPAP vs usual care on the estimated glomerular filtration rate (eGFR) and the urine albumin to creatinine ratio (ACR) over 12 months. RESULTS Fifty-seven patients were enrolled and 30 were randomized to CPAP. They had moderately severe CKD (eGFR, 38.4 ± 1.5 mL/min/1.73 m2) and significant OSA and nocturnal hypoxemia (oxygen desaturation index: 23.9 events/h; interquartile range [IQR], 20.3 events/h; mean peripheral capillary oxygen saturation: 89.5%; IQR, 1.7%); 60% had baseline albuminuria (ACR, > 3 mg/mmol). No significant difference was found between CPAP and usual care in the change in eGFR and ACR over 12 months. Although some improvement in eGFR occurred with CPAP therapy in patients with a lower risk of CKD progression, this did not reach statistical significance. INTERPRETATION Although CPAP did not provide additional renal benefits over usual care in all CKD patients, some evidence suggested that CPAP slowed the decline in eGFR in CKD patients with a lower risk of CKD progression. These preliminary data support the need for larger clinical trials exploring the effects of CPAP on kidney function. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02420184; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Alex N Rimke
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Sofia B Ahmed
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada; Alberta Kidney Disease Network, Calgary, AB, Canada
| | - Tanvir C Turin
- Department of Family Medicine, University of Calgary, Calgary, AB, Canada
| | - Sachin R Pendharkar
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill K Raneri
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Emma J Lynch
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Saif J, Ahmad S, Rezai H, Litvinova K, Sparatore A, Alzahrani FA, Wang K, Ahmed A. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol 2020; 38:101814. [PMID: 33321463 PMCID: PMC7744945 DOI: 10.1016/j.redox.2020.101814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
An imbalance in angiogenic growth factors and poor utero-placental perfusion are strongly associated with preeclampsia. The reduced utero-placental perfusion (RUPP) model that mimics insufficient placental perfusion is used to study preeclampsia. The aim of this study was to develop a refined RUPP model in C57Bl/6 J mice to test the efficacy of MZe786 as a potential inhibitor of soluble Flt-1 for preeclampsia therapy. Murine RUPP (mRUPP) was induced through bilateral ligation of the ovarian arteries at E11.5 that resulted in typical preeclampsia symptoms including increase in mean arterial pressure (MAP), kidney injury and elevated soluble Flt-1 (sFlt-1) levels in the maternal plasma and amniotic fluid. The murine RUPP kidneys showed tubular and glomerular damage along with increased oxidative stress characterised by increased nitrotyrosine staining. The mRUPP displayed abnormal placental vascular histology, reduced expression of placental cystathionine γ-lyase (CSE), the hydrogen sulfide (H2S) producing enzyme, and resulted in adverse fetal outcomes (FGR). Importantly, oral administration of hydrogen sulfide (H2S)-releasing compound MZe786 from E11.5 to E17.5 successfully prevented the development of preeclampsia. Specifically, MZe786 treatment reduced maternal MAP and kidney nitrotyrosine staining and improved fetal outcome. The circulation levels of sFlt-1 were dramatically decreased in MZe786 treated animals implying that H2S released from MZe786 offered protection by inhibiting sFlt-1 levels. MZe786 prevent preeclampsia and warrant a rapid move to randomised control clinical trial. Refined mouse reduced uterine perfusion pressure (mRUPP) model exhibits preeclampsia symptoms. Mouse RUPP induces maternal hypertension, kidney injury, elevates circulating sFlt-1 levels and promotes nitrosative stress. Mouse RUPP reduces expression of the protective enzyme, placental cystathionine γ-lyase and causes poor fetal outcome. H2S releasing aspirin, MZe786, acts as an inhibitor of sFlt-1 to successfully prevent preeclampsia and improve fetal outcome. MZe786 is a novel drug with therapeutic potential to prevent preeclampsia.
Collapse
Affiliation(s)
- Jaimy Saif
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Shakil Ahmad
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Homira Rezai
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK
| | - Karina Litvinova
- Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Anna Sparatore
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Department of Pharmaceutical Science, University of Milan, Milan, Italy
| | - Faisal A Alzahrani
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Keqing Wang
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Asif Ahmed
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia; President's Office, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
29
|
Umbro I, Fabiani V, Fabiani M, Angelico F, Del Ben M. A systematic review on the association between obstructive sleep apnea and chronic kidney disease. Sleep Med Rev 2020; 53:101337. [PMID: 32629235 DOI: 10.1016/j.smrv.2020.101337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
This systematic review aims to provide a more comprehensive overview of the association between obstructive sleep apnea (OSA) and chronic kidney disease (CKD). A PubMed search was conducted using the terms "(obstructive sleep disorders OR obstructive sleep apnea OR obstructive sleep apnea syndrome) AND (kidney function OR renal outcome OR chronic kidney disease OR end stage renal disease)". Four hundred seventy four articles were initially retrieved, 227 in the last five years. We included articles with similar definitions of OSA, in particular only diagnosed by polysomnography, in order to exclude bias related to different diagnostic clinical tools, prediction algorithms and questionnaires that affected previous studies. Six cross-sectional and two retrospective studies were analyzed. There were a total of 8795 participants across all the studies with a mean age between 51 and 63 years. One study included only males but the proportion of males in the other studies ranged from 58 to 85.6%. The mean body mass index ranged from 25.2 to 32 kg/m2. The majority of studies considered indicate that OSA and CKD are significantly associated, in particular in their more severe categories. It is of great importance to set up a strong clinical collaboration between sleep medicine and nephrology.
Collapse
Affiliation(s)
- Ilaria Umbro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.
| | - Valerio Fabiani
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mario Fabiani
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Del Ben
- Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacol Res 2020; 159:104869. [DOI: 10.1016/j.phrs.2020.104869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
|
31
|
Abstract
Abstract
Purpose of Review
There are some uncertainties about the interactions between obstructive sleep apnea (OSA) and chronic kidney disease (CKD). We critically reviewed recent studies on this topic with a focus on experimental and clinical evidence of bidirectional influences between OSA and CKD, as well as the effects of treatment of either disease.
Recent Findings
Experimental intermittent hypoxia endangers the kidneys, possibly through activation of inflammatory pathways and increased blood pressure. In humans, severe OSA can independently decrease kidney function. Treatment of OSA by CPAP tends to blunt kidney function decline over time, although its effect may vary. OSA may increase cardiovascular complications and mortality in patients with end-stage renal disease (ESRD), while it seems of little harm after renal transplantation. Excessive fluid removal may explain some of the improvements in OSA severity in ESRD and after transplantation.
Summary
Severe OSA and CKD do interact negatively, mainly through hypoxia and fluid retention. The moderate mutually interactive benefits that treatment of each disease exerts on the other one warrant further studies to improve patient management.
Collapse
|
32
|
Sunadome H, Matsumoto H, Tachikawa R, Matsumoto T, Tanizawa K, Oga T, Ono J, Ohta S, Izuhara K, Hirai T, Chin K. Role of serum periostin in severe obstructive sleep apnea with albuminuria: an observational study. Respir Res 2020; 21:143. [PMID: 32517742 PMCID: PMC7285606 DOI: 10.1186/s12931-020-01413-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Periostin is a matricellular protein and is a useful marker in respiratory diseases. However, the roles of periostin in patients with obstructive sleep apnea (OSA) remain unclear. Several in vitro studies have suggested that mechanical stress, hypoxia, impaired metabolism, and kidney injury, which often accompany OSA, may upregulate the expression of periostin. Meanwhile, serum periostin level has been negatively associated with body mass index (BMI) in the general population. In this study, we hypothesized that a high level of serum periostin despite being overweight/obese may discriminate severe OSA or OSA with comorbidities from mild OSA with obesity alone. We aimed to clarify the roles of periostin in patients with OSA to assist in elucidating the heterogeneity of OSA with comorbidities. METHODS Among patients diagnosed as OSA, we examined the associations between serum periostin levels and clinical indices, including the severity of OSA, BMI, and comorbidities, using a multifaceted approach. The serum periostin levels and clinical indices were assessed after 3 months of continuous positive airway pressure (CPAP) treatment. RESULTS In 96 patients with OSA, serum periostin level was negatively correlated with BMI, albeit marginally, and tended to be higher in severe OSA than in others when adjusted for BMI. Cluster analysis identified four clusters, including two severe OSA clusters, one of which was characterized by high serum periostin levels and the presence of comorbidities, including albuminuria. In a comparative analysis of severe OSA cases (n = 53), the level of serum-free fatty acids and the frequency of albuminuria were higher in patients with high serum periostin level of ≥87 ng/mL, which was the highest quintile among all participants, than in those with low serum periostin levels (< 87 ng/mL, n = 41). In patients with severe OSA and high serum periostin levels, the levels of serum periostin and urinary albumin significantly decreased after 3 months of CPAP treatment. CONCLUSIONS Elevated serum periostin in patients with OSA despite being overweight/obese may be an indicator of severe OSA with comorbidities, particularly albuminuria.
Collapse
Affiliation(s)
- Hironobu Sunadome
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan.
| | - Ryo Tachikawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan.,Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto prefecture, 606-8507, Japan
| | - Takeshi Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan.,Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto prefecture, 606-8507, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan.,Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto prefecture, 606-8507, Japan
| | - Toru Oga
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto prefecture, 606-8507, Japan
| | - Junya Ono
- Shino-Test Corporation, 2-29-4 Oonodai, Minami-ku, Sagamihara City, Kanagawa prefecture, 252-0331, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga City, Saga prefecture, 840-8502, Japan
| | - Kenji Izuhara
- Division of Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga City, Saga prefecture, 840-8502, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto city, Kyoto prefecture, 606-8507, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto City, Kyoto prefecture, 606-8507, Japan
| |
Collapse
|
33
|
Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants (Basel) 2020; 9:antiox9060476. [PMID: 32498324 PMCID: PMC7346202 DOI: 10.3390/antiox9060476] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress (OS) drives cardiometabolic diseases. Intermittent hypoxia consistently increases oxidative stress markers. Obstructive sleep apnea (OSA) patients experience intermittent hypoxia and an increased rate of cardiovascular disease, however, the impact of OSA on OS markers is not clear. The objective was to assess relationships between OSA severity and biomarker levels. Patients with suspected OSA referred for a polysomnogram (PSG) provided fasting blood sample. Plasma levels of 8-isoprostane, 8-hydroxydeoxyguanosine (8-OHdG), and superoxide dismutase (SOD) were measured. The relationship between OSA and OS was assessed both before and after controlling for confounders (age, sex, smoking history, history of cardiovascular disease, ethnicity, diabetes, statin usage, body mass index (BMI)). 402 patients were studied (68% male, mean age ± SD = 50.8 ± 11.8 years, apnea-hypopnea index (AHI) = 22.2 ± 21.6 events/hour, BMI = 31.62 ± 6.49 kg/m2). In a multivariable regression, the AHI significantly predicted 8-isoprostane levels (p = 0.0008) together with age and statin usage; AHI was not a predictor of 8-OHdG or SOD. Female sex (p < 0.0001) and no previous history of cardiovascular disease (p = 0.002) were associated with increased antioxidant capacity. Circulating 8-isoprostane levels may be a promising biomarker of the severity of oxidative stress in OSA patients. Prospective studies are needed to determine whether this biomarker is associated with long-term cardiometabolic complications in OSA.
Collapse
|
34
|
Lin CH, Lurie RC, Lyons OD. Sleep Apnea and Chronic Kidney Disease. Chest 2020; 157:673-685. [DOI: 10.1016/j.chest.2019.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022] Open
|
35
|
Wu J, Chu Y, Jiang Z, Yu Q. Losartan protects against intermittent hypoxia-induced peritubular capillary loss by modulating the renal renin-angiotensin system and angiogenesis factors. Acta Biochim Biophys Sin (Shanghai) 2020; 52:38-48. [PMID: 31836883 DOI: 10.1093/abbs/gmz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Obstructive sleep apnea is characterized by chronic intermittent hypoxia (CIH), which is a risk factor for renal peritubular capillary (PTC) loss, and angiotensin II receptor blockers can alleviate PTC loss. However, the mechanism by which losartan (an angiotensin II receptor blocker) reduces CIH-induced PTC loss and attenuates kidney damage is still unknown. Thus, in this study, we examined the protective effects of losartan against CIH-induced PTC loss and explored the underlying mechanisms in rat CIH model. The immunohistochemical staining of CD34 and morphological examination showed that CIH reduced PTC density and damaged tubular epithelial cells. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR, and western blot analysis results revealed that CIH increased the expression of hypoxia inducible factor-1α (HIF-1α), angiotensin II (Ang II), angiotensin II type 1 receptor (AT1R), pro-angiogenesis factor vascular endothelial growth factor (VEGF), and anti-angiogenesis factor thrombospondin-1 (TSP-1) in the renal cortex of rats. CIH may up-regulate VEGF expression and simultaneously increase TSP-1 production. By histopathological, immunohistochemistry, ELISA, RT-qPCR, and western blot analysis, we found that the expressions of renal renin-angiotensin system (RAS), HIF-1α, VEGF, and TSP-1 were decreased, and PTC loss and tubular epithelial cell injury were attenuated with losartan treatment. Losartan ameliorated CIH-induced PTC loss by modulating renal RAS to improve the crosstalk between endothelial cells and tubular epithelial cells and subsequently regulate the balance of angiogenesis factors. Our study provided novel insights into the mechanisms of CIH-induced kidney damage and indicated that losartan could be a potential therapeutic agent for renal protection by alleviating CIH-induced PTC loss.
Collapse
Affiliation(s)
- Jiqiang Wu
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao Chu
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhenxiu Jiang
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Qin Yu
- Department of Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Voulgaris A, Nena E, Steiropoulos P. Burden of Nocturnal Hypoxia and Type of Positive Airway Pressure Therapy May Influence Markers of Acute Kidney Injury in Patients With Obstructive Sleep Apnea. J Clin Sleep Med 2019; 15:1695. [PMID: 31739863 DOI: 10.5664/jcsm.8046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Athanasios Voulgaris
- Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
37
|
WANG Y, AI L, HAI B, CAO Y, LI R, LI H, LI Y. Tempol Alleviates Chronic Intermittent Hypoxia-Induced Pancreatic
Injury Through Repressing Inflammation and Apoptosis. Physiol Res 2019; 68:445-455. [PMID: 31301730 DOI: 10.33549/physiolres.934010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Obstructive sleep apnea (OSA) has been demonstrated to be implicated in disorder of insulin secretion and diabetes mellitus. In this study, we aimed to evaluate the protective role of tempol, a powerful antioxidant, in chronic intermittent hypoxia
(IH)-induced pancreatic injury. The rat model of OSA was established by IH exposure. The pathological changes, increased blood-glucose level, and raised proinsulin/insulin ratio in pancreatic tissues of rats received IH were effectively relieved by tempol delivery. In addition, the enhanced levels of pro-inflammatory cytokines, TNF-α, IL-1β, IL-6, and inflammatory mediators, PGE2, cyclooxygenase-2 (COX-2), NO, and inducible nitric oxide synthase (iNOS) in pancreatic tissue were suppressed by tempol. Moreover, tempol inhibited IH-induced apoptosis in pancreatic tissue as evidenced by upregulated Bcl-2 level, and downregulated Bax and cleaved caspase-3 levels. Finally, the abnormal activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways induced by IH was restrained by tempol administration. In summary, our study demonstrates that tempol relieves IH-induced pancreatic injury by inhibiting inflammatory response and apoptosis, which provides theoretical basis for tempol as an effective treatment for OSA-induced pancreatic injury.
Collapse
Affiliation(s)
- Y. WANG
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - L. AI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - B. HAI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - Y. CAO
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - R. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - H. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - Y. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| |
Collapse
|
38
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Rimke AN, Ahmed SB, Turin TC, Pendharkar SR, Raneri JK, Lynch EJ, Hanly PJ. Effect of CPAP therapy on kidney function in patients with obstructive sleep apnoea and chronic kidney disease: a protocol for a randomised controlled clinical trial. BMJ Open 2019; 9:e024632. [PMID: 30904853 PMCID: PMC6475212 DOI: 10.1136/bmjopen-2018-024632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/04/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Obstructive sleep apnoea (OSA) is common in patients with chronic kidney disease (CKD) and may contribute to the progression of kidney disease either through direct effects of hypoxia on the kidney or indirectly through hypoxaemia-induced oxidative stress, endothelial dysfunction, inflammation, activation of the renin-angiotensin and sympathetic nervous systems, and hypertension. Treatment of OSA with continuous positive airway pressure (CPAP) improves many of these physiological abnormalities in patients with normal renal function, though to date there are no trials evaluating the effect of OSA treatment on kidney function in patients with CKD. The purpose of this study is to test the feasibility and efficacy of CPAP therapy in CKD patients with OSA. METHODS AND ANALYSIS The study is a randomised, controlled, non-blinded, parallel clinical trial in which patients with established CKD are screened for OSA. Patients with OSA are randomised to either conventional medical therapy (control group) or medical therapy and CPAP (CPAP group) and followed for 1 year. The primary outcome is the change in estimated glomerular filtration rate. Secondary outcomes are the change in the urinary albumin/creatinine ratio, the Epworth Sleepiness Scale , Pittsburgh Sleep Quality Index and Kidney Disease Quality of Life questionnaire. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Conjoint Health Research Ethics Board (ID: REB15-0055). Results from this study will be disseminated through presentations at scientific conferences and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT02420184; Pre-results.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick J Hanly
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sleep Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Abuyassin B, Badran M, Ayas NT, Laher I. The antioxidant α-lipoic acid attenuates intermittent hypoxia-related renal injury in a mouse model of sleep apnea. Sleep 2019; 42:5382296. [DOI: 10.1093/sleep/zsz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Bisher Abuyassin
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Badran
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Najib T Ayas
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Laher
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Zhang XB, Cai JH, Yang YY, Zeng YM, Zeng HQ, Wang M, Cheng X, Luo X, Ewurum HC. Telmisartan attenuates kidney apoptosis and autophagy-related protein expression levels in an intermittent hypoxia mouse model. Sleep Breath 2018; 23:341-348. [PMID: 30219962 PMCID: PMC6418059 DOI: 10.1007/s11325-018-1720-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) is associated with renal impairs. As a novel pathophysiological hallmark of OSA, chronic intermittent hypoxia (CIH) enhances apoptosis and autophagy. The present study aims to evaluate the effect of telmisartan on CIH-induced kidney apoptosis and autophagy in a mouse model of OSA. Materials and methods Mice were randomly allocated to normoxia, CIH, and CIH+telmisartan groups (n = 12 in each group). The CIH exposure duration was 12 weeks. Mice in the CIH+telmisartan group received telmisartan administration. The terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and western blotting of Bax and cleaved caspase-3 were conducted for evaluating apoptosis in kidney tissue. While the autophagy-related proteins, beclin-1 and LC3, were also observed via western blotting. Results The percentage of apoptotic cell in the CIH group was significantly higher than that of normoxia group; meanwhile, Bax and cleaved caspase-3 protein levels were increased in the CIH group than those of normoxia group (all p < 0.05). Compared with the normoxia group, mice in the CIH group had greater autophagy-related proteins (beclin-1 and LC3) expression. When compared to the CIH group, both the renal apoptosis and autophagy in the CIH+telmisartan group were decreased. Conclusion The CIH accelerates renal apoptosis and autophagy levels. Telmisartan ameliorating those levels suggests that it might prevent renal impairs from the CIH in OSA patients.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Road, Licheng District, Quanzhou, 362000, Fujian Province, China.,The Second Clinical Medical College of Fujian Medical University, Quanzhou, China.,Center of Respiratory Medicine of Fujian Province, Quanzhou, China
| | - Jing-Huang Cai
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Yu-Yun Yang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Road, Licheng District, Quanzhou, 362000, Fujian Province, China. .,The Second Clinical Medical College of Fujian Medical University, Quanzhou, China. .,Center of Respiratory Medicine of Fujian Province, Quanzhou, China.
| | - Hui-Qing Zeng
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China. .,Teaching Hospital of Fujian Medical University, Xiamen, China.
| | - Miao Wang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Xiao Cheng
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Xiongbiao Luo
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | | |
Collapse
|
42
|
Liu Y, Guo Y, Huang W, Deng KY, Qian Y, Xin HB. 17β-Estradiol Promotes Apoptosis in Airway Smooth Muscle Cells Through CD38/SIRT1/p53 Pathway. Front Endocrinol (Lausanne) 2018; 9:770. [PMID: 30619097 PMCID: PMC6305733 DOI: 10.3389/fendo.2018.00770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
17β-Estradiol (E2) is the major estrogen secreted by the premenopausal ovary and shows dual effects on cell apoptosis under pathological conditions. E2 was previously shown to increase CD38 mRNA and protein expression in myometrial smooth muscle, but its function and mechanism remain largely unknown. Here we investigated the role of E2 in hypoxia-induced apoptosis in mouse airway smooth muscle cells (ASMCs) and explored the underlying mechanisms. Results showed that E2 significantly increased CD38 expression at both mRNA and protein levels, accompanied with decreased SIRT1 levels in ASMCs. By using primary ASMCs from the wild type (WT) and the smooth muscle-specific CD38 knockout (CD38 KO) mice, we found that the down-regulation of SIRT1 induced by E2 was abolished in CD38 KO AMSCs. E2 promoted the acetylation of p53 in WT cells, and this effect was also diminished in the absence of CD38. In addition, E2 further activated CD38/SIRT1/p53 signal pathway and promoted cell apoptosis during hypoxia. However, these effects were reversed in CD38 KO ASMCs and by the specific SIRT1 activator Resveratrol. We also found that E2 enhanced CD38 expression through estrogen receptor. The data suggested that CD38 is a direct target for E2 which promotes hypoxia-induced AMSC apoptosis through SIRT1/p53 signal pathway.
Collapse
Affiliation(s)
- Yu Liu
- Cardiovascular Research Center, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yinfang Guo
- Department of Medical Records, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weilu Huang
- Cardiovascular Research Center, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- Cardiovascular Research Center, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yisong Qian
- Cardiovascular Research Center, Institute of Translational Medicine, Nanchang University, Nanchang, China
- *Correspondence: Yisong Qian
| | - Hong-Bo Xin
- Cardiovascular Research Center, Institute of Translational Medicine, Nanchang University, Nanchang, China
- Hong-Bo Xin
| |
Collapse
|