1
|
Salazar M, Joly S, Anglada-Escudé G, Ribas L. Epigenetic and physiological alterations in zebrafish subjected to hypergravity. PLoS One 2024; 19:e0300310. [PMID: 38776274 PMCID: PMC11111069 DOI: 10.1371/journal.pone.0300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.
Collapse
Affiliation(s)
- Marcela Salazar
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Silvia Joly
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Guillem Anglada-Escudé
- Department of Astrophysics, Institut de Ciències de l’Espai—Consejo Superior de Investigaciones Científicas (ICE-CSIC), UAB Campus at Cerdanyola del Vallès, Barcelona, Spain
- Institut d’Estudis Espacials de Catalunya–IEEC/CERCA, Gran Capità, 2–4, Edifici Nexus, Despatx 201, Barcelona, Spain
| | - Laia Ribas
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Sventitskaya MA, Ogneva IV. Reorganization of the mouse oocyte' cytoskeleton after cultivation under simulated weightlessness. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:8-18. [PMID: 38245351 DOI: 10.1016/j.lssr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
Female germ cells provide the structural basis for the development of a new organism, while the main molecular mechanisms of the impact of weightlessness on the cell remain unknown. The aim of this work was to determine the relative content and distribution of the main proteins of microtubules and microfilaments, to assess the relative RNA content of genes in mouse oocytes after short-term exposure to simulated microgravity, and to determine the potential for embryo development up to the 3-cell stage. Before starting the study, BALB/c mice were divided into two groups. One group received water and standard food without any modifications. Before exposure to simulated microgravity, the oocytes of these animals were randomly divided into two groups - c and µg. The second group of animals additionally received essential phospholipids containing at least 80% phosphatidylcholines, per os for 6 weeks before the start of the experiment at a dosage of 350 mg/kg of the animal's body to modify the lipid composition of the oocyte membrane. The obtained oocytes of these animals were also randomly divided into two groups - ce and µge. To determine the protein distribution and its relative content, immunofluorescence analysis was performed, and the RNA content of genes was assessed using real-time PCR with reverse transcription. After cultivation under simulated microgravity, beta-actin and acetylated alpha-tubulin are redistributed from the cortical layer to the central part of the oocyte, and the relative content of acetylated alpha-tubulin and tubulin isoforms decreases. At the same time, the mRNA content of most genes encoding cytoskeletal proteins was significantly higher in comparison with the control level. The use of essential phospholipids led to a decrease in the content of cellular cholesterol in the oocyte and leveled changes in the content and redistribution of acetylated alpha-tubulin and beta-actin after cultivation under simulated microgravity. In addition, after in vitro fertilization and further cultivation under simulated weightlessness, we observed a decrease in the number of embryos that passed the stage of the 2-cell embryo, but while taking essential phospholipids, the number of embryos that reached the 3-cell stage did not differ from the control group. The results obtained show changes in the content and redistribution of cytoskeletal proteins in the oocyte, which may be involved in the process of pronucleus migration, the formation of the fission spindle and the contractile ring under simulated weightlessness, which may be important for normal fertilization and cleavage of the future embryo.
Collapse
Affiliation(s)
- Maria A Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia.
| | - Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia
| |
Collapse
|
3
|
Hou F, Zhou X, Zhou S, Liu H, Huang YE, Yuan M, Zhu J, Cao X, Jiang W. DNA Methylation Dynamics Associated with Long-term Isolation of Simulated Space Travel. iScience 2022; 25:104493. [PMID: 35712082 PMCID: PMC9194130 DOI: 10.1016/j.isci.2022.104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Long-term isolation is one of the risk factors that astronauts will encounter in spaceflight. At present, few researches have explored DNA methylation dynamics during long-term isolation. In this study, using time series DNA methylation data from “Mars-500” mission, we conducted a multi-step analysis to investigate the characteristics and dynamic patterns of DNA methylation as well as their functional insights during long-term isolation. The results showed that genome-wide methylation changes were minimal. In the six identified DNA methylation dynamic patterns, most of significantly fluctuating CpG sites could be returned to the baseline in post-isolation, and the remaining sites persistently decreased during isolation. Next, functional enrichment analysis of genes with each pattern revealed strong functional specificity. Some patterns were also significantly associated with nervous system diseases, digestive system diseases and cancers. In conclusion, the DNA methylation dynamics during long-term isolation have great functional significance, and might be helpful for protection of astronaut health. Six dynamic patterns of DNA methylation were identified during long-term isolation Most of significantly fluctuating methylation sites recovered in post-isolation Six patterns showed strong functional specificity Genes with decreased methylation levels might be associated with tumor
Collapse
Affiliation(s)
- Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yu-e Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jicun Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xinyu Cao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Corresponding author
| |
Collapse
|
4
|
Kumar A, Tahimic CGT, Almeida EAC, Globus RK. Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart. Int J Mol Sci 2021; 22:9088. [PMID: 34445793 PMCID: PMC8396460 DOI: 10.3390/ijms22169088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Spaceflight causes cardiovascular changes due to microgravity-induced redistribution of body fluids and musculoskeletal unloading. Cardiac deconditioning and atrophy on Earth are associated with altered Trp53 and oxidative stress-related pathways, but the effects of spaceflight on cardiac changes at the molecular level are less understood. We tested the hypothesis that spaceflight alters the expression of key genes related to stress response pathways, which may contribute to cardiovascular deconditioning during extended spaceflight. Mice were exposed to spaceflight for 15 days or maintained on Earth (ground control). Ventricle tissue was harvested starting ~3 h post-landing. We measured expression of select genes implicated in oxidative stress pathways and Trp53 signaling by quantitative PCR. Cardiac expression levels of 37 of 168 genes tested were altered after spaceflight. Spaceflight downregulated transcription factor, Nfe2l2 (Nrf2), upregulated Nox1 and downregulated Ptgs2, suggesting a persistent increase in oxidative stress-related target genes. Spaceflight also substantially upregulated Cdkn1a (p21) and cell cycle/apoptosis-related gene Myc, and downregulated the inflammatory response gene Tnf. There were no changes in apoptosis-related genes such as Trp53. Spaceflight altered the expression of genes regulating redox balance, cell cycle and senescence in cardiac tissue of mice. Thus, spaceflight may contribute to cardiac dysfunction due to oxidative stress.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | | | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| |
Collapse
|
5
|
Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space Habitation. Sci Rep 2020; 10:2336. [PMID: 32047211 PMCID: PMC7012842 DOI: 10.1038/s41598-020-58898-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Animal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA’s Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.
Collapse
|
6
|
Usik MA, Ogneva IV. DNA Methylation in Mouse Spermatozoa under Long-Term Modeling the Effects of Microgravity. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Testes and duct deferens of mice during space flight: cytoskeleton structure, sperm-specific proteins and epigenetic events. Sci Rep 2019; 9:9730. [PMID: 31278362 PMCID: PMC6611814 DOI: 10.1038/s41598-019-46324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023] Open
Abstract
To analyze the effect of gravity on the structure of germinal tissues, we examined tissues of the testes and duct deferens of mice that were exposed to space flight conditions for 21–24 days (experiment Rodent Research-4, SpaceX-10 mission, February 2017, USA). We evaluated the levels of cytoskeletal proteins, sperm-specific proteins, and epigenetic events; in particular, we evaluated levels of 5-hydroxymethylcytosine and of enzymes that regulate DNA methylation/demethylation. We did not detect changes in the levels of cytoskeletal proteins, sperm-specific proteins, DNA-methylases, DNA demethylases, DNA acetylases, or histone deacetylases. However, there were changes at the gene expression level. In particular, there was an increase in the demethylase Tet2 and a decrease in the histone deacetylase Hdac1. These gene expression changes may be of key importance during the early period of readaptation since they could lead to an increase in the expression of target genes.
Collapse
|
8
|
DNA Methylation of Mouse Testes, Cardiac and Lung Tissue During Long-Term Microgravity Simulation. Sci Rep 2019; 9:7974. [PMID: 31138883 PMCID: PMC6538624 DOI: 10.1038/s41598-019-44468-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total methylation and 5 hmC levels, and the levels of enzymes that regulate these processes in the testes, heart, and lungs in mice after a 30-day microgravity modeling by antiorthostatic suspension and after a subsequent 12-hour recovery as well as in the corresponding control group and identical groups treated with essential phospholipids. The obtained results indicate that under modeling microgravity in the examined tissues a decrease of cytoskeletal gene expression (mainly in the heart and lungs tissues) correlated with an increase in the CpG islands methylation and an increase of the expression (mainly in the testes tissue) - with a decrease of the CpG-methylation, despite of the fact that in the examined tissues took place a decrease of the content methylases and demethylases. But the deacetylase HDAC1 content increased in the heart and lungs tissues and decreased in the testes, letting us suggest its participation in the regulation of the methylation level under microgravity conditions.
Collapse
|
9
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|