1
|
Cho SK, Darby JR, Williams GK, Holman SL, Rai A, Van Amerom JF, Fan C, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Post-Myocardial Infarction Remodeling and Hyperkinetic Remote Myocardium in Sheep Measured by Cardiac MRI Feature Tracking. J Magn Reson Imaging 2025; 61:1323-1335. [PMID: 38940396 PMCID: PMC11803690 DOI: 10.1002/jmri.29496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Cardiac MRI feature tracking (FT) allows objective assessment of segmental left ventricular (LV) function following a myocardial infarction (MI), but its utilization in sheep, where interventions can be tested, is lacking. PURPOSE To apply and validate FT in a sheep model of MI and describe post-MI LV remodeling. STUDY TYPE Animal model, longitudinal. ANIMAL MODEL Eighteen lambs (6 months, male, n = 14; female, n = 4; 25.2 ± 4.5 kg). FIELD STRENGTH/SEQUENCE Two-dimensional balanced steady-state free precession (bSSFP) and 3D inversion recovery fast low angle shot (IR-FLASH) sequences at 3 T. ASSESSMENT Seven lambs underwent test-retest imaging to assess FT interstudy reproducibility. MI was induced in the remaining 11 by coronary ligation with MRI being undertaken before and 15 days post-MI. Injury size was measured by late gadolinium enhancement (LGE) and LV volumes, LV mass, ejection fraction (LVEF), and wall thickness (LVWT) were measured, with FT measures of global and segmental radial, circumferential, and longitudinal strain. STATISTICAL TESTS Sampling variability, inter-study, intra and interobserver reproducibility were assessed using Pearson's correlation, Bland-Altman analyses, and intra-class correlation coefficients (ICC). Diagnostic performance of segmental strain to predict LGE was assessed using receiver operating characteristic curve analysis. Significant differences were considered P < 0.05. RESULTS Inter-study reproducibility of FT was overall good to excellent, with global strain being more reproducible than segmental strain (ICC = 0.89-0.98 vs. 0.77-0.96). MI (4.0 ± 3.7% LV mass) led to LV remodeling, as evident by significantly increased LV volumes and LV mass, and significantly decreased LVWT in injured regions, while LVEF was preserved (54.9 ± 6.9% vs. 55.6 ± 5.7%; P = 0.778). Segmental circumferential strain (CS) correlated most strongly with LGE. Basal and mid- CS increased significantly, while apical CS significantly decreased post-MI. DATA CONCLUSION FT is reproducible and compensation by hyperkinetic remote myocardium may manifest as overall preserved global LV function. EVIDENCE LEVEL N/A TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steven K.S. Cho
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Georgia K. Williams
- Preclinical, Imaging & Research LaboratoriesSouth Australian Health & Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Archana Rai
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical Imaging, University Medical Imaging TorontoUniversity of TorontoTorontoOntarioCanada
- Peter Munk Cardiac CenterToronto General Hospital, University Health Network, University of TorontoTorontoOntarioCanada
| | - Joshua F.P. Van Amerom
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Chun‐Po Fan
- Rogers Computational Program, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Janna L. Morrison
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Mike Seed
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
2
|
Grob L, Schwerzmann Y, Kaiser D, Jung B, Schweizer T, Huettenmoser SP, Dozio S, Huber AT, Boscolo Berto M, Gräni C, Guensch DP, Fischer K. Retrospective temporal resolution interpolation alters myocardial strain quantification on compressed sensing cine CMR. Int J Cardiovasc Imaging 2025; 41:591-602. [PMID: 39953315 PMCID: PMC11880142 DOI: 10.1007/s10554-025-03348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Compressed sensing (CS) is a rapidly developing technique that can acquire functional cines of the heart within seconds while free-breathing and it is ideal for assessing cardiac function in non-typical conditions such as when patients are sedated or anaesthetized or undergoing stress exams. CS cines can further include retrospective temporal resolution interpolation (INTPTR) to improve the frame count per heartbeat, and the impact of INTPTR on biventricular functional measurements is unknown. We investigated the impact of INTPTR on left and right ventricular volumetry and strain measurements of CS cines. Nineteen patients with 51 different CS acquisitions were prospectively enrolled. CS cines were acquired at rest, under adenosine stress, oxygen inhalation or while under general anaesthesia with mechanical ventilation. From the same CS acquisition, a dataset with and without INTPTR were generated by the scanner. The outputs were separated and analysed by blinded readers for left and right ventricular volumetry, as well as systolic and diastolic strain parameters using feature-tracking techniques. Measurements were compared between the INTPTR and non-INTPTR outputs. Similar measurements were obtained for biventricular volumes and ejection fraction independent of INTPTR. Peak strain was significantly underestimated on INTPTR cines for both longitudinal and circumferential orientations (p < 0.01). Nevertheless, good-to-excellent correlations were observed between the two measurements (r > 0.65, p < 0.01), and there was still a high area under the curve (AUC ≥ 0.95, p < 0.01) for detecting abnormal patients defined by strain analysis on the standard segmented cine. INTPTR especially negatively influenced strain rates analysis, as many strain rate curves were deemed unusable with this technique. These findings were consistent independent if the patient was in a resting, stress or anaesthetized condition. Although INTPTR is a feature which improves temporal resolution on CS cines, quantification of biventricular strain and strain rates is not feasible or comparable, thus, feature tracking analysis should be performed on non-INTPTR data. However, volumetry and ejection fraction analysis are consistent independent of which output is analysed.
Collapse
Affiliation(s)
- Leonard Grob
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Yann Schwerzmann
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Dario Kaiser
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Thilo Schweizer
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Stefan P Huettenmoser
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Scilla Dozio
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Adrian T Huber
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, University of Lucerne, Lucerne, Switzerland
| | - Martina Boscolo Berto
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Dominik P Guensch
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland.
| |
Collapse
|
3
|
Cai Q, Zhao Z, Gao J, Liu J, Li J, Peng X, Chen H. Normal Values for Atrial Deformation Measured by Feature-Tracking Cardiac MRI: A Meta-Analysis. J Magn Reson Imaging 2025; 61:882-898. [PMID: 38807354 DOI: 10.1002/jmri.29465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND A consensus on normal atrial deformation measurements by feature-tracking cardiac MRI remained absent. PURPOSE Provide reference ranges for atrial strain parameters in normal subjects, evaluating the influence of field strength and analysis software on the measurements. STUDY TYPE Meta-analysis. POPULATION 2708 subjects from 42 studies undergoing cardiac MRI. ASSESSMENT A systematic search was conducted from database (PubMed, Web of Science, ScienceDirect, and EMBASE) inception through August 2023. The random-effects model was used to pool the means of biatrial strain parameters. Heterogeneity and clinical variable effects were assessed. Strain measurements among different field strengths and analysis software were compared. STATISTICAL TESTS The inverse-variance method, Cochrane Q statistic, and I2 value, meta-regression analysis, and ANOVA were used; P < 0.05 was considered statistically significant. RESULTS The pooled means of left atrial (LA) total strain (εs), passive strain (εe), and active strain (εa) were 37.46%, 22.73%, and 16.24%, respectively, and the pooled means of LA total strain rate (SRs), passive strain rate (SRe), and active strain rate (SRa) were 1.66, -1.95, and -1.83, indicating significant heterogeneity. The pooled means of right atrial (RA) εs, εe, and εa were 44.87%, 26.05%, and 18.83%. RA SRs, SRe, and SRa were 1.66, -1.95, and -1.83, respectively. The meta-regression identified age as significantly associated with LA εs, εe and SRe, field strength was associated with LA SRa (all P < 0.05). ANOVA revealed differences in LA εa and SRa among different analysis software and in LA εs and all LA strain rates (all P < 0.05) among field strengths. No significant differences were identified in RA strain across analysis software (RA strain: P = 0.145-0.749; RA strain rates: P = 0.073-0.744) and field strengths (RA strain: P = 0.641-0.794; RA strain rates: P = 0.204-0.458). DATA CONCLUSION This study demonstrated the pooled reference values of biatrial strain. Age, analysis software, and field strength were attributed to differences in LA strain, whereas RA strain showed consistency across different field strengths and analysis software. Limited study subjects may account for the absence of influence on RA strain. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Qiuyi Cai
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhengkai Zhao
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jin Gao
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jian Liu
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jianlin Li
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xin Peng
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hang Chen
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Pätz T, Stiermaier T, Meusel M, Reinhard I, Jensch PJ, Rawish E, Wang J, Feistritzer HJ, Schuster A, Koschalka A, Lange T, Kowallick JT, Desch S, Thiele H, Eitel I. Myocardial injury and clinical outcome in octogenarians after non-ST-elevation myocardial infarction. Front Cardiovasc Med 2024; 11:1422878. [PMID: 39105073 PMCID: PMC11299492 DOI: 10.3389/fcvm.2024.1422878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction The aim of this study was to analyze age-associated myocardial injury and clinical outcome after non-ST-elevation myocardial infarction (NSTEMI). Methods This prospective, multicenter study consists of 440 patients with NSTEMI enrolled at 7 centers. All patients were treated with primary percutaneous coronary intervention and underwent cardiac magnetic resonance (CMR) imaging 1-10 days after study inclusion. CMR parameters of myocardial injury and clinical outcome were evaluated by creating 2 subgroups: <80 years vs. ≥80 years. The clinical endpoint was the 1-year incidence of major adverse cardiac events (MACE) consisting of death, re-infarction and new congestive heart failure. Results Elderly patients ≥80 years accounted for 13.9% of the study population and showed a divergent cardiovascular risk profile compared to the subgroup of patients <80 years. CMR imaging did not reveal significant differences regarding infarct size, microvascular obstruction, left ventricular ejection fraction or multidimensional strain analysis between the study groups. At 1-year follow-up, MACE rate was significantly increased in patients ≥80 years compared to patients aged <80 years (19.7% vs. 9.6%; p = 0.019). In a multiple stepwise logistic regression model, the number of diseased vessels, aldosterone antagonist use and left ventricular global longitudinal strain were identified as independent predictors for MACE in all patients, while there was no independent predictive value of age regarding 1-year clinical outcome. Conclusion This prospective, multicenter analysis shows that structural and functional myocardial damage is similar in younger and older patients with NSTEMI. Furthermore, in this heterogeneous but also clinically representative cohort with reduced sample size, age was not independently associated with 1-year clinical outcome, despite an increased event rate in patients ≥80 years.
Collapse
Affiliation(s)
- Toni Pätz
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| | - Thomas Stiermaier
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Philipp-Johannes Jensch
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| | - Elias Rawish
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| | - Juan Wang
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
- The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Hans-Josef Feistritzer
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Alexander Koschalka
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Johannes T. Kowallick
- Institute for Diagnostic and Interventional Radiology, German Center for Cardiovascular Research (DZHK), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Ingo Eitel
- Department of Cardiology, Angiology and Intensive Care Medicine, German Center for Cardiovascular Research (DZHK), University Heart Center Lübeck, Medical Clinic II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Kollmann A, Lohr D, Ankenbrand MJ, Bille M, Terekhov M, Hock M, Elabyad I, Baltes S, Reiter T, Schnitter F, Bauer WR, Hofmann U, Schreiber LM. Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility. Sci Rep 2024; 14:11009. [PMID: 38744988 PMCID: PMC11094053 DOI: 10.1038/s41598-024-61417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.
Collapse
Affiliation(s)
- Alena Kollmann
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
| | - Markus J Ankenbrand
- Faculty of Biology, Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Würzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Ibrahim Elabyad
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Steffen Baltes
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Corral Acero J, Lamata P, Eitel I, Zacur E, Evertz R, Lange T, Backhaus SJ, Stiermaier T, Thiele H, Bueno-Orovio A, Schuster A, Grau V. Comprehensive characterization of cardiac contraction for improved post-infarction risk assessment. Sci Rep 2024; 14:8951. [PMID: 38637609 PMCID: PMC11026383 DOI: 10.1038/s41598-024-59114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
This study aims at identifying risk-related patterns of left ventricular contraction dynamics via novel volume transient characterization. A multicenter cohort of AMI survivors (n = 1021) who underwent Cardiac Magnetic Resonance (CMR) after infarction was considered for the study. The clinical endpoint was the 12-month rate of major adverse cardiac events (MACE, n = 73), consisting of all-cause death, reinfarction, and new congestive heart failure. Cardiac function was characterized from CMR in 3 potential directions: by (1) volume temporal transients (i.e. contraction dynamics); (2) feature tracking strain analysis (i.e. bulk tissue peak contraction); and (3) 3D shape analysis (i.e. 3D contraction morphology). A fully automated pipeline was developed to extract conventional and novel artificial-intelligence-derived metrics of cardiac contraction, and their relationship with MACE was investigated. Any of the 3 proposed directions demonstrated its additional prognostic value on top of established CMR indexes, myocardial injury markers, basic characteristics, and cardiovascular risk factors (P < 0.001). The combination of these 3 directions of enhancement towards a final CMR risk model improved MACE prediction by 13% compared to clinical baseline (0.774 (0.771-0.777) vs. 0.683 (0.681-0.685) cross-validated AUC, P < 0.001). The study evidences the contribution of the novel contraction characterization, enabled by a fully automated pipeline, to post-infarction assessment.
Collapse
Affiliation(s)
- Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Pablo Lamata
- Department of Digital Twins for Healthcare, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor North Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Ingo Eitel
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ernesto Zacur
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Thomas Stiermaier
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Centre Leipzig at University of Leipzig, Leipzig, Germany
| | | | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Hao Y, Zhang R, Chen L, Fan G, Liu B, Jiang K, Zhu Y, Zhang M, Guo J. Distinguishing heart failure subtypes: the diagnostic power of different cardiac magnetic resonance imaging parameters. Front Cardiovasc Med 2024; 11:1291735. [PMID: 38385138 PMCID: PMC10879269 DOI: 10.3389/fcvm.2024.1291735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Objectives The aim of this retrospective study was to explore the diagnostic potential of various cardiac parameters in differentiating between heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-ranged and reduced ejection fraction (HFm + rEF), and to discern their relationship with normal cardiac function. Methods This research encompassed a comparative analysis of heart failure subtypes based on multiple indicators. Participants were categorized into HFm + rEF, HFpEF, and control groups. For each participant, we investigated indicators of left ventricular function (LVEDVi, LVESVi, and LVEF) and myocardial strain parameters (GLS, GCS, GRS). Additionally, quantitative tissue evaluation parameters including native T1, enhanced T1, and extracellular volume (ECV) were examined.For comprehensive diagnostic performance analysis, receiver operating characteristic (ROC) curve evaluations for each parameters were conducted. Results HFm + rEF patients exhibited elevated LVEDVi and LVESVi and decreased LVEF compared to both HFpEF and control groups. Myocardial strain revealed significant reductions in GLS, GCS, and GRS for HFm + rEF patients compared to the other groups. HFpEF patients showed strain reductions relative to the control group. In cardiac magnetic resonance imaging (CMR) evaluations, HFm + rEF patients demonstrated heightened native T1 times and ECV fractions. Native T1 was particularly effective in distinguishing HFpEF from healthy subjects. Conclusion Native T1, ECV, and myocardial strain parameters have substantial diagnostic value in identifying HFpEF. Among them, native T1 displayed superior diagnostic efficiency relative to ECV, offering critical insights into early-stage HFpEF. These findings can play a pivotal role in refining clinical management and treatment strategies for heart failure patients.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lihong Chen
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ganglian Fan
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing Liu
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ke Jiang
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Yi Zhu
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Schmidt-Rimpler J, Backhaus SJ, Hartmann FP, Schaten P, Lange T, Evertz R, Schulz A, Kowallick JT, Lapinskas T, Hasenfuß G, Kelle S, Schuster A. Impact of temporal and spatial resolution on atrial feature tracking cardiovascular magnetic resonance imaging. Int J Cardiol 2024; 396:131563. [PMID: 37926379 DOI: 10.1016/j.ijcard.2023.131563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Myocardial deformation assessment by cardiovascular magnetic resonance-feature tracking (CMR-FT) has incremental prognostic value over volumetric analyses. Recently, atrial functional analyses have come to the fore. However, to date recommendations for optimal resolution parameters for accurate atrial functional analyses are still lacking. METHODS CMR-FT was performed in 12 healthy volunteers and 9 ischemic heart failure (HF) patients. Cine sequences were acquired using different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolution parameters (high 1.5 × 1.5 mm in plane and 5 mm slice thickness, standard 1.8 × 1.8 × 8 mm and low 3.0 × 3.0 × 10 mm). Inter- and intra-observer reproducibility were calculated. RESULTS Increasing temporal resolution is associated with higher absolute strain and strain rate (SR) values. Significant changes in strain assessment for left atrial (LA) total strain occurred between 20 and 30 frames/cycle amounting to 2,5-4,4% in absolute changes depending on spatial resolution settings. From 30 frames/cycle onward, absolute strain values remained unchanged. Significant changes of LA strain rate assessment were observed up to the highest temporal resolution of 50 frames/cycle. Effects of spatial resolution on strain assessment were smaller. For LA total strain a general trend emerged for a mild decrease in strain values obtained comparing the lowest to the highest spatial resolution at temporal resolutions of 20, 40 and 50 frames/cycle (p = 0.006-0.046) but not at 30 frames/cycle (p = 0.140). CONCLUSION Temporal and to a smaller extent spatial resolution affect atrial functional assessment. Consistent strain assessment requires a standard spatial resolution and a temporal resolution of 30 frames/cycle, whilst SR assessment requires even higher settings of at least 50 frames/cycle.
Collapse
Affiliation(s)
- Jonas Schmidt-Rimpler
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Sören J Backhaus
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Finn P Hartmann
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
| | - Philip Schaten
- Graz University of Technology, Institute of Biomedical Imaging, Graz, Austria
| | - Torben Lange
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schulz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Tomas Lapinskas
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Lange T, Backhaus SJ, Schulz A, Evertz R, Schneider P, Kowallick JT, Hasenfuß G, Kelle S, Schuster A. Inter-study reproducibility of cardiovascular magnetic resonance-derived hemodynamic force assessments. Sci Rep 2024; 14:634. [PMID: 38182625 PMCID: PMC10770352 DOI: 10.1038/s41598-023-50405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR)-derived hemodynamic force (HDF) analyses have been introduced recently enabling more in-depth cardiac function evaluation. Inter-study reproducibility is important for a widespread clinical use but has not been quantified for this novel CMR post-processing tool yet. Serial CMR imaging was performed in 11 healthy participants in a median interval of 63 days (range 49-87). HDF assessment included left ventricular (LV) longitudinal, systolic peak and impulse, systolic/diastolic transition, diastolic deceleration as well as atrial thrust acceleration forces. Inter-study reproducibility and study sample sizes required to demonstrate 10%, 15% or 20% relative changes of HDF measurements were calculated. In addition, intra- and inter-observer analyses were performed. Intra- and inter-observer reproducibility was excellent for all HDF parameters according to intraclass correlation coefficient (ICC) values (> 0.80 for all). Inter-study reproducibility of all HDF parameters was excellent (ICC ≥ 0.80 for all) with systolic parameters showing lower coeffients of variation (CoV) than diastolic measurements (CoV 15.2% for systolic impulse vs. CoV 30.9% for atrial thrust). Calculated sample sizes to detect relative changes ranged from n = 12 for the detection of a 20% relative change in systolic impulse to n = 200 for the detection of 10% relative change in atrial thrust. Overall inter-study reproducibility of CMR-derived HDF assessments was sufficient with systolic HDF measurements showing lower inter-study variation than diastolic HDF analyses.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Patrick Schneider
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Bowen DJ, Kauling RM, Pelosi C, van Haveren L, McGhie JS, Cuypers JAAE, Hirsch A, Roos-Hesselink JW, van den Bosch AE. Comparison of advanced echocardiographic right ventricular functional parameters with cardiovascular magnetic resonance in adult congenital heart disease. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2023; 1:qyad033. [PMID: 39045081 PMCID: PMC11195704 DOI: 10.1093/ehjimp/qyad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 07/25/2024]
Abstract
Aims Advanced transthoracic echocardiography (TTE) using volumetric and deformational indices provides detailed quantification of right ventricular (RV) function in adults with congenital heart disease (ACHD). Two-dimensional multi-plane echocardiography (2D-MPE) has demonstrated regional wall differences in RV longitudinal strain (LS). This study aims to evaluate the association of these parameters with cardiovascular magnetic resonance (CMR). Methods and results One-hundred stable ACHD patients with primarily affected RVs were included (age 50 ± 5 years; 53% male). Conventional and advanced echocardiographic RV functional parameters were compared with CMR-derived RV function. Advanced echocardiographic RV functional parameters were measurable in approximately one-half of the study cohort, while multi-wall LS assessment feasibility was lower. CMR RV ejection fraction (CMR-RVEF) was moderately correlated with deformational, area, and volumetric parameters [RV global LS (lateral wall and septum), n = 55: r = -0.62, P < 0.001; RV wall average LS, n = 34: r = -0.49, P = 0.002; RV lateral wall LS, n = 56: r = -0.45, P < 0.001; fractional area change, n = 67: r = 0.48, P < 0.001; 3D-RVEF, n = 48: r = 0.40, P = 0.005]. Conventional measurements such as TAPSE and RV S' correlated poorly. RV global LS best identified CMR-RVEF < 45% (area under the curve: 0.84, P < 0.001: cut-off value -19%: sensitivity 100%, specificity 57%). RVEF and LS values were significantly higher when measured by CMR compared with TTE (mean difference RVEF: 5 [-9 to 18] %; lateral (free) wall LS: -7 [7 to -21] %; RV global LS: -6 [5 to -16] %) while there was no association between respective LS values. Conclusion In ACHD patients, advanced echocardiographic RV functional parameters are moderately correlated with CMR-RVEF, although significant differences exist between indices measurable by both modalities.
Collapse
Affiliation(s)
- Daniel J Bowen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Robert M Kauling
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Chiara Pelosi
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lourus van Haveren
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jackie S McGhie
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Judith A A E Cuypers
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
11
|
Lange T, Gertz RJ, Schulz A, Backhaus SJ, Evertz R, Kowallick JT, Hasenfuß G, Desch S, Thiele H, Stiermaier T, Eitel I, Schuster A. Impact of myocardial deformation on risk prediction in patients following acute myocardial infarction. Front Cardiovasc Med 2023; 10:1199936. [PMID: 37636296 PMCID: PMC10449121 DOI: 10.3389/fcvm.2023.1199936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Strain analyses derived from cardiovascular magnetic resonance-feature tracking (CMR-FT) provide incremental prognostic benefit in patients sufferring from acute myocardial infarction (AMI). This study aims to evaluate and revalidate previously reported prognostic implications of comprehensive strain analyses in a large independent cohort of patients with ST-elevation myocardial infarction (STEMI). Methods Overall, 566 STEMI patients enrolled in the CONDITIONING-LIPSIA trial including pre- and/or postconditioning treatment in addition to conventional percutaneous coronary intervention underwent CMR imaging in median 3 days after primary percutaneous coronary intervention. CMR-based left atrial (LA) reservoir (Es), conduit (Ee), and boosterpump (Ea) strain analyses, as well as left ventricular (LV) global longitudinal strain (GLS), circumferential strain (GCS), and radial strain (GRS) analyses were carried out. Previously identified cutoff values were revalidated for risk stratification. Major adverse cardiac events (MACE) comprising death, reinfarction, and new congestive heart failure were assessed within 12 months after the occurrence of the index event. Results Both atrial and ventricular strain values were significantly reduced in patients with MACE (p < 0.01 for all). Predetermined LA and LV strain cutoffs enabled accurate risk assessment. All LA and LV strain values were associated with MACE on univariable regression modeling (p < 0.001 for all), with LA Es emerging as an independent predictor of MACE on multivariable regression modeling (HR 0.92, p = 0.033). Furthermore, LA Es provided an incremental prognostic value above LVEF (a c-index increase from 0.7 to 0.74, p = 0.03). Conclusion External validation of CMR-FT-derived LA and LV strain evaluations confirmed the prognostic value of cardiac deformation assessment in STEMI patients. In the present study, LA strain parameters especially enabled further risk stratification and prognostic assessment over and above clinically established risk parameters. Clinical Trial Registration ClinicalTrials.gov, identifier NCT02158468.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Roman J. Gertz
- Institute for Diagnostic and Interventional Radiology,Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Lange T, Backhaus SJ, Schulz A, Evertz R, Kowallick JT, Bigalke B, Hasenfuß G, Thiele H, Stiermaier T, Eitel I, Schuster A. Cardiovascular magnetic resonance-derived left atrioventricular coupling index and major adverse cardiac events in patients following acute myocardial infarction. J Cardiovasc Magn Reson 2023; 25:24. [PMID: 37046343 PMCID: PMC10099819 DOI: 10.1186/s12968-023-00929-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Recently, a novel left atrioventricular coupling index (LACI) has been introduced providing prognostic value to predict cardiovascular events beyond common risk factors in patients without cardiovascular disease. Since data on cardiovascular magnetic resonance (CMR)-derived LACI in patients following acute myocardial infarction (AMI) are scarce, we aimed to assess the diagnostic and prognostic implications of LACI in a large AMI patient cohort. METHODS In total, 1046 patients following AMI were included. After primary percutaneous coronary intervention CMR imaging and subsequent functional analyses were performed. LACI was defined by the ratio of the left atrial end-diastolic volume divided by the left ventricular (LV) end-diastolic volume. Major adverse cardiac events (MACE) including death, reinfarction or heart failure within 12 months after the index event were defined as primary clinical endpoint. RESULTS LACI was significantly higher in patients with MACE compared to those without MACE (p < 0.001). Youden Index identified an optimal LACI cut-off at 34.7% to classify patients at high-risk (p < 0.001 on log-rank testing). Greater LACI was associated with MACE on univariate regression modeling (HR 8.1, 95% CI 3.4-14.9, p < 0.001) and after adjusting for baseline confounders and LV ejection fraction (LVEF) on multivariate regression analyses (HR 3.1 95% CI 1.0-9, p = 0.049). Furthermore, LACI assessment enabled further risk stratification in high-risk patients with impaired LV systolic function (LVEF ≤ 35%; p < 0.001 on log-rank testing). CONCLUSION Atrial-ventricular interaction using CMR-derived LACI is a superior measure of outcome beyond LVEF especially in high-risk patients following AMI. Trial registration ClinicalTrials.gov, NCT00712101 and NCT01612312.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Boris Bigalke
- Department of Cardiology, Charité Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Tang HS, Kwan CT, He J, Ng PP, Hai SHJ, Kwok FYJ, Sze HF, So MH, Lo HY, Fong HTA, Wan EYF, Lee CH, Yu EYT, Lai YTA, Lee CYJ, Leung ST, Chan HL, Tse HF, Pennell DJ, Mohiaddin RH, Senior R, Yan AT, Yiu KH, Ng MY. Prognostic Utility of Cardiac MRI Myocardial Strain Parameters in Patients With Ischemic and Nonischemic Dilated Cardiomyopathy: A Multicenter Study. AJR Am J Roentgenol 2023; 220:524-538. [PMID: 36321987 DOI: 10.2214/ajr.22.28415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND. Prior small single-center studies have yielded conflicting results regarding the prognostic significance of myocardial strain parameters derived from feature tracking (FT) on cardiac MRI in patients with dilated cardiomyopathy (DCM). OBJECTIVE. The purpose of this study was to evaluate the prognostic utility of FT parameters on cardiac MRI in patients with ischemic and nonischemic DCM and to determine the optimal strain parameter for outcome prediction. METHODS. This retrospective study included 471 patients (median age, 61 years; 365 men, 106 women) with ischemic (n = 233) or nonischemic (n = 238) DCM and left ventricular (LV) ejection fraction (EF) less than 50% who underwent cardiac MRI at any of four centers from January 2011 to December 2019. Cardiac MRI parameters were determined by manual contouring. In addition, software-based FT was used to calculate six myocardial strain parameters (LV and right ventricular [RV] global radial strain, global circumferential strain, and global longitudinal strain [GLS]). Late gadolinium enhancement (LGE) was also evaluated. Patients were assessed for a composite outcome of all-cause mortality and/or heart-failure hospitalization. Cox regression models were used to determine associations between strain parameters and the composite outcome. RESULTS. Mean LV EF was 27.5% and mean LV GLS was -6.9%. The median follow-up period was 1328 days. The composite outcome occurred in 220 patients (125 deaths, 95 heart-failure hospitalizations). All six myocardial strain parameters were significant independent predictors of the composite outcome (hazard ratio [HR] = 0.92-1.16; all p < .05). In multivariable models that included age, corrected LV and RV end-diastolic volume, LV and RV EF, and presence of LGE, the only strain parameter that was a significant independent predictor of the composite outcome was LV GLS (HR = 1.13, p = .006); LV EF and presence of LGE were not independent predictors of the composite outcome in the models (p > .05). A LV GLS threshold of -6.8% had sensitivity of 62.6% and specificity of 62.6% in predicting the composite outcome rate at 4.0 years. CONCLUSION. LV GLS, derived from FT on cardiac MRI, is a significant independent predictor of adverse outcomes in patients with DCM. CLINICAL IMPACT. This study strengthens the body of evidence supporting the clinical implementation of FT when performing cardiac MRI in patients with DCM.
Collapse
Affiliation(s)
- Hok Shing Tang
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Chi Ting Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Jianlong He
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pan Pan Ng
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Siu Han Jojo Hai
- Department of Medicine, Division of Cardiology, Queen Mary Hospital, Hong Kong SAR
| | - Fung Yu James Kwok
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Ho Fung Sze
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Man Hon So
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Hong Yip Lo
- Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong SAR
| | - Ho Tung Ambrose Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong SAR
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR
| | - Chi-Ho Lee
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR
| | - Esther Yee Tak Yu
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong SAR
| | - Yee Tak Alta Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | - Chun Yin Jonan Lee
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Siu Ting Leung
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
- Imaging and Intervention Radiology Centre, CUHK Medical Centre, Hong Kong SAR
| | - Hiu Lam Chan
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | - Hung Fat Tse
- Department of Medicine, Division of Cardiology, Queen Mary Hospital, Hong Kong SAR
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dudley J Pennell
- Department of Cardiovascular Magnetic Resonance, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Raad H Mohiaddin
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Cardiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roxy Senior
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Cardiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew T Yan
- Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Kai-Hang Yiu
- Department of Medicine, Division of Cardiology, Queen Mary Hospital, Hong Kong SAR
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, Hong Kong SAR
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Wang F, Deng Y, Li S, Cheng Q, Wang Q, Yu D, Wang Q. CMR left ventricular strains beyond global longitudinal strain in differentiating light-chain cardiac amyloidosis from hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1108408. [PMID: 37206101 PMCID: PMC10188937 DOI: 10.3389/fcvm.2023.1108408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Background The clinical value of left ventricular (LV) global longitudinal strain (GLS) in the differential diagnosis of light-chain cardiac amyloidosis (AL-CA) and hypertrophic cardiomyopathy (HCM) has been previously reported. In this study, we analyzed the potential clinical value of the LV long-axis strain (LAS) to discriminate AL-CA from HCM. Furthermore, we analyzed the association between all the LV global strain parameters derived from cardiac magnetic resonance (CMR) feature tracking and LAS in both the AL-CA and HCM patients to assess the differential diagnostic efficacies of these global peak systolic strains. Materials and methods Thus, this study enrolled 89 participants who underwent cardiac MRI (CMRI), consisting of 30 AL-CA patients, 30 HCM patients, and 29 healthy controls. The intra- and inter-observer reproducibility of the LV strain parameters including GLS, global circumferential strain (GCS), global radial strain (GRS), and LAS were assessed in all the groups and compared. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic performances of the CMR strain parameters in discriminating AL-CA from HCM. Results The intra- and inter-observer reproducibility of the LV global strains and LAS were excellent (range of interclass correlation coefficients: 0.907-0.965). ROC curve analyses showed that the differential diagnostic performances of the global strains in discriminating AL-CA from HCM were good to excellent (GRS, AUC = 0.921; GCS, AUC = 0.914; GLS, AUC = 0.832). Furthermore, among all the strain parameters analyzed, LAS showed the highest diagnostic efficacy in differentiating between AL-CA and HCM (AUC = 0.962). Conclusion CMRI-derived strain parameters such as GLS, LAS, GRS, and GCS are promising diagnostic indicators that distinguish AL-CA from HCM with high accuracy. LAS showed the highest diagnostic accuracy among all the strain parameters.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Deng
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Shunjia Li
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Qichao Cheng
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
- Correspondence: Qian Wang
| |
Collapse
|
15
|
Evertz R, Schulz A, Lange T, Backhaus SJ, Vollmann D, Kowallick JT, von Haehling S, Hasenfuß G, Schuster A. Cardiovascular magnetic resonance imaging patterns of acute COVID-19 mRNA vaccine-associated myocarditis in young male patients: A first single-center experience. Front Cardiovasc Med 2022; 9:965512. [PMID: 36082124 PMCID: PMC9445185 DOI: 10.3389/fcvm.2022.965512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Background The risk of myocarditis after mRNA vaccination against COVID-19 has emerged recently. Current evidence suggests that young male patients are predominantly affected. In the majority of the cases, only mild symptoms were observed. However, little is known about cardiac magnetic resonance (CMR) imaging patterns in mRNA-related myocarditis and their differences when compared to classical viral myocarditis in the acute phase of inflammation. Methods and results In total, 10 mRNA vaccination-associated patients with myocarditis were retrospectively enrolled in this study and compared to 10 patients suffering from viral myocarditis, who were matched for age, sex, comorbidities, and laboratory markers. All patients (n = 20) were hospitalized and underwent a standardized clinical examination, as well as an echocardiography and a CMR. Both, clinical and imaging findings and, in particular, functional and volumetric CMR assessments, as well as detailed tissue characterization using late gadolinium enhancement and T1 + T2-weighted sequences, were compared between both groups. The median age of the overall cohort was 26 years (group 1: 25.5; group 2: 27.5; p = 0.57). All patients described chest pain as the leading reason for their initial presentation. CMR volumetric and functional parameters did not differ significantly between both groups. In all cases, the lateral left ventricular wall showed late gadolinium enhancement without significant differences in terms of the localization or in-depth tissue characterization (late gadolinium enhancement [LGE] enlargement: group 1: 5.4%; group 2: 6.5%; p = 0.14; T2 global/maximum value: group 1: 38.9/52 ms; group 2: 37.8/54.5 ms; p = 0.79 and p = 0.80). Conclusion This study yielded the first evidence that COVID-19 mRNA vaccine-associated myocarditis does not show specific CMR patterns during the very acute stage in the most affected patient group of young male patients. The observed imaging markers were closely related to regular viral myocarditis in our cohort. Additionally, we could not find any markers implying adverse outcomes in this relatively little number of patients; however, this has to be confirmed by future studies that will include larger sample sizes.
Collapse
Affiliation(s)
- Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Dirk Vollmann
- Herz- and Gefäßzentrum Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
16
|
Lange T, Backhaus SJ, Beuthner BE, Topci R, Rigorth KR, Kowallick JT, Evertz R, Schnelle M, Ravassa S, Díez J, Toischer K, Seidler T, Puls M, Hasenfuß G, Schuster A. Functional and structural reverse myocardial remodeling following transcatheter aortic valve replacement: a prospective cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2022; 24:45. [PMID: 35897100 PMCID: PMC9331125 DOI: 10.1186/s12968-022-00874-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since cardiovascular magnetic resonance (CMR) imaging allows comprehensive quantification of both myocardial function and structure we aimed to assess myocardial remodeling processes in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). METHODS CMR imaging was performed in 40 patients with severe AS before and 1 year after TAVR. Image analyses comprised assessments of myocardial volumes, CMR-feature-tracking based atrial and ventricular strain, myocardial T1 mapping, extracellular volume fraction-based calculation of left ventricular (LV) cellular and matrix volumes, as well as ischemic and non-ischemic late gadolinium enhancement analyses. Moreover, biomarkers including NT-proBNP as well as functional and clinical status were documented. RESULTS Myocardial function improved 1 year after TAVR: LV ejection fraction (57.9 ± 16.9% to 65.4 ± 14.5%, p = 0.002); LV global longitudinal (- 21.4 ± 8.0% to -25.0 ± 6.4%, p < 0.001) and circumferential strain (- 36.9 ± 14.3% to - 42.6 ± 11.8%, p = 0.001); left atrial reservoir (13.3 ± 6.3% to 17.8 ± 6.7%, p = 0.001), conduit (5.5 ± 3.2% to 8.4 ± 4.6%, p = 0.001) and boosterpump strain (8.2 ± 4.6% to 9.9 ± 4.2%, p = 0.027). This was paralleled by regression of total myocardial volume (90.3 ± 21.0 ml/m2 to 73.5 ± 17.0 ml/m2, p < 0.001) including cellular (55.2 ± 13.2 ml/m2 to 45.3 ± 11.1 ml/m2, p < 0.001) and matrix volumes (20.7 ± 6.1 ml/m2 to 18.8 ± 5.3 ml/m2, p = 0.036). These changes were paralleled by recovery from heart failure (decrease of NYHA class: p < 0.001; declining NT-proBNP levels: 2456 ± 3002 ng/L to 988 ± 1222 ng/L, p = 0.001). CONCLUSION CMR imaging enables comprehensive detection of myocardial remodeling in patients undergoing TAVR. Regression of LV matrix volume as a surrogate for reversible diffuse myocardial fibrosis is accompanied by increase of myocardial function and recovery from heart failure. Further data are required to define the value of these parameters as therapeutic targets for optimized management of TAVR patients. Trial registration DRKS, DRKS00024479. Registered 10 December 2021-Retrospectively registered, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00024479.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Bo Eric Beuthner
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Rodi Topci
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Karl-Rudolf Rigorth
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Moritz Schnelle
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Susana Ravassa
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Backhaus SJ, Aldehayat H, Kowallick JT, Evertz R, Lange T, Kutty S, Bigalke B, Gutberlet M, Hasenfuß G, Thiele H, Stiermaier T, Eitel I, Schuster A. Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction. Sci Rep 2022; 12:12220. [PMID: 35851282 PMCID: PMC9293901 DOI: 10.1038/s41598-022-16228-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Feasibility of automated volume-derived cardiac functional evaluation has successfully been demonstrated using cardiovascular magnetic resonance (CMR) imaging. Notwithstanding, strain assessment has proven incremental value for cardiovascular risk stratification. Since introduction of deformation imaging to clinical practice has been complicated by time-consuming post-processing, we sought to investigate automation respectively. CMR data (n = 1095 patients) from two prospectively recruited acute myocardial infarction (AMI) populations with ST-elevation (STEMI) (AIDA STEMI n = 759) and non-STEMI (TATORT-NSTEMI n = 336) were analysed fully automated and manually on conventional cine sequences. LV function assessment included global longitudinal, circumferential, and radial strains (GLS/GCS/GRS). Agreements were assessed between automated and manual strain assessments. The former were assessed for major adverse cardiac event (MACE) prediction within 12 months following AMI. Manually and automated derived GLS showed the best and excellent agreement with an intraclass correlation coefficient (ICC) of 0.81. Agreement was good for GCS and poor for GRS. Amongst automated analyses, GLS (HR 1.12, 95% CI 1.08-1.16, p < 0.001) and GCS (HR 1.07, 95% CI 1.05-1.10, p < 0.001) best predicted MACE with similar diagnostic accuracy compared to manual analyses; area under the curve (AUC) for GLS (auto 0.691 vs. manual 0.693, p = 0.801) and GCS (auto 0.668 vs. manual 0.686, p = 0.425). Amongst automated functional analyses, GLS was the only independent predictor of MACE in multivariate analyses (HR 1.10, 95% CI 1.04-1.15, p < 0.001). Considering high agreement of automated GLS and equally high accuracy for risk prediction compared to the reference standard of manual analyses, automation may improve efficiency and aid in clinical routine implementation.Trial registration: ClinicalTrials.gov, NCT00712101 and NCT01612312.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Haneen Aldehayat
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Boris Bigalke
- Department of Cardiology, Charité Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Matthias Gutberlet
- Institute of Diagnostic and Interventional Radiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Thomas Stiermaier
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022. [PMID: 35369885 DOI: 10.1186/s12968-022-00851-7/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Siemens Healthineers, Boston, Massachusetts, USA
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Joshua Y Cheng
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022; 24:23. [PMID: 35369885 PMCID: PMC8978361 DOI: 10.1186/s12968-022-00851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Sona. Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | | | - Claire E. Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | | | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N. Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C. Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| |
Collapse
|
20
|
Alshammari QT, Almutairi W, Alshammari E, Alrashidi O, Alshammari MT, Alyahyawi. AR, Alzamil Y, Shahanawaz SD, Shashi CGK. Cardiac Magnetic Resonance Imaging Feature Tracking for Quantifying Left Ventricle Deformation in Type 2 Diabetic Patients. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/dgpw4yl4ox] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Fischer K, Linder OL, Erne SA, Stark AW, Obrist SJ, Bernhard B, Guensch DP, Huber AT, Kwong RY, Gräni C. Reproducibility and its confounders of CMR feature tracking myocardial strain analysis in patients with suspected myocarditis. Eur Radiol 2021; 32:3436-3446. [PMID: 34932165 PMCID: PMC9038796 DOI: 10.1007/s00330-021-08416-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Objectives Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique for assessing myocardial strain with valuable diagnostic and prognostic potential. However, the reproducibility of biventricular CMR-FT analysis in a large cardiovascular population has not been assessed. Also, evidence of confounders impacting reader reproducibility for CMR-FT in patients is unknown and currently limits the clinical implementation of this technique. Methods From a dual-center database of patients referred to CMR for suspected myocarditis, 125 patients were randomly selected to undergo biventricular CMR-FT analysis for 2-dimensional systolic and diastolic measures, with additional 3-dimensional analysis for the left ventricle. All image analysis was replicated by a single reader and by a second reader for intra- and inter-reader analysis (Circle Cardiovascular Imaging). Reliability was tested with intraclass correlation (ICC) tests, and the impact of imaging confounders on agreement was assessed through multivariable analysis. Results Left and right ventricular ejection fractions were reduced in 34% and 37% of the patients, respectively. Good to excellent reliability was shown for 2D (all ICC > 0.85) and 3D (all ICC > 0.70) peak strain and early diastolic strain rate for both ventricles in longitudinal orientation as well as circumferential orientations for the left ventricle. An increased slice number improved agreement while the presence of pericardial effusion compromised diastolic strain rate agreement, and arrhythmia compromised right ventricular agreement. Conclusion In a large clinical cohort, we could show CMR-FT yields excellent inter-reader and intra-reader reproducibility. Multi-parametric CMR-FT of the right and left ventricles appears to be a robust tool in cardiovascular patients referred to CMR. Clinical trial registration. ClinicalTrials.gov Identifier: NCT03470571, NCT04774549. Key Points • Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique to measure myocardial strain in cardiovascular patients referred for CMR; however, the evaluation of its reproducibility in a large cohort has not yet been performed. • In a large clinical cohort, CMR-FT yields excellent inter-reader and intra-reader reproducibility for both left and right ventricular systolic and diastolic parameters. • Arrhythmia and pericardial effusion compromise agreement of select FT parameters, but poor ejection fraction does not. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08416-5.
Collapse
Affiliation(s)
- Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier L Linder
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie A Erne
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anselm W Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah J Obrist
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik P Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian T Huber
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y Kwong
- Department of Medicine, Non-Invasive Cardiovascular Imaging, Brigham and Women's Hospital, Harvard Medical School, Cardiovascular Division, Boston, MA, USA
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Recovery of right ventricular function and strain in patients with ST-segment elevation myocardial infarction and concurrent chronic total occlusion. Int J Cardiovasc Imaging 2021; 38:631-641. [PMID: 34554368 PMCID: PMC8926979 DOI: 10.1007/s10554-021-02423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/16/2021] [Indexed: 12/04/2022]
Abstract
The right ventricle (RV) is frequently involved in ST-segment elevation myocardial infarction (STEMI) when the culprit or concurrent chronic total occlusion (CTO) is located in the right coronary artery (RCA). We investigated RV function recovery in STEMI-patients with concurrent CTO. In EXPLORE, STEMI-patients with concurrent CTO were randomized to CTO percutaneous coronary intervention (PCI) or no CTO-PCI. We analyzed 174 EXPLORE patients with serial cardiovascular magnetic resonance imaging RV data (baseline and 4-month follow-up), divided into three groups: CTO-RCA (CTO in RCA, culprit in non-RCA; n = 89), IRA-RCA (infarct related artery [IRA] in RCA, CTO in non-RCA; n = 56), and no-RCA (culprit and CTO not in RCA; n = 29). Tricuspid annular plane systolic excursion (TAPSE), RV ejection fraction (RVEF), RV global longitudinal strain (GLS) and free wall longitudinal strain (FWLS) were measured. We found that RV strain and TAPSE improved in IRA-RCA and CTO-RCA (irrespective of CTO-PCI) at follow-up, but not in no-RCA. Only RV FWLS was different among groups at baseline, which was lower in IRA-RCA than no-RCA (− 26.0 ± 8.3% versus − 31.0 ± 6.4%, p = 0.006). Baseline RVEF, RV end-diastolic volume and TAPSE were associated with RVEF at 4 months. RV function parameters were not predictive of 4 year mortality, although RV GLS showed additional predictive value for New York Heart Association Classification > 1 at 4 months. In conclusion, RV parameters significantly improved in patients with acute or chronic RCA occlusion, but not in no-RCA patients. RV FWLS was the only RV parameter able to discriminate between acute ischemic and non-ischemic myocardium. Moreover, RV GLS was independently predictive for functional status.
Collapse
|
23
|
Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT. J Clin Med 2021; 10:jcm10173970. [PMID: 34501418 PMCID: PMC8432112 DOI: 10.3390/jcm10173970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
Aortic valve calcification (AVC) in aortic stenosis patients has diagnostic and prognostic implications. Little is known about the interchangeability of AVC obtained from different multidetector computed tomography (MDCT) software solutions. Contrast-enhanced MDCT data sets of 50 randomly selected aortic stenosis patients were analysed using three different software vendors (3Mensio, CVI42, Syngo.Via). A subset of 10 patients were analysed twice for the estimation of intra-observer variability. Intra- and inter-observer variability were determined using the ICC reliability method, Bland-Altman analysis and coefficients of variation. No differences were revealed between the software solutions in the AVC calculations (3Mensio 941 ± 623, Syngo.Via 948 mm3 ± 655, CVI42 941 ± 637; p = 0.455). The best inter-vendor agreement was found between the CVI42 and the Syngo.Via (ICC 0.997 (CI 0.995-0.998)), followed by the 3Mensio and the CVI42 (ICC 0.996 (CI 0.922-0.998)), and the 3Mensio and the Syngo.Via (ICC 0.992 (CI 0.986-0.995)). There was excellent intra- (3Mensio: ICC 0.999 (0.995-1.000); CVI42: ICC 1.000 (0.999-1.000); Syngo.Via: ICC 0.998 (0.993-1.000)) and inter-observer variability (3Mensio: ICC 1.000 (0.999-1.000); CVI42: ICC 1.000 (1.000-1.000); Syngo.Via: ICC 0.996 (0.985-0.999)) for all software types. Contrast-enhanced MDCT-derived AVC scores are interchangeable between and reproducible within different commercially available software solutions. This is important since sufficient reproducibility, interchangeability and valid results represent prerequisites for accurate TAVR planning and its widespread clinical use.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The rapid search for suitable tricuspid transcatheter devices has ignited renewed enthusiasm in accurate characterization of tricuspid valve disease. Cardiovascular magnetic resonance (CMR), traditionally used as the gold standard in assessment for right ventricular size and function, has recently seen its use expanded to assess both the structure and function of the tricuspid apparatus. This review will highlight the role of CMR in tricuspid valve disease and compare it with other commonly used imaging modalities. RECENT FINDINGS Dynamic anatomical assessment of the tricuspid apparatus, in combination with accurate leaflet identification, is possible with CMR. Tricuspid regurgitation volume and fraction are derived through an indirect volumetric method, and therefore, able to overcome many traditional hurdles involved with valve regurgitation quantitation. Adverse right heart prognostic factors in tricuspid valve disease, such as right heart volumes, function, and tissue characterization, are optimally assessed using CMR. SUMMARY Cardiovascular magnetic resonance is a powerful modality that should be harnessed in order to obtain a multifaceted assessment of tricuspid valve structure, function, and the effects of valve disease on right heart remodeling.
Collapse
|
25
|
Gao Y, Zhang Z, Li G, Zhou S, Lou M, Zhao Z, Zhao J, Li K, Pohost GM. Reference Values for Left Atrial Strain and Strain Rate Based on a Large Sample of Healthy Chinese Adults: An MR-Feature Tracking Study. J Magn Reson Imaging 2021; 54:1784-1793. [PMID: 34131972 DOI: 10.1002/jmri.27768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND While reference values of left atrial (LA) deformation parameters in Western populations have been established, reference data in healthy Asian populations are limited. PURPOSE To establish age- and sex-specific reference values for LA strain and strain rate (SR) based on a large sample of healthy Chinese adults using magnetic resonance-feature tracking (MR-FT). STUDY TYPE Retrospective. POPULATION Four hundred and eight healthy Chinese adults (220 males, aged 43.5 ± 11.5 years; 188 females, aged 45.3 ± 12.8 years). FIELD STRENGTH/SEQUENCE 1.5 T/balanced steady-state free precession. ASSESSMENT Reservoir strain (εs ), conduit strain (εe ), booster strain (εa ), peak positive SR (SRs), peak early negative SR (SRe), and peak late negative SR (SRa) were obtained by MR-FT. STATISTICAL TESTS We used Shapiro-Wilk test, Student's t-test, Mann-Whitney U-test, linear regression, and coefficient of determination (r2 ). RESULTS Women demonstrated significantly greater LA strain (εs [%]: 44.0 ± 9.9 vs. 38.3 ± 8.7; εe [%]: 26.7 ± 8.0 vs. 22.3 ± 6.8; εa [%]: 17.3 ± 4.4 vs. 16.0 ± 3.8) and SR (SRs [/second]: 1.8 ± 0.5 vs. 1.6 ± 0.4; SRe [/second]: -2.5 ± 0.9 vs. -2.1 ± 0.7; SRa [/second]: -1.9 ± 0.6 vs. -1.8 ± 0.5) than men. For both sexes, aging was significantly associated with decreased εs , SRs, εe , and SRe (r2 = 0.07, r2 = 0.05, r2 = 0.19, and r2 = 0.24 for men; r2 = 0.13, r2 = 0.11, r2 = 0.31, and r2 = 0.46 for women), and significantly increased εa (r2 = 0.03 and r2 = 0.05 for men and women). There was no significant correlation between age and SRa in both sexes (P = 0.057 and P = 0.377 for men and women, respectively). DATA CONCLUSION We provide age- and sex-specific reference values for LA strain and SR based on a large sample of healthy Chinese adults using MR-FT. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 5.
Collapse
Affiliation(s)
- Yiyuan Gao
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Post-Doctoral Research Center, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Gengxiao Li
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shanshan Zhou
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingwu Lou
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Post-Doctoral Research Center, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Zhiwei Zhao
- Department of Radiology, Zhouxin Medical Imaging and Health Screening Center, Xiamen, China
| | - Jun Zhao
- Department of Radiology, Zhouxin Medical Imaging and Health Screening Center, Xiamen, China
| | - Kuncheng Li
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Department of Radiology, Zhouxin Medical Imaging and Health Screening Center, Xiamen, China.,Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gerald M Pohost
- Department of Radiology, Zhouxin Medical Imaging and Health Screening Center, Xiamen, China.,Keck school of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Backhaus SJ, Metschies G, Billing M, Schmidt-Rimpler J, Kowallick JT, Gertz RJ, Lapinskas T, Pieske-Kraigher E, Pieske B, Lotz J, Bigalke B, Kutty S, Hasenfuß G, Kelle S, Schuster A. Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. J Cardiovasc Magn Reson 2021; 23:60. [PMID: 34001175 PMCID: PMC8127257 DOI: 10.1186/s12968-021-00740-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. METHODS Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. RESULTS Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. CONCLUSION Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution.
Collapse
Affiliation(s)
- Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Georg Metschies
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Marcus Billing
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jonas Schmidt-Rimpler
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Roman J. Gertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Tomas Lapinskas
- German Heart Center Berlin (DHZB), Department of Internal Medicine/Cardiology, University of Berlin, Charité Campus Virchow Clinic, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elisabeth Pieske-Kraigher
- German Heart Center Berlin (DHZB), Department of Internal Medicine/Cardiology, University of Berlin, Charité Campus Virchow Clinic, Berlin, Germany
| | - Burkert Pieske
- German Heart Center Berlin (DHZB), Department of Internal Medicine/Cardiology, University of Berlin, Charité Campus Virchow Clinic, Berlin, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Boris Bigalke
- Department of Cardiology and Pneumology, Charité Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins Hospital, Baltimore, MD 21287 USA
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- German Heart Center Berlin (DHZB), Department of Internal Medicine/Cardiology, University of Berlin, Charité Campus Virchow Clinic, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Militaru S, Panovsky R, Hanet V, Amzulescu MS, Langet H, Pisciotti MM, Pouleur AC, Vanoverschelde JLJ, Gerber BL. Multivendor comparison of global and regional 2D cardiovascular magnetic resonance feature tracking strains vs tissue tagging at 3T. J Cardiovasc Magn Reson 2021; 23:54. [PMID: 33980259 PMCID: PMC8117295 DOI: 10.1186/s12968-021-00742-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) 2D feature tracking (FT) left ventricular (LV) myocardial strain has seen widespread use to characterize myocardial deformation. Yet, validation of CMR FT measurements remains scarce, particularly for regional strain. Therefore, we aimed to perform intervendor comparison of 3 different FT software against tagging. METHODS In 61 subjects (18 healthy subjects, 18 patients with chronic myocardial infarction, 15 with dilated cardiomyopathy, and 10 with LV hypertrophy due to hypertrophic cardiomyopathy or aortic stenosis) were prospectively compared global (G) and regional transmural peak-systolic Lagrangian longitudinal (LS), circumferential (CS) and radial strains (RS) by 3 FT software (cvi42, Segment, and Tomtec) among each other and with tagging at 3T. We also evaluated the ability of regional LS, CS, and RS by different FT software vs tagging to identify late gadolinium enhancement (LGE) in the 18 infarct patients. RESULTS GLS and GCS by all 3 software had an excellent agreement among each other (ICC = 0.94-0.98 for GLS and ICC = 0.96-0.98 for GCS respectively) and against tagging (ICC = 0.92-0.94 for GLS and ICC = 0.88-0.91 for GCS respectively), while GRS showed inconsistent agreement between vendors (ICC 0.10-0.81). For regional LS, the agreement was good (ICC = 0.68) between 2 vendors but less vs the 3rd (ICC 0.50-0.59) and moderate to poor (ICC 0.44-0.47) between all three FT software and tagging. Also, for regional CS agreement between 2 software was higher (ICC = 0.80) than against the 3rd (ICC = 0.58-0.60), and both better agreed with tagging (ICC = 0.70-0.72) than the 3rd (ICC = 0.57). Regional RS had more variation in the agreement between methods ranging from good (ICC = 0.75) to poor (ICC = 0.05). Finally, the accuracy of scar detection by regional strains differed among the 3 FT software. While the accuracy of regional LS was similar, CS by one software was less accurate (AUC 0.68) than tagging (AUC 0.80, p < 0.006) and RS less accurate (AUC 0.578) than the other two (AUC 0.76 and 0.73, p < 0.02) to discriminate segments with LGE. CONCLUSIONS We confirm good agreement of CMR FT and little intervendor difference for GLS and GCS evaluation, with variable agreement for GRS. For regional strain evaluation, intervendor difference was larger, especially for RS, and the diagnostic performance varied more substantially among different vendors for regional strain analysis.
Collapse
Affiliation(s)
- Sebastian Militaru
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Roman Panovsky
- International Clinical Research Center, St. Anne´S Faculty Hospital, Brno, Czech Republic
- 1st Department of Internal Medicine/Cardioangiology, St. Anne´S Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Vincent Hanet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mihaela Silvia Amzulescu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Mary Mojica Pisciotti
- International Clinical Research Center, St. Anne´S Faculty Hospital, Brno, Czech Republic
| | - Anne-Catherine Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Louis J. Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Bernhard L. Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, 1200 Woluwe St. Lambert, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Quantification of Myocardial Deformation Applying CMR-Feature-Tracking-All About the Left Ventricle? Curr Heart Fail Rep 2021; 18:225-239. [PMID: 33931818 PMCID: PMC8342400 DOI: 10.1007/s11897-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Abstract
Purpose of Review Cardiac magnetic resonance-feature-tracking (CMR-FT)-based deformation analyses are key tools of cardiovascular imaging and applications in heart failure (HF) diagnostics are expanding. In this review, we outline the current range of application with diagnostic and prognostic implications and provide perspectives on future trends of this technique. Recent Findings By applying CMR-FT in different cardiovascular diseases, increasing evidence proves CMR-FT-derived parameters as powerful diagnostic and prognostic imaging biomarkers within the HF continuum partly outperforming traditional clinical values like left ventricular ejection fraction. Importantly, HF diagnostics and deformation analyses by CMR-FT are feasible far beyond sole left ventricular performance evaluation underlining the holistic nature and accuracy of this imaging approach. Summary As an established and continuously evolving technique with strong prognostic implications, CMR-FT deformation analyses enable comprehensive cardiac performance quantification of all cardiac chambers.
Collapse
|
29
|
Backhaus SJ, Lange T, George EF, Hellenkamp K, Gertz RJ, Billing M, Wachter R, Steinmetz M, Kutty S, Raaz U, Lotz J, Friede T, Uecker M, Hasenfuß G, Seidler T, Schuster A. Exercise Stress Real-Time Cardiac Magnetic Resonance Imaging for Noninvasive Characterization of Heart Failure With Preserved Ejection Fraction: The HFpEF-Stress Trial. Circulation 2021; 143:1484-1498. [PMID: 33472397 DOI: 10.1161/circulationaha.120.051542] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Right heart catheterization using exercise stress is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the invasive procedure. We hypothesized that real-time cardiac magnetic resonance (RT-CMR) exercise imaging with pathophysiologic data at excellent temporal and spatial resolution may represent a contemporary noninvasive alternative for diagnosing HFpEF. METHODS The HFpEF-Stress trial (CMR Exercise Stress Testing in HFpEF; URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17) prospectively recruited 75 patients with echocardiographic signs of diastolic dysfunction and dyspnea on exertion (E/e'>8, New York Heart Association class ≥II) to undergo echocardiography, right heart catheterization, and RT-CMR at rest and during exercise stress. HFpEF was defined according to pulmonary capillary wedge pressure (≥15 mm Hg at rest or ≥25 mm Hg during exercise stress). RT-CMR functional assessments included time-volume curves for total and early (1/3) diastolic left ventricular filling, left atrial (LA) emptying, and left ventricular/LA long axis strain. RESULTS Patients with HFpEF (n=34; median pulmonary capillary wedge pressure at rest, 13 mm Hg; at stress, 27 mm Hg) had higher E/e' (12.5 versus 9.15), NT-proBNP (N-terminal pro-B-type natriuretic peptide; 255 versus 75 ng/L), and LA volume index (43.8 versus 36.2 mL/m2) compared with patients with noncardiac dyspnea (n=34; rest, 8 mm Hg; stress, 18 mm Hg; P≤0.001 for all). Seven patients were excluded because of the presence of non-HFpEF cardiac disease causing dyspnea on imaging. There were no differences in RT-CMR left ventricular total and early diastolic filling at rest and during exercise stress (P≥0.164) between patients with HFpEF and noncardiac dyspnea. RT-CMR revealed significantly impaired LA total and early (P<0.001) diastolic emptying in patients with HFpEF during exercise stress. RT-CMR exercise stress LA long axis strain was independently associated with HFpEF (adjusted odds ratio, 0.657 [95% CI, 0.516-0.838]; P=0.001) after adjustment for clinical and imaging measures and emerged as the best predictor for HFpEF (area under the curve at rest 0.82 versus exercise stress 0.93; P=0.029). CONCLUSIONS RT-CMR allows highly accurate identification of HFpEF during physiologic exercise and qualifies as a suitable noninvasive diagnostic alternative. These results will need to be confirmed in multicenter prospective research studies to establish widespread routine clinical use. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17.
Collapse
Affiliation(s)
- Sören J Backhaus
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Torben Lange
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Elisabeth F George
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Kristian Hellenkamp
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Roman J Gertz
- Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Germany (R.J.G.)
| | - Marcus Billing
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
| | - Rolf Wachter
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- Clinic and Policlinic for Cardiology, University Hospital Leipzig, Germany (R.W.)
| | - Michael Steinmetz
- Departments of Pediatric Cardiology and Intensive Care Medicine (M.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins Hospital, Baltimore, MD (S.K.)
| | - Uwe Raaz
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Joachim Lotz
- Diagnostic and Interventional Radiology (J.L., M.U.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Tim Friede
- Medical Statistics (T.F.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Martin Uecker
- Diagnostic and Interventional Radiology (J.L., M.U.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (M.U., G.H.)
| | - Gerd Hasenfuß
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (M.U., G.H.)
| | - Tim Seidler
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| | - Andreas Schuster
- From the Department of Cardiology and Pneumology, Georg-August University (S.J.B., T.L., E.F.G., K.H., M.B., R.W., U.R., G.H., T.S., A.S.), University Medical Center Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (S.J.B., T.L., E.F.G., K.H., M.S., U.R., J.L., T.F., M.U., G.H., T.S., A.S.)
| |
Collapse
|
30
|
Mansell DS, Frank EG, Kelly NS, Agostinho-Hernandez B, Fletcher J, Bruno VD, Sammut E, Chiribiri A, Johnson T, Ascione R, Bartlett JW, Gill HS, Fraser KH, Cookson AN. Comparison of the within-reader and inter-vendor agreement of left ventricular circumferential strains and volume indices derived from cardiovascular magnetic resonance imaging. PLoS One 2020; 15:e0242908. [PMID: 33320865 PMCID: PMC7737975 DOI: 10.1371/journal.pone.0242908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/12/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Volume indices and left ventricular ejection fraction (LVEF) are routinely used to assess cardiac function. Ventricular strain values may provide additional diagnostic information, but their reproducibility is unclear. This study therefore compares the repeatability and reproducibility of volumes, volume fraction, and regional ventricular strains, derived from cardiovascular magnetic resonance (CMR) imaging, across three software packages and between readers. METHODS Seven readers analysed 16 short-axis CMR stacks of a porcine heart. Endocardial contours were manually drawn using OsiriX and Simpleware ScanIP and repeated in both softwares. The images were also contoured automatically in Circle CVI42. Endocardial global, apical, mid-ventricular, and basal circumferential strains, as well as end-diastolic and end-systolic volume and LVEF were compared. RESULTS Bland-Altman analysis found systematic biases in contour length between software packages. Compared to OsiriX, contour lengths were shorter in both ScanIP (-1.9 cm) and CVI42 (-0.6 cm), causing statistically significant differences in end-diastolic and end-systolic volumes, and apical circumferential strain (all p<0.006). No differences were found for mid-ventricular, basal or global strains, or left ventricular ejection fraction (all p<0.007). All CVI42 results lay within the ranges of the OsiriX results. Intra-software differences were found to be lower than inter-software differences. CONCLUSION OsiriX and CVI42 gave consistent results for all strain and volume metrics, with no statistical differences found between OsiriX and ScanIP for mid-ventricular, global or basal strains, or left ventricular ejection fraction. However, volumes were influenced by the choice of contouring software, suggesting care should be taken when comparing volumes across different software.
Collapse
Affiliation(s)
- Doyin S. Mansell
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Evelyn G. Frank
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Nathaniel S. Kelly
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | | | - James Fletcher
- Department for Health, University of Bath, Bath, United Kingdom
| | - Vito D. Bruno
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Thomas Johnson
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | | | - Harinderjit S. Gill
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Katharine H. Fraser
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Andrew N. Cookson
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
31
|
Schuster A, Backhaus SJ, Stiermaier T, Kowallick JT, Stulle A, Koschalka A, Lotz J, Kutty S, Bigalke B, Gutberlet M, Hasenfuß G, Thiele H, Eitel I. Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction. Eur Heart J Cardiovasc Imaging 2020; 20:1262-1270. [PMID: 31329854 DOI: 10.1093/ehjci/jez077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
AIMS Cardiovascular magnetic resonance feature tracking (CMR-FT) global longitudinal strain (GLS) provides incremental prognostic value following acute myocardial infarction (AMI) but requires substantial post-processing. Alternatively, manual global long-axis strain (LAS) can be easily assessed from standard steady state free precession images. We aimed to define the prognostic value of LAS in a large multicentre study in patients following AMI. METHODS AND RESULTS A total of 1235 patients with myocardial infarction [n = 795 with ST-elevation myocardial infarction (STEMI) and 440 with non-ST-elevation myocardial infarction (NSTEMI)] underwent cardiovascular magnetic resonance imaging after primary percutaneous coronary intervention in eight centres across Germany. Assessment of LAS was performed in a blinded core-laboratory measuring the systolic shortening between the epicardial apical border and the middle of a line connecting the origins of the mitral leaflets. Primary clinical endpoint was the occurrence of major adverse clinical events (MACE) including death, reinfarction, and congestive heart failure within 1 year after AMI. During 1-year follow-up, 76 patients suffered from MACE. Impaired LAS was associated with higher MACE occurrence both in STEMI (P < 0.001) and NSTEMI (P = 0.001) patients. Association of LAS remained significant (P = 0.017) after correction for univariate significant parameters for MACE prediction. C-statistics revealed incremental value of additional LAS assessment for optimized event prediction compared with left ventricular ejection fraction (MACE P = 0.044; mortality P = 0.013) and a combination of established clinical and imaging parameters (MACE P = 0.084; mortality P = 0.027), but not CMR-FT GLS (MACE P = 0.075; mortality P = 0.380). CONCLUSION LAS provides software independent, widely available, easy and fast approximation of longitudinal left ventricular shortening early after reperfused AMI with incremental prognostic value beyond established risk stratification parameters. CLINICAL TRIALS.GOV NCT00712101 and NCT01612312.
Collapse
Affiliation(s)
- Andreas Schuster
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany.,Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Northern Clinical School, University of Sydney, 5th Floor, Acute Services Building, Reserve Road, St Leonard's, Sydney, NSW, Australia
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany
| | - Thomas Stiermaier
- Department of Cardiology/Angiology/Intensive Care Medicine, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Alina Stulle
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany
| | - Alexander Koschalka
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Shelby Kutty
- The Helen B. Taussig Heart Center, Johns Hopkins Children's Center, M 2303, 1800 Orleans Street, Baltimore, Maryland, USA
| | - Boris Bigalke
- Department of Cardiology and Pneumology, Charité Campus Benjamin Franklin, University Medical Center Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Matthias Gutberlet
- Institute for Diagnostic and Interventional Radiology, Heart Center Leipzig, University of Leipzig, Strümpellstr. 39, Leipzig, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Robert-Koch-Str. 42a, Göttingen, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University of Leipzig, Strümpellstr. 39, Leipzig, Germany
| | - Ingo Eitel
- Department of Cardiology/Angiology/Intensive Care Medicine, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| |
Collapse
|
32
|
Lim C, Blaszczyk E, Riazy L, Wiesemann S, Schüler J, von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects-influence of segmentation and analysis software. Eur Radiol 2020; 31:3962-3972. [PMID: 33277669 PMCID: PMC8128822 DOI: 10.1007/s00330-020-07539-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
Objectives Quantification of myocardial deformation by feature tracking is of growing interest in cardiovascular magnetic resonance. It allows the assessment of regional myocardial function based on cine images. However, image acquisition, post-processing, and interpretation are not standardized. We aimed to assess the influence of segmentation procedure such as slice selection and different types of analysis software on values and quantification of myocardial strain in healthy adults. Methods Healthy volunteers were retrospectively analyzed. Post-processing was performed using CVI42 and TomTec. Longitudinal and radialLong axis (LAX) strain were quantified using 4-chamber-view, 3-chamber-view, and 2-chamber-view. Circumferential and radialShort axis (SAX) strain were assessed in basal, midventricular, and apical short-axis views and using full coverage. Global and segmental strain values were compared to each other regarding their post-processing approach and analysis software package. Results We screened healthy volunteers studied at 1.5 or 3.0 T and included 67 (age 44.3 ± 16.3 years, 31 females). Circumferential and radialSAX strain values were different between a full coverage approach vs. three short slices (− 17.6 ± 1.8% vs. − 19.2 ± 2.3% and 29.1 ± 4.8% vs. 34.6 ± 7.1%). Different analysis software calculated significantly different strain values. Within the same vendor, different field strengths (− 17.0 ± 2.1% at 1.5 T vs. − 17.0 ± 1.7% at 3 T, p = 0.845) did not influence the calculated global longitudinal strain (GLS), and were similar in gender (− 17.4 ± 2.0% in females vs. − 16.6 ± 1.8% in males, p = 0.098). Circumferential and radial strain were different in females and males (circumferential strain − 18.2 ± 1.7% vs. − 17.1 ± 1.8%, p = 0.029 and radial strain 30.7 ± 4.7% vs. 27.8 ± 4.6%, p = 0.047). Conclusions Myocardial deformation assessed by feature tracking depends on segmentation procedure and type of analysis software. CircumferentialSAX and radialSAX depend on the number of slices used for feature tracking analysis. As known from other imaging modalities, GLS seems to be the most stable parameter. During follow-up studies, standardized conditions should be warranted. Trial registration Retrospectively registered Key Points • Myocardial deformation assessed by feature tracking depends on the segmentation procedure. • Global myocardial strain values differ significantly among vendors. • Standardization in post-processing using CMR feature tracking is essential. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07539-5.
Collapse
Affiliation(s)
- Carolin Lim
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Edyta Blaszczyk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Leili Riazy
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Berlin Ultrahigh Field Facility at the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Stephanie Wiesemann
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Johannes Schüler
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians - University München, Hausham, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany.
| |
Collapse
|
33
|
Prognostic Value of Different CMR-Based Techniques to Assess Left Ventricular Myocardial Strain in Takotsubo Syndrome. J Clin Med 2020; 9:jcm9123882. [PMID: 33260461 PMCID: PMC7759874 DOI: 10.3390/jcm9123882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac magnetic resonance (CMR)-derived left ventricular (LV) global longitudinal strain (GLS) provides incremental prognostic information on various cardiovascular diseases but has not yet been investigated comprehensively in patients with Takotsubo syndrome (TS). This study evaluated the prognostic value of feature tracking (FT) GLS, tissue tracking (TT) GLS, and fast manual long axis strain (LAS) in 147 patients with TS, who underwent CMR at a median of 2 days after admission. Long-term mortality was assessed 3 years after the acute event. In contrast to LV ejection fraction and tissue characteristics, impaired FT-GLS, TT-GLS and fast manual LAS were associated with adverse outcome. The best cutoff points for the prediction of long-term mortality were similar with all three approaches: FT-GLS −11.28%, TT-GLS −11.45%, and fast manual LAS −10.86%. Long-term mortality rates were significantly higher in patients with FT-GLS > −11.28% (25.0% versus 9.8%; p = 0.029), TT-GLS > −11.45% (20.0% versus 5.4%; p = 0.016), and LAS > −10.86% (23.3% versus 6.6%; p = 0.014). However, in multivariable analysis, diabetes mellitus (p = 0.001), atrial fibrillation (p = 0.001), malignancy (p = 0.006), and physical triggers (p = 0.006) outperformed measures of myocardial strain and emerged as the strongest, independent predictors of long-term mortality in TS. In conclusion, CMR-based longitudinal strain provides valuable prognostic information in patients with TS, regardless of the utilized technique of assessment. Long-term mortality, however, is mainly determined by comorbidities.
Collapse
|
34
|
Lange T, Stiermaier T, Backhaus SJ, Boom PC, Kowallick JT, de Waha-Thiele S, Lotz J, Kutty S, Bigalke B, Gutberlet M, Feistritzer HJ, Desch S, Hasenfuß G, Thiele H, Eitel I, Schuster A. Functional and prognostic implications of cardiac magnetic resonance feature tracking-derived remote myocardial strain analyses in patients following acute myocardial infarction. Clin Res Cardiol 2020; 110:270-280. [PMID: 33083869 PMCID: PMC7862195 DOI: 10.1007/s00392-020-01747-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 01/15/2023]
Abstract
Background Cardiac magnetic resonance myocardial feature tracking (CMR-FT)-derived global strain assessments provide incremental prognostic information in patients following acute myocardial infarction (AMI). Functional analyses of the remote myocardium (RM) are scarce and whether they provide an additional prognostic value in these patients is unknown. Methods 1034 patients following acute myocardial infarction were included. CMR imaging and strain analyses as well as infarct size quantification were performed after reperfusion by primary percutaneous coronary intervention. The occurrence of major adverse cardiac events (MACE) within 12 months after the index event was defined as primary clinical endpoint. Results Patients with MACE had significantly lower RM circumferential strain (CS) compared to those without MACE. A cutoff value for RM CS of − 25.8% best identified high-risk patients (p < 0.001 on log-rank testing) and impaired RM CS was a strong predictor of MACE (HR 1.05, 95% CI 1.07–1.14, p = 0.003). RM CS provided further risk stratification among patients considered at risk according to established CMR parameters for (1) patients with reduced left ventricular ejection fraction (LVEF) ≤ 35% (p = 0.038 on log-rank testing), (2) patients with reduced global circumferential strain (GCS) > − 18.3% (p = 0.015 on log-rank testing), and (3) patients with large microvascular obstruction ≥ 1.46% (p = 0.002 on log-rank testing). Conclusion CMR-FT-derived RM CS is a useful parameter to characterize the response of the remote myocardium and allows improved stratification following AMI beyond commonly used parameters, especially of high-risk patients. Trial registration ClinicalTrials.gov, NCT00712101 and NCT01612312 Graphic abstract Defining remote segments (R) in the presence of infarct areas (I) for the analysis of remote circumferential strain (CS). Remote CS was significantly lower in patients who suffered major adverse cardiac events (MACE) and a cutoff value for remote CS of − 25.8% best identified high-risk patients. In addition, impaired remote CS ≥ − 25.8 % (Remote −) and preserved remote CS < − 25.8 % (Remote +) enabled further risk stratification when added to established parameters like left ventricular ejection fraction (LVEF), global circumferential strain (GCS) or microvascular obstruction (MVO).![]()
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, Göttingen, Germany
| | - Thomas Stiermaier
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, Göttingen, Germany
| | - Patricia C Boom
- Department of Cardiology and Pneumology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, Göttingen, Germany
| | - Johannes T Kowallick
- Institute for Diagnostic and Interventional Radiology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Suzanne de Waha-Thiele
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Boris Bigalke
- Department of Cardiology, Charité Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Matthias Gutberlet
- Institute of Diagnostic and Interventional Radiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Hans-Josef Feistritzer
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, Göttingen, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, Göttingen Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, Göttingen, Germany.
| |
Collapse
|
35
|
Schuster A, Lange T, Backhaus SJ, Strohmeyer C, Boom PC, Matz J, Kowallick JT, Lotz J, Steinmetz M, Kutty S, Bigalke B, Gutberlet M, de Waha-Thiele S, Desch S, Hasenfuß G, Thiele H, Stiermaier T, Eitel I. Fully Automated Cardiac Assessment for Diagnostic and Prognostic Stratification Following Myocardial Infarction. J Am Heart Assoc 2020; 9:e016612. [PMID: 32873121 PMCID: PMC7726968 DOI: 10.1161/jaha.120.016612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cardiovascular magnetic resonance imaging is considered the reference methodology for cardiac morphology and function but requires manual postprocessing. Whether novel artificial intelligence–based automated analyses deliver similar information for risk stratification is unknown. Therefore, this study aimed to investigate feasibility and prognostic implications of artificial intelligence–based, commercially available software analyses. Methods and Results Cardiovascular magnetic resonance data (n=1017 patients) from 2 myocardial infarction multicenter trials were included. Analyses of biventricular parameters including ejection fraction (EF) were manually and automatically assessed using conventional and artificial intelligence–based software. Obtained parameters entered regression analyses for prediction of major adverse cardiac events, defined as death, reinfarction, or congestive heart failure, within 1 year after the acute event. Both manual and uncorrected automated volumetric assessments showed similar impact on outcome in univariate analyses (left ventricular EF, manual: hazard ratio [HR], 0.93 [95% CI 0.91–0.95]; P<0.001; automated: HR, 0.94 [95% CI, 0.92–0.96]; P<0.001) and multivariable analyses (left ventricular EF, manual: HR, 0.95 [95% CI, 0.92–0.98]; P=0.001; automated: HR, 0.95 [95% CI, 0.92–0.98]; P=0.001). Manual correction of the automated contours did not lead to improved risk prediction (left ventricular EF, area under the curve: 0.67 automated versus 0.68 automated corrected; P=0.49). There was acceptable agreement (left ventricular EF: bias, 2.6%; 95% limits of agreement, −9.1% to 14.2%; intraclass correlation coefficient, 0.88 [95% CI, 0.77–0.93]) of manual and automated volumetric assessments. Conclusions User‐independent volumetric analyses performed by fully automated software are feasible, and results are equally predictive of major adverse cardiac events compared with conventional analyses in patients following myocardial infarction. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00712101 and NCT01612312.
Collapse
Affiliation(s)
- Andreas Schuster
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Torben Lange
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Carolin Strohmeyer
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Patricia C Boom
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Jonas Matz
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Johannes T Kowallick
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany.,Institute for Diagnostic and Interventional Radiology University Medical Center GöttingenGeorg-August University Göttingen Germany
| | - Joachim Lotz
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany.,Institute for Diagnostic and Interventional Radiology University Medical Center GöttingenGeorg-August University Göttingen Germany
| | - Michael Steinmetz
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany.,Department of Pediatric Cardiology University Medical Center GöttingenGeorg-August University Göttingen Germany
| | - Shelby Kutty
- Helen B. Taussig Heart Center The Johns Hopkins Hospital and School of Medicine Baltimore MD
| | - Boris Bigalke
- Department of Cardiology Charité Campus Benjamin FranklinUniversity Medical Center Berlin Berlin Germany
| | - Matthias Gutberlet
- Institute of Diagnostic and Interventional Radiology Heart Center Leipzig at University of Leipzig Germany
| | - Suzanne de Waha-Thiele
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center LübeckUniversity Hospital Schleswig-Holstein Lübeck Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute Heart Center Leipzig at University of Leipzig Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology University Medical Center GöttingenGeorg-August University Göttingen Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen Göttingen Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute Heart Center Leipzig at University of Leipzig Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center LübeckUniversity Hospital Schleswig-Holstein Lübeck Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center LübeckUniversity Hospital Schleswig-Holstein Lübeck Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck Lübeck Germany
| |
Collapse
|
36
|
Backhaus SJ, Metschies G, Zieschang V, Erley J, Mahsa Zamani S, Kowallick JT, Lapinskas T, Pieske B, Lotz J, Kutty S, Hasenfuß G, Kelle S, Schuster A. Head-to-head comparison of cardiovascular MR feature tracking cine versus acquisition-based deformation strain imaging using myocardial tagging and strain encoding. Magn Reson Med 2020; 85:357-368. [PMID: 32851707 DOI: 10.1002/mrm.28437] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Myocardial feature-tracking (FT) deformation imaging is superior for risk stratification compared with volumetric approaches. Because there is no clear recommendation regarding FT postprocessing, we compared different FT-strain analyses with reference standard techniques, including tagging and strain-encoded (SENC) MRI. METHODS Feature-tracking software from four different vendors (TomTec, Medis, Circle [CVI], and Neosoft), tagging (Segment), and fastSENC (MyoStrain) were used to determine left ventricular global circumferential strains (GCS) and longitudinal strains (GLS) in 12 healthy volunteers and 12 patients with heart failure. Variability and agreements were assessed using intraclass correlation coefficients for absolute agreement (ICCa) and consistency (ICCc) as well as Pearson correlation coefficients. RESULTS For FT-GCS, consistency was excellent comparing different FT vendors (ICCc = 0.84-0.97, r = 0.86-0.95) and in comparison to fast SENC (ICCc = 0.78-0.89, r = 0.73-0.81). FT-GCS consistency was excellent compared with tagging (ICCc = 0.79-0.85, r = 0.74-0.77) except for TomTec (ICCc = 0.68, r = 0.72). Absolute FT-GCS agreements among FT vendors were highest for CVI and Medis (ICCa = 0.96) and lowest for TomTec and Neosoft (ICCa = 0.32). Similarly, absolute FT-GCS agreements were excellent for CVI and Medis compared with both tagging and fast SENC (ICCa = 0.84-0.88), good to excellent for Neosoft (ICCa = 0.77 and 0.64), and lowest for TomTec (ICCa = 0.41 and 0.47). For FT-GLS, consistency was excellent (ICCc ≥ 0.86, r ≥ 0.76). Absolute agreements among FT vendors were excellent (ICCa = 0.91-0.93) or good to excellent for TomTec (ICCa = 0.69-0.85). Absolute agreements (ICCa) were good (CVI 0.70, Medis 0.60) and fair (TomTec 0.41, Neosoft 0.59) compared with tagging, but excellent compared with fast SENC (ICCa = 0.77-0.90). CONCLUSION Although absolute agreements differ depending on deformation assessment approaches, consistency and correlation are consistently high regardless of the method chosen, thus indicating reliable strain assessment. Further standardisation and introduction of uniform references is warranted for routine clinical implementation.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Göttingen, Germany
| | - Georg Metschies
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Göttingen, Germany
| | - Victoria Zieschang
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany
| | - Jennifer Erley
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany
| | - Seyedeh Mahsa Zamani
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research, Göttingen, Göttingen, Germany.,University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Tomas Lapinskas
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Berlin, Germany.,Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Burkert Pieske
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research, Göttingen, Göttingen, Germany.,German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- German Heart Center Berlin, Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, University of Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Erley J, Tanacli R, Genovese D, Tapaskar N, Rashedi N, Bucius P, Kawaji K, Karagodin I, Lang RM, Kelle S, Mor-Avi V, Patel AR. Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. J Cardiovasc Magn Reson 2020; 22:51. [PMID: 32698811 PMCID: PMC7376701 DOI: 10.1186/s12968-020-00647-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Right ventricular (RV) strain is a useful predictor of prognosis in various cardiovascular diseases, including those traditionally believed to impact only the left ventricle. We aimed to determine inter-modality and inter-technique agreement in RV longitudinal strain (LS) measurements between currently available cardiovascular magnetic resonance (CMR) and echocardiographic techniques, as well as their reproducibility and the impact of layer-specific strain measurements. METHODS RV-LS was determined in 62 patients using 2D speckle tracking echocardiography (STE, Epsilon) and two CMR techniques: feature tracking (FT) and strain-encoding (SENC), and in 17 healthy subjects using FT and SENC only. Measurements included global and free-wall LS (GLS, FWLS). Inter-technique agreement was assessed using linear regression and Bland-Altman analysis. Reproducibility was quantified using intraclass correlation (ICC) and coefficients of variation (CoV). RESULTS We found similar moderate agreement between both CMR techniques and STE in patients: r = 0.57-0.63 for SENC; r = 0.50-0.62 for FT. The correlation between SENC and STE was better for GLS (r = 0.63) than for FWLS (r = 0.57). Conversely, the correlation between FT and STE was higher for FWLS (r = 0.60-0.62) than GLS (r = 0.50-0.54). FT-midmyocardial strain correlated better with SENC and STE than FT-subendocardial strain. The agreement between SENC and FT was fair (r = 0.36-0.41, bias: - 6.4 to - 10.4%) in the entire study group. All techniques except FT showed excellent reproducibility (ICC: 0.62-0.96, CoV: 0.04-0.30). CONCLUSIONS We found only moderate inter-modality agreement with STE in RV-LS for both FT and SENC and poor agreement when comparing between the CMR techniques. Different modalities and techniques should not be used interchangeably to determine and monitor RV strain.
Collapse
Affiliation(s)
- Jennifer Erley
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
| | - Radu Tanacli
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
| | - Davide Genovese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Natalie Tapaskar
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Nina Rashedi
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Paulius Bucius
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
| | - Keigo Kawaji
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Ilya Karagodin
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Roberto M. Lang
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Sebastian Kelle
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
- Charité Campus Virchow Klinikum, Department of Internal Medicine/Cardiology, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Amit R. Patel
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| |
Collapse
|
38
|
Backhaus SJ, Kowallick JT, Stiermaier T, Lange T, Navarra JL, Koschalka A, Evertz R, Lotz J, Kutty S, Hasenfuß G, Gutberlet M, Thiele H, Eitel I, Schuster A. Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment After Acute Myocardial Infarction in Patients With Type 2 Diabetes. Diabetes 2020; 69:1540-1548. [PMID: 32335515 DOI: 10.2337/db20-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and left atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (N = 1,147; n = 265 with diabetes, n = 882 without diabetes) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF); global longitudinal strain (GLS) and circumferential and radial strains; LA reservoir, conduit, and booster pump strains; and infarct size, edema, and microvascular obstruction. Predefined end points were major adverse cardiovascular events (MACE) within 12 months. Patients with diabetes had impaired LA reservoir (19.8% vs. 21.2%, P < 0.01) and conduit (7.6% vs. 9.0%, P < 0.01) strains but not ventricular function or myocardial damage. They were at higher risk of MACE than patients without diabetes (10.2% vs. 5.8%, P < 0.01), with most MACE occurring in patients with LVEF ≥35%. While LVEF (P = 0.045) and atrial reservoir strain (P = 0.024) were independent predictors of MACE in patients without diabetes, GLS was in patients with diabetes (P = 0.010). Considering patients with diabetes and LVEF ≥35% (n = 237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above that of LVEF.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Thomas Stiermaier
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Jenny-Lou Navarra
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Alexander Koschalka
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins Hospital, Baltimore, MD
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Matthias Gutberlet
- Department of Radiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
von Knobelsdorff-Brenkenhoff F, Schunke T, Reiter S, Scheck R, Höfling B, Pilz G. Influence of contrast agent and spatial resolution on myocardial strain results using feature tracking MRI. Eur Radiol 2020; 30:6099-6108. [PMID: 32472273 DOI: 10.1007/s00330-020-06971-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Feature tracking for assessing myocardial strain from cardiac magnetic resonance (CMR) cine images detects myocardial deformation abnormalities with prognostic implication, e.g., in myocardial infarction and cardiomyopathy. Standards for image acquisition and processing are not yet available. Study aim was analyzing the influence of spatial resolution and contrast agent on myocardial strain results. METHODS Seventy-five patients underwent CMR for analyzing peak systolic circumferential, longitudinal, and radial strain. Group A included n = 50 with normal left ventricular ejection fraction, no wall motion abnormality, and no fibrosis on late enhancement imaging. Group B included n = 25 with chronic myocardial infarct. For feature tracking, steady-state free precession cine images were acquired repeatedly. (1) Native standard cine (spatial resolution 1.4 × 1.4 × 8 mm3). (2) Native cine with lower spatial resolution (2.0 × 2.0 × 8 mm3). (3) Cine equal to variant 1 acquired after administration of gadoteracid. RESULTS Lower spatial resolution was associated with elevated longitudinal strain (- 21.7% vs. - 19.8%; p < 0.001) in viable myocardium in group A, and with elevated longitudinal (- 17.0% vs. - 14.3%; p = 0.001), circumferential (- 18.6% vs. - 14.6%; p = 0.002), and radial strain (36.8% vs. 31.0%; p = 0.013) in infarcted myocardium in group B. Gadolinium administration was associated with reduced circumferential (- 21.4% vs. - 22.3%; p = 0.001) and radial strain (44.4% vs. 46.9%; p = 0.016) in group A, whereas strain results of the infarcted tissue in group B did not change after contrast agent administration. CONCLUSIONS Variations in spatial resolution and the administration of contrast agent may influence myocardial strain results in viable and partly in infarcted myocardium. Standardized image acquisition seems important for CMR feature tracking. KEY POINTS • Feature tracking is used for calculating myocardial strain from cardiac magnetic resonance (CMR) cine images. • This prospective study demonstrated that CMR strain results may be influenced by spatial resolution and by the administration of gadolinium-based contrast agent. • The results underline the need for standardized image acquisition for CMR strain analysis, with constant imaging parameters and without contrast agent.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany.
| | - Tobias Schunke
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Stephanie Reiter
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Roland Scheck
- Radiology Oberland, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Agatharied, Munich, Germany
| | - Berthold Höfling
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Günter Pilz
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| |
Collapse
|
40
|
Ananthapadmanabhan S, Deng E, Femia G, Tang S, Koh ES, Schuster A, Puranik R, Gupta P, Nguyen T, Dimitri H, Otton J. Intra- and inter-observer reproducibility of multilayer cardiac magnetic resonance feature tracking derived longitudinal and circumferential strain. Cardiovasc Diagn Ther 2020; 10:173-182. [PMID: 32420097 DOI: 10.21037/cdt.2020.01.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Multilayer strain measurement with cardiac magnetic resonance feature tracking (CMR-FT) allows independent assessment of endocardial and epicardial strain. This novel method of layer-specific quantification of myocardial deformation parameters provides greater insight into contractility compared to whole-layer strain analysis. The clinical utility of this technique is promising. The aim of this study is to investigate the intra- and inter- observer reproducibility of CMR-FT derived multilayer global longitudinal strain (GLS) and global circumferential strain (GCS) parameters in the setting of normal cardiac function, cardiac pathology, and differing MRI field strengths. Methods We studied 4 groups of 20 subjects, comprising of patients with dilated cardiomyopathy, ischemic heart disease, and patients without cardiac pathology at both 1.5 and 3 T. Quantitative measures of whole-layer and multi-layer longitudinal and circumferential strain were calculated using CMR-FT software. Results Intraclass correlation coefficients (ICC) for intraobserver reproducibility of endocardial, epicardial, and whole-layer measurements of GLS were 0.979, 0.980, and 0.978 respectively, and those for GCS were 0.986, 0.977, and 0.985. ICCs for inter-observer reproducibility of endocardial, epicardial, and whole-layer measurements of GLS were 0.976, 0.970, and 0.976, and those for GCS were 0.982, 0.969, and 0.981. Bland Altman analysis showed minimal bias and acceptable limits of agreement (LOA) within each patient subgroup and the overall cohort. Circumferential and longitudinal strain parameters were equally reproducible in the overall cohort. Conclusions CMR-FT derived multilayer measurements of longitudinal and circumferential strain demonstrate high intra- and inter- observer reproducibility, with suitability for use in clinical practice.
Collapse
Affiliation(s)
| | - Echo Deng
- Faculty of Medicine, University of New South Wales, Bossley Park, Sydney, NSW, Australia
| | - Giuseppe Femia
- Cardiology Department, Liverpool Hospital, Liverpool, Sydney, Australia
| | - Simon Tang
- Cardiology Department, Liverpool Hospital, Liverpool, Sydney, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, Sydney, Australia
| | - Andreas Schuster
- Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Northern Clinical School, University of Sydney, Sydney, Australia.,University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Raj Puranik
- Cardiology Department, Royal Prince Alfred Hospital, Newtown, Sydney, Australia
| | - Pankaj Gupta
- Cardiology Department, Royal Prince Alfred Hospital, Newtown, Sydney, Australia
| | - Tuan Nguyen
- Faculty of Medicine, University of New South Wales, Bossley Park, Sydney, NSW, Australia.,Cardiology Department, Liverpool Hospital, Liverpool, Sydney, Australia
| | - Hany Dimitri
- Faculty of Medicine, University of New South Wales, Bossley Park, Sydney, NSW, Australia.,Cardiology Department, Liverpool Hospital, Liverpool, Sydney, Australia
| | - James Otton
- Faculty of Medicine, University of New South Wales, Bossley Park, Sydney, NSW, Australia.,Cardiology Department, Liverpool Hospital, Liverpool, Sydney, Australia
| |
Collapse
|
41
|
Multimodality Imaging of the Tricuspid Valve and Right Heart Anatomy. JACC Cardiovasc Imaging 2020; 12:516-531. [PMID: 30846125 DOI: 10.1016/j.jcmg.2019.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
The characterization of tricuspid valve and right-heart anatomy has been gaining significant interest in the setting of new percutaneous transcatheter interventions for tricuspid regurgitation. Multimodality cardiac imaging provides a wealth of information about the anatomy and function of the tricuspid valve apparatus, right ventricle, and right atrium, which is pivotal for diagnosis and prognosis and for planning of percutaneous interventions. The present review describes the role of echocardiography, cardiac magnetic resonance, and multidetector row cardiac computed tomography for right heart and tricuspid valve assessment.
Collapse
|
42
|
Reproducibility and Intervendor Agreement of Left Ventricular Global Systolic Strain in Children Using a Layer-Specific Analysis. J Am Soc Echocardiogr 2019; 33:110-119. [PMID: 31668503 DOI: 10.1016/j.echo.2019.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Speckle-tracking strain analysis provides additive data to the assessment of pediatric and congenital heart disease; however, the variety of strain analysis software platforms by different vendors and the lack of data on intervendor strain agreement in children have limited its utility. The purpose of this study is to evaluate the intervendor agreement of strain on two commonly used analysis platforms in pediatrics by layer of myocardium and data compression. METHODS This prospective study analyzed two-dimensional speckle-tracking strain on two software platforms in 53 children with normal cardiac segmental anatomy and varying function. Three standard apical views and one parasternal short-axis view were exported at their acquired frame rates to workstations with GE EchoPAC and TomTec software and then also to TomTec at compressed frame rates. Both software platforms had been updated with European Association of Cardiovascular Imaging/American Society of Echocardiography Task Force recommendations for left ventricular (LV) global strain. Intravendor and intervendor agreement between layer-specific comparisons were assessed using Bland-Altman analysis (limits of agreement and bias) and intraclass correlation coefficients. RESULTS This study included subjects with normal LV function (n = 38) and cardiomyopathy (n = 15) with an age range of 1 month to 18 years. Intertechnique agreement by default vendor myocardial layer (GE mid-TomTec endocardial layer) was robust for both global longitudinal (GLS) and circumferential strain (GCS; higher for GLS than GCS). Intravendor (inter- and interreader) agreement was slightly higher than intervendor. Only small differences in intraclass correlation coefficients were present between various myocardial layers and acquired versus compressed TomTec data with narrow limits of agreement and small bias except in certain subgroup comparisons. CONCLUSIONS Comparison of LV GLS and GCS between two commonly used software platforms after European Association of Cardiovascular Imaging/American Society of Echocardiography Industry Task Force recommendations demonstrated good to excellent agreement in pediatrics, regardless of the layer of analysis or the image format, although some degree of variability remains between vendor platforms. Overall, GLS agreement was more robust than GCS, and this difference is exaggerated in specific subanalyses. These data suggest that comparisons of strain values obtained on these two vendors will be reasonable, but caution should be used when the indication is the detection of small differences between serial echocardiograms.
Collapse
|
43
|
Effect of comprehensive initial training on the variability of left ventricular measures using fast-SENC cardiac magnetic resonance imaging. Sci Rep 2019; 9:12223. [PMID: 31434950 PMCID: PMC6704124 DOI: 10.1038/s41598-019-48685-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiac magnetic resonance (CMR) is becoming the imaging modality of choice in multicenter studies where highly reproducible measurements are necessary. The purpose of this study was to assess the effect of comprehensive initial training on reproducibility of quantitative left ventricular (LV) parameters estimated using strain-encoded (SENC) imaging. Thirty participants (10 patients with heart failure (HF) and preserved LV ejection fraction (HFpEF), 10 patients with HF and reduced LV ejection fraction (HFrEF) and 10 healthy volunteers) were examined using fast-SENC imaging. Four observers with different experience in non-invasive cardiac imaging completed comprehensive initial training course and were invited to perform CMR data analysis. To assess agreement between observers, LV volumes, mass, ejection fraction (LVEF), global longitudinal strain (GLS) and global circumferential strain (GCS) were estimated using dedicated software (MyoStrain, USA). To test intraobserver agreement data analysis was repeated after 4 weeks. SENC imaging and analysis were fast and were completed in less than 5 minutes. LV end-diastolic volume index (LVEDVi), LVEF and strain were significantly lower in HFpEF patients than in healthy volunteers (p = 0.019 for LVEDVi; p = 0.023 for LVEF; p = 0.004 for GLS and p < 0.001 for GCS). All LV functional parameters were further reduced in HFrEF. Excellent interobserver agreement was found for all LV parameters independently of the level of experience. The reproducibility of LV mass was lower, especially at the intraobserver level (ICC 0.91; 95% CI 0.74–0.96). LV volumetric and functional parameters derived using fast-SENC imaging, are highly reproducible. The appropriate initial training is relevant and allows to achieve highest concordance in fast-SENC measurements.
Collapse
|
44
|
Recovery and prognostic value of myocardial strain in ST-segment elevation myocardial infarction patients with a concurrent chronic total occlusion. Eur Radiol 2019; 30:600-608. [PMID: 31350585 PMCID: PMC6890657 DOI: 10.1007/s00330-019-06338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/17/2019] [Accepted: 06/21/2019] [Indexed: 01/25/2023]
Abstract
Objectives Global left ventricular (LV) function is routinely used to assess cardiac function; however, myocardial strain is able to identify more subtle dysfunction. We aimed to determine the recovery and prognostic value of featuring tracking (FT) cardiovascular magnetic resonance (CMR) strain in ST-segment elevation myocardial infarction (STEMI) patients with a concurrent chronic total occlusion (CTO). Methods In the randomized EXPLORE trial, there was no significant difference in global LV function after percutaneous coronary intervention (PCI) of the CTO, compared with no-CTO PCI, post-STEMI. In the current study, we included 200 of the 302 EXPLORE patients with a baseline CMR, of which 180 also had 4-month follow-up (serial) CMR. Global longitudinal strain (GLS) was calculated from 3 long-axis views. Global circumferential strain (GCS) and segmental strain were calculated from 3 short-axis views (basal, mid, and apical). Results Global strain significantly improved at 4 months (GLS ∆ − 1.8 ± 4.3%, p < 0.001; GCS ∆ − 1.7 ± 4.7%, p < 0.001); however, there was no treatment effect of CTO-PCI on strain recovery. GLS was a significant predictor for 4 months of LV ejection fraction (p = 0.006), incremental to other CMR parameters including infarct size. For mortality, infarct size remained the strongest predictor. On regional level, segmental strain independently predicted recovery in the dysfunctional segments (p < 0.001). Conclusions Global and segmental myocardial strains significantly improved over time, with no effect of CTO-PCI. Global strain was associated with outcome and segmental strain was an independent predictor for regional LV recovery in the dysfunctional CTO territory. Further research is needed to determine the additional prognostic value of strain beyond routine CMR parameters. Key Points • In STEMI patients with a concurrent CTO, strain significantly improves over time, regardless of CTO-PCI. • Global strain is an independent predictor for functional recovery, incremental to infarct size, LVEF, and clinical parameters. • Segmental strain was able to predict the recovery of wall thickening, incremental to transmural extent of infarction. Electronic supplementary material The online version of this article (10.1007/s00330-019-06338-x) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction. Clin Res Cardiol 2019; 109:339-349. [DOI: 10.1007/s00392-019-01514-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/21/2019] [Indexed: 01/04/2023]
|
46
|
von Roeder M, Kowallick JT, Rommel KP, Blazek S, Besler C, Fengler K, Lotz J, Hasenfuß G, Lücke C, Gutberlet M, Thiele H, Schuster A, Lurz P. Right atrial-right ventricular coupling in heart failure with preserved ejection fraction. Clin Res Cardiol 2019; 109:54-66. [PMID: 31053957 DOI: 10.1007/s00392-019-01484-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Right ventricular (RV) function is prognostically relevant in heart failure with preserved ejection fraction (HFpEF) but data on profound assessment of RV and right atrial (RA) interaction in HFpEF are lacking. The current study characterizes RV and RA interaction using invasive pressure-volume-loop analysis and cardiac magnetic resonance imaging (CMR) data. METHODS AND RESULTS We performed CMR and myocardial feature-tracking in 24 HFpEF patients and 12 patients without HFpEF. Invasive pressure-volume-loops were obtained to evaluate systolic and diastolic RV properties. RV early filling was determined from CMR RV volume-time curves. RV systolic function was slightly increased in HFpEF (RV EF 68 ± 8 vs. 60 ± 9%, p = 0.01), while no differences in RV stroke volume were found (45 ± 7 vs 42 ± 9 ml/m2, p = 0.32). RV early filling was decreased in HFpEF (21 ± 11 vs. 40 ± 11% of RV filling volume, p < 0.01) and RV early filling was the strongest predictor for VO2max even after inclusion of invasively derived RV stiffness and relaxation constant (Beta 0.63, p < 0.01). RA conduit-function was lower in HFpEF (RA conduit-strain - 11 ± 5 vs. - 16 ± 4%, p < 0.01) while RA booster-pump-function was increased (RA active-strain - 18 ± 6 vs. - 12 ± 6%, p = 0.01) as a compensation. RV filling was associated with RA conduit-function (r = - 0.55, p < 0.01) but not with invasively derived RV relaxation constant. CONCLUSION In compensated HFpEF patients RV early filling was impaired and compensated by increased RA booster pump function, while RV systolic function was preserved. Impaired RV diastology and RA-RV interaction were linked to impaired exercise tolerance and RA-RV-coupling seems to be independent of RV relaxation, suggestive of an independent pathophysiological contribution of RA dysfunction in HFpEF. CLINICAL-TRIAL-REGISTRATION NCT02459626 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Maximilian von Roeder
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Johannes Tammo Kowallick
- Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research Partner Site Göttingen), Göttingen, Germany
| | - Karl-Philipp Rommel
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Stephan Blazek
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Christian Besler
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Karl Fengler
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research Partner Site Göttingen), Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research Partner Site Göttingen), Göttingen, Germany
| | - Christian Lücke
- Department of Radiology, Heart Center Leipzig, University Hospital, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Radiology, Heart Center Leipzig, University Hospital, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research Partner Site Göttingen), Göttingen, Germany.,Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig, University Hospital, Struempellstrasse 39, 04289, Leipzig, Germany.
| |
Collapse
|
47
|
Backhaus SJ, Staab W, Steinmetz M, Ritter CO, Lotz J, Hasenfuß G, Schuster A, Kowallick JT. Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings. J Cardiovasc Magn Reson 2019; 21:24. [PMID: 31023305 PMCID: PMC8059518 DOI: 10.1186/s12968-019-0532-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) represents the clinical gold standard for the assessment of biventricular morphology and function. Since manual post-processing is time-consuming and prone to observer variability, efforts have been directed towards automated volumetric quantification. In this study, we sought to validate the accuracy of a novel approach providing fully automated quantification of biventricular volumes and function in a "real-world" clinical setting. METHODS Three-hundred CMR examinations were randomly selected from the local data base. Fully automated quantification of left ventricular (LV) mass, LV and right ventricular (RV) end-diastolic and end-systolic volumes (EDV/ESV), stroke volume (SV) and ejection fraction (EF) were performed overnight using commercially available software (suiteHEART®, Neosoft, Pewaukee, Wisconsin, USA). Parameters were compared to manual assessments (QMass®, Medis Medical Imaging Systems, Leiden, Netherlands). Sub-group analyses were further performed according to image quality, scanner field strength, the presence of implanted aortic valves and repaired Tetralogy of Fallot (ToF). RESULTS Biventricular automated segmentation was feasible in all 300 cases. Overall agreement between fully automated and manually derived LV parameters was good (LV-EF: intra-class correlation coefficient [ICC] 0.95; bias - 2.5% [SD 5.9%]), whilst RV agreement was lower (RV-EF: ICC 0.72; bias 5.8% [SD 9.6%]). Lowest agreement was observed in case of severely altered anatomy, e.g. marked RV dilation but normal LV dimensions in repaired ToF (LV parameters ICC 0.73-0.91; RV parameters ICC 0.41-0.94) and/or reduced image quality (LV parameters ICC 0.86-0.95; RV parameters ICC 0.56-0.91), which was more common on 3.0 T than on 1.5 T. CONCLUSIONS Fully automated assessments of biventricular morphology and function is robust and accurate in a clinical routine setting with good image quality and can be performed without any user interaction. However, in case of demanding anatomy (e.g. repaired ToF, severe LV hypertrophy) or reduced image quality, quality check and manual re-contouring are still required.
Collapse
Affiliation(s)
- Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Wieland Staab
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Michael Steinmetz
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Pediatric Cardiology and Intensive Care Medicine, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Christian O. Ritter
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Nothern Clinical School, University of Sydney, Sydney, Australia
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
48
|
Backhaus SJ, Metschies G, Billing M, Kowallick JT, Gertz RJ, Lapinskas T, Pieske B, Lotz J, Bigalke B, Kutty S, Hasenfuß G, Beerbaum P, Kelle S, Schuster A. Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility. PLoS One 2019; 14:e0210127. [PMID: 30682045 PMCID: PMC6347155 DOI: 10.1371/journal.pone.0210127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software. METHODS Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers. RESULTS Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance. CONCLUSION Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance.
Collapse
Affiliation(s)
- Sören J. Backhaus
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Georg Metschies
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Marcus Billing
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Roman J. Gertz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Tomas Lapinskas
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Burkert Pieske
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
| | - Joachim Lotz
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Boris Bigalke
- Charité Campus Benjamin Franklin, University Medical Center Berlin, Department of Cardiology and Pneumology, Berlin, Germany
| | - Shelby Kutty
- Children's Hospital and Medical Center, University of Nebraska College of Medicine, Omaha, United States of America
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Philipp Beerbaum
- Hanover Medical School, Department of Pediatric Cardiology and Intensive Care, Hanover, Germany
| | - Sebastian Kelle
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Nothern Clinical School, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
49
|
Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L. Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2018; 20:71. [PMID: 30396356 PMCID: PMC6219067 DOI: 10.1186/s12968-018-0496-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal left atrial (LA) function is a marker of cardiac dysfunction and adverse cardiovascular outcome, but is difficult to assess, and hence not, routinely quantified. We aimed to determine the feasibility and effectiveness of a fast method to measure long-axis LA strain and strain rate (SR) with standard cardiovascular magnetic resonance (CMR) compared to conventional feature tracking (FT) derived longitudinal strain. METHODS We studied 50 normal controls, 30 patients with hypertrophic cardiomyopathy, and 100 heart failure (HF) patients, including 40 with reduced ejection fraction (HFrEF), 30 mid-range ejection fraction (HFmrEF) and 30 preserved ejection fraction (HFpEF). LA longitudinal strain and SR parameters were derived by tracking the distance between the left atrioventricular junction and a user-defined point at the mid posterior LA wall on standard cine CMR two- and four-chamber views. LA performance was analyzed at three distinct cardiac phases: reservoir function (reservoir strain εs and strain rate SRs), conduit function (conduit strain εe and strain rate SRe) and booster pump function (booster strain εa and strain rate SRa). RESULTS There was good agreement between LA longitudinal strain and SR assessed using the fast and conventional FT-CMR approaches (r = 0.89 to 0.99, p < 0.001). The fast strain and SRs showed a better intra- and inter-observer reproducibility and a 55% reduction in evaluation time (85 ± 10 vs. 190 ± 12 s, p < 0.001) compared to FT-CMR. Fast LA measurements in normal controls were 35.3 ± 5.2% for εs, 18.1 ± 4.3% for εe, 17.2 ± 3.5% for εa, and 1.8 ± 0.4, - 2.0 ± 0.5, - 2.3 ± 0.6 s- 1 for the respective phasic SRs. Significantly reduced LA strains and SRs were observed in all patient groups compared to normal controls. Patients with HFpEF and HFmrEF had significantly smaller εs, SRs, εe and SRe than hypertrophic cardiomyopathy, and HFmrEF had significantly impaired LA reservoir and booster function compared to HFpEF. The fast LA strains and SRs were similar to FT-CMR for discriminating patients from controls (area under the curve (AUC) = 0.79 to 0.96 vs. 0.76 to 0.93, p = NS). CONCLUSIONS Novel quantitative LA strain and SR derived from conventional cine CMR images are fast assessable parameters for LA phasic function analysis.
Collapse
Affiliation(s)
- Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609 Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609 Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609 Singapore
| | - John C. Allen
- Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Angela S. Koh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609 Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609 Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| |
Collapse
|
50
|
Correction: Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking. PLoS One 2018; 13:e0199489. [PMID: 29912951 PMCID: PMC6005528 DOI: 10.1371/journal.pone.0199489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0193746.].
Collapse
|