1
|
Mbuta DM, Sokame BM, Khamis FM, Akutse KS. Know Where You Go: Infestation Dynamics and Potential Distribution of Two Bed Bug Species (Hemiptera: Cimicidae) in Africa. INSECTS 2025; 16:395. [PMID: 40332888 PMCID: PMC12027950 DOI: 10.3390/insects16040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
Bed bugs (Hemiptera: Cimicidae) are blood-feeding insects closely linked with humans and animals, causing discomfort, and posing potential threats as disease vectors. This study focuses on Cimex lectularius (common bed bug) and Cimex hemipterus (tropical bed bug), the two key species identified in Africa. Cimex lectularius infests human habitats, while C. hemipterus, more common in Africa, infests diverse habitats, including bat colonies. In our study, we investigated the infestation dynamics and distribution of bed bugs in Africa, when considering climate, habitat, and host availability using system dynamics and ecological niche modelling techniques. System dynamics modelling analyses in Kenya revealed varied infestation dynamics, with Mombasa having high C. lectularius prevalence, Nairobi having lower coexistence, and Makueni/Bomet C. hemipterus showing dominance. Across Africa, C. hemipterus prevails, especially in central and coastal areas, while C. lectularius has lower suitability, with isolated high-suitability zones. Both species coexist in central/southern Africa, parts of the east, and coastal areas in septentrional/west Africa. The Sahara's extreme conditions challenge both bed bug species' survival, emphasizing climate's role in their infestation and distribution dynamics. Insights into bed bug ecology in Africa underscore the need for comprehensive pest management and public health strategies in the continent.
Collapse
Affiliation(s)
- Dennis M. Mbuta
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (D.M.M.); (B.M.S.); (F.M.K.)
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Bonoukpoè M. Sokame
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (D.M.M.); (B.M.S.); (F.M.K.)
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (D.M.M.); (B.M.S.); (F.M.K.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (D.M.M.); (B.M.S.); (F.M.K.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
2
|
Ma D, Ma L, Komdeur J. Temperature Variation Regulates the Trade-Off Between Pre- and Post-Hatching Investment in a Burying Beetle. INSECTS 2025; 16:378. [PMID: 40332889 PMCID: PMC12028126 DOI: 10.3390/insects16040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Understanding how organisms respond to temperature variation is essential for assessing and predicting their resilience and vulnerability to environmental and climate changes. Here, using a biparental care burying beetle (Nicrophorus vespilloides), we tested whether and how parental investment in carcass preparation and ambient temperature interact to influence subsequent parental care behaviour and reproductive success. We employed a 3 × 2 factorial experiment, manipulating the levels of parental investment in carcass preparation (Reduced, Control, and Elevated) and ambient temperatures (benign: 20 °C and harsh: 23 °C) in breeding pairs. We found the following: (1) Irrespective of ambient temperature, males in the Reduced group decreased their pre-hatching care. (2) Across all investment groups, both sexes under higher temperature reduced post-hatching care. (3) Carcass-preparation investment and ambient temperature interactively influenced reproductive success. Overall, the harsh temperature decreased reproductive success. Furthermore, beetle pairs experiencing reduced carcass-preparation investment produced fewer eggs and lighter broods, while those experiencing elevated carcass-preparation investment produced smaller and lighter broods. Our findings provide new insights into how temperature variation affects parental investment strategies and enhance our understanding of the phenotypic plasticity in reproductive strategies that animals employ to cope with climate change.
Collapse
Affiliation(s)
- Donghui Ma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands; (D.M.); (J.K.)
| | - Long Ma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands; (D.M.); (J.K.)
- GIGA-Neurosciences, Interdisciplinary Center for Biomedical Research (GIGA-Institute), University of Liège, 4000 Liège, Belgium
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands; (D.M.); (J.K.)
| |
Collapse
|
3
|
Li H, Li S, Chen J, Tan Y, Ye J, Hao D. Heat stress-induced oviposition behavioral change correlates with sperm damage in the pine sawyer beetle, Monochamus alternatus. PEST MANAGEMENT SCIENCE 2024; 80:4553-4563. [PMID: 38738515 DOI: 10.1002/ps.8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Global climate change is causing an increase in extreme high temperatures (EHTs), which subject insects to unprecedented stress. Behavior plasticity in response to EHTs, particularly oviposition behavior, is important for the persistence and outbreak of insect populations. Investigating the plasticity of oviposition behavior and its underlying mechanisms has theoretical importance to pest management, but knowledge gaps still remain. RESULTS Herein, we characterized the reproductive traits of Monochamus alternatus, a dominant insect vector of the destructive pine wilt disease, including oviposition behavioral patterns, fecundity, offspring fitness and sperm viability, under simulated heatwave conditions in the laboratory. The results showed that (i) EHTs induced a novel oviposition behavior, whereby females deposited multiple eggs into a single groove rather than laying one egg per groove under normal condition; (ii) EHTs exerted stage- and sex-specific effects on fecundity, offspring fitness and sperm viability; and (iii) there was a significant correlation between frequency of the novel oviposition strategy and sperm viability. CONCLUSION We hypothesized that this beetle pest has the ability to flexibly shift towards a low-cost oviposition strategy to counteract the fitness costs caused by heat stress. Taken together, these findings provide a theoretical foundation for personalized pest management strategies in the context of climate change. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yushan Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Pilakouta N, Allan D, Moore E, Russell AA. Chronic and acute thermal stressors have non-additive effects on fertility. Proc Biol Sci 2024; 291:rspb20241086. [PMID: 39288799 PMCID: PMC11407864 DOI: 10.1098/rspb.2024.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Climate change is driving both higher mean temperatures and a greater likelihood of heatwaves, which are becoming longer and more intense. Previous work has looked at these two types of thermal stressors in isolation, focusing on the effects of either a small, long-term increase in temperature or a large, short-term increase in temperature. Yet, a fundamental gap in our understanding is the combined effect of chronic and acute thermal stressors and, in particular, its impact on vital processes such as reproduction. Here, we investigated the independent and interactive effects of higher constant temperatures and short-term heatwave events on reproductive success and offspring fitness in an insect study system, the burying beetle Nicrophorus vespilloides. We found a substantial reduction in key fitness traits (fecundity, hatching success and offspring size) after exposure to both a heatwave and higher constant temperatures, but not after exposure to only one of these thermal stressors. This indicates that the effects of chronic and acute thermal stressors are amplified when they act in combination, as is very likely to occur in natural populations. Our findings, therefore, suggest that, by not considering the potential multiplicative effects of different types of thermal stressors, we may be underestimating the effects of climate change on animal fertility.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Daniel Allan
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Ellie Moore
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Alison A. Russell
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| |
Collapse
|
5
|
Daly E, Defourneaux M, Legrand C, Renault D. The consequences of heatwaves for the reproductive success and physiology of the wingless sub-Antarctic fly Anatalanta aptera. J Therm Biol 2024; 123:103910. [PMID: 38981304 DOI: 10.1016/j.jtherbio.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.
Collapse
Affiliation(s)
- Ella Daly
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Mathilde Defourneaux
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Camille Legrand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
6
|
Banerjee A, Saha A, Das P, Kakati A, Saha B, Goyary D, Bhutia YD, Karmakar S, Kishor S, Rahaman S, Chattopadhyay P. Optimization and establishment of laboratory rearing conditions for Cimex lectularius L. against variable temperature and relative humidity. Sci Rep 2024; 14:9163. [PMID: 38644433 PMCID: PMC11033264 DOI: 10.1038/s41598-024-59728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Emerging infestations of bed bugs are affecting normal human lifestyle globally. This study has been designed to optimize the rearing conditions for Cimex lectularius L. (Hemiptera), to support the scientific research on them. Bed bugs have been projected onto three different temperature (20 °C, 25 °C, and 30 °C) and relative humidity (50%, 70%, and 90%) conditions to check their overall growth and survival rate. Adult mortality, weight loss, egg laying, percentage hatching, hatching initiation and completion, nymph mortality, and molting have been evaluated to optimize the best conditions. The temperature at 25 °C with 90% RH showed minimum mortality for adults (female 13.33 ± 3.33% and male 6.67 ± 3.33%) and nymphs (13.33 ± 3.33%), while maximum egg laying (40.33 ± 1.86), with highest percentage hatching (98.23 ± 0.58%). At 30 °C with 90% RH, hatching initiation and completion (5.19 ± 0.12 days and 7.23 ± 0.16 days) as well as molting initiation and completion (3.73 ± 0.12 days and 7.00 ± 0.24 days) were found to be fastest. Thus, it can be concluded that 25 °C with 90% RH is ideal for rearing of adults and 30 °C with 90% RH is appropriate for rapid growth of nymphs.
Collapse
Affiliation(s)
- Amartya Banerjee
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Parikshit Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ajay Kakati
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Buddhadeb Saha
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
| | - Yangchen D Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
| | - Saidur Rahaman
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), DRDO, Tezpur, Assam, 784001, India.
| |
Collapse
|
7
|
Ørsted M, Willot Q, Olsen AK, Kongsgaard V, Overgaard J. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii. Ecol Lett 2024; 27:e14421. [PMID: 38549250 DOI: 10.1111/ele.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.
Collapse
Affiliation(s)
- Michael Ørsted
- Section of Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Quentin Willot
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Kirk Olsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Viktor Kongsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Chebbah D, Elissa N, Nicolas P, Levy V, Vingataramin Y, Bennouna A, Jan J, Izri A, Akhoundi M. Effectiveness of heat treatment in rapid control of bed bugs in environmental conditions resembling their natural habitats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1147-1155. [PMID: 37115096 DOI: 10.1080/09603123.2023.2205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
We evaluated lethal temperatures and times for killing bed bugs in diverse covered and uncovered conditions simulating their natural habitats. A total of 5400 adult bed bugs were collected alive from 17 infested locations in Paris. They were morphologically identified in laboratory as Cimex lectularius. They were then distributed in multiple sets of 30 specimens to examine in covered (tissue, furniture, mattress or blanket) and uncovered (direct exposure) conditions and in diverse step-function temperatures (50, 55 and 60°C) and times (15, 30, 60 and 120 minutes), replicated three times. Effective mortality was observed in 1080 specimens exposed directly to 50°C for 60 minutes. In specimens covered by tissue (1080 specimens), furniture (1080) or mattress (1080), all were dead at 60°C within 60 minutes. The specimens covered by blanket (1080) at the same temperature were dead after 120 minutes. A 60-minutes delay in reaching to lethal temperature within blanket compared to uncovered thermometer was observed.
Collapse
Affiliation(s)
- Dahlia Chebbah
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Service Parisien de Santé Environnementale, Sous-direction de la Santé (SPSE), Mairie de Paris, France
| | - Nohal Elissa
- Service Parisien de Santé Environnementale, Sous-direction de la Santé (SPSE), Mairie de Paris, France
| | - Patrick Nicolas
- Biochemical Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Vincent Levy
- Unité de Recherche Clinique, CHU Avicenne, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, Bobigny, France
| | | | - Amal Bennouna
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Julie Jan
- Agence Régionale de Santé (ARS) Île-de-France, Paris, France
| | - Arezki Izri
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité des Virus Émergents (UVE : RAix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
| |
Collapse
|
9
|
Tobin KB, Mandes R, Martinez A, Sadd BM. A simulated natural heatwave perturbs bumblebee immunity and resistance to infection. J Anim Ecol 2024; 93:171-182. [PMID: 38180280 PMCID: PMC10922385 DOI: 10.1111/1365-2656.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
As a consequence of ongoing climate change, heatwaves are predicted to increase in frequency, intensity, and duration in many regions. Such extreme events can shift organisms from thermal optima for physiology and behaviour, with the thermal stress hypothesis predicting reduced performance at temperatures where the maintenance of biological functions is energetically costly. Performance includes the ability to resist biotic stressors, including infectious diseases, with increased exposure to extreme temperatures having the potential to synergise with parasite infection. Climate change is a proposed threat to native bee pollinators, directly and through indirect effects on floral resources, but the thermal stress hypothesis, particularly pertaining to infectious disease resistance, has received limited attention. We exposed adult Bombus impatiens bumblebee workers to simulated, ecologically relevant heatwave or control thermal regimes and assessed longevity, immunity, and resistance to concurrent or future parasite infections. We demonstrate that survival and induced antibacterial immunity are reduced following heatwaves. Supporting that heatwave exposure compromised immunity, the cost of immune activation was thermal regime dependent, with survival costs in control but not heatwave exposed bees. However, in the face of real infections, an inability to mount an optimal immune response will be detrimental, which was reflected by increased trypanosomatid parasite infections following heatwave exposure. These results demonstrate interactions between heatwave exposure and bumblebee performance, including immune and infection outcomes. Thus, the health of bumblebee pollinator populations may be affected through altered interactions with parasites and pathogens, in addition to other effects of extreme manifestations of climate change.
Collapse
Affiliation(s)
- Kerrigan B. Tobin
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Rachel Mandes
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Abraham Martinez
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| |
Collapse
|
10
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Bed Bug Infestation: An Updated Review. Curr Pediatr Rev 2024; 20:137-149. [PMID: 37038684 DOI: 10.2174/1573396320666230406084801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 04/12/2023]
Abstract
In the past decade, there has been a global resurgence of bed bug infestations, especially in developed countries. Proper awareness and identification of bed bug infestations are essential to guide treatment and eradication. The purpose of this article is to familiarize physicians with bed bug bites so that they can effectively diagnose, treat, and address questions about bed bug bites and infestations. Bed bug bites are often painless. Typical reactions include pruritic, erythematous maculopapules occurring in clusters or in a linear or curvilinear distribution in exposed areas of the body. A small red punctum may be visualized at the center of the bite mark. Lesions that appear three in a row and papules on the upper eyelid associated with erythema and edema are highly suggestive of bites from bed bugs. Exaggerated local reactions such as vesicles, urticarial wheals, urticarial perilesional plaques, diffuse urticaria, bullae, and nodules may occur in previously sensitized individuals. Reactions to bed bug bites are self-limited. As such, treatment is mainly symptomatic. Topical pramoxine and oral antihistamines can be used to alleviate pruritus. Topical corticosteroids can be used for significant eruptions to control inflammation and pruritus, and to hasten resolution of the lesions. Integrated pest management, an approach for the eradication of bed bugs, includes monitoring devices (active monitors include the use of heat or carbon dioxide attractants and passive monitors include the use of sticky pads for trapping), and judicious use of nonchemical and chemical treatments known to be effective. Nonchemical interventions include keeping affected areas clean and free of clutter, vacuuming, washing linens with hot water, caulking wall holes and cracks where bugs can hide, proper disposal of highly infested items, and placement of bed bug traps/interceptors at the base of beds and furniture. Chemical interventions involve the use of insecticides such as synthetic pyrethroids, silicates, insect growth disruptors, carbamates, organophosphates, neonicotinoids, diethyl-meta-toluamide, chlorfenapyr, fipronil and plant essential oils. Insecticides should be used with caution to prevent over-exposure and toxicity (in particular, cardiovascular and neurologic toxicity), especially if there are young children around. It is important to note that multiple mechanisms of insecticide resistance exist and as such, chemical treatment should only be undertaken by trained professionals who understand the current literature on resistance. Both nonchemical and chemical technologies should be combined for optimal results. Bed bug infestations may cause diverse dermal reactions, stigmatization, poor self-esteem, emotional stress, anxiety, significant adverse effect on quality of life, and substantial socioeconomic burden to society. As such, their rapid detection and eradication are of paramount importance. Consultation with a professional exterminator is recommended to fully eradicate an infestation.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
11
|
Zhu T, Li W, Xue H, Dong S, Wang J, Shang S, Dewer Y. Selection, Identification, and Transcript Expression Analysis of Antioxidant Enzyme Genes in Neoseiulus barkeri after Short-Term Heat Stress. Antioxidants (Basel) 2023; 12:1998. [PMID: 38001851 PMCID: PMC10669032 DOI: 10.3390/antiox12111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Phytoseiid mite Neoseiulus barkeri is a crucial biological control agent utilized to control pest mites and many insects in crops all over the world. However, they are vulnerable to multiple environmental pressures, with high-temperature stress being the most significant challenge. Heat stress disrupts the balance of reactive oxygen species (ROS) levels in organisms, resulting in oxidative stress within the body. Antioxidant enzymes play a crucial role in effectively neutralizing and clearing ROS. In this study, comparative transcriptomics and quantitative real-time PCR (qRT-PCR) were employed to assess the impact of short-term heat stress on the transcript expression of antioxidant enzyme genes in N. barkeri. We primarily identified four antioxidant enzyme genes (NbSOD, NbPrx, NbCAT, and NbGPX) in N. barkeri after exposure to short-term heat stress. Then, new data on the expression patterns of these genes were generated. RNA sequencing and bioinformatics analysis revealed that NbSOD belongs to the Fe/Mn family of superoxide dismutase (SOD), which was identified as MnSOD. NbPrx was classified as a 1-Cys peroxiredoxin of the peroxidase family, whereas NbCAT was recognized as a classical catalase, and NbGPX was determined as cytoplasmic glutathione peroxidase-1 (GPX1). Transcriptional expression analysis of these four genes was conducted at different high temperatures: 36 °C, 38 °C, and 40 °C for 2, 4, and 6 h. The results also showed that all four genes exhibited significant up-regulation in response to short-term heat stress. Similarly, the highest expression levels for NbSOD, NbPrx, and NbCAT were observed at 40 °C for 4 h. However, NbGPX displayed its maximum expression value at 38 °C for 4 h. Overall, the obtained data suggest that short-term heat stress increases levels of ROS generated inside living organisms, which disrupts the oxidative balance and leads to alterations in the expression levels of antioxidant enzyme genes.
Collapse
Affiliation(s)
- Tong Zhu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Weizhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - He Xue
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Shibo Dong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Jianhui Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Suqin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| |
Collapse
|
12
|
Ma L, Hou C, Jiang ZW, Du WG. Divergent effects of climate change on the egg-laying opportunity of species in cold and warm regions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14056. [PMID: 36661061 DOI: 10.1111/cobi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/30/2023]
Abstract
Climate warming can substantially impact embryonic development and juvenile growth in oviparous species. Estimating the overall impacts of climate warming on oviparous reproduction is difficult because egg-laying events happen throughout the reproductive season. Successful egg laying requires the completion of embryonic development as well as hatching timing conducive to offspring survival and energy accumulation. We propose a new metric-egg-laying opportunity (EO)-to estimate the annual hours during which a clutch of freshly laid eggs yields surviving offspring that store sufficient energy for overwintering. We estimated the EO within the distribution of a model species, Sceloporus undulatus, under recent climate condition and a climate-warming scenario by combining microclimate data, developmental functions, and biophysical models. We predicted that EO will decline as the climate warms at 74.8% of 11,407 sites. Decreasing hatching success and offspring energy accounted for more lost EO hours (72.6% and 72.9%) than the occurrence of offspring heat stress (59.9%). Nesting deeper (at a depth of 12 cm) may be a more effective behavioral adjustment for retaining EO than using shadier (50% shade) nests because the former fully mitigated the decline of EO under the considered warming scenario at more sites (66.1%) than the latter (28.3%). We advocate for the use of EO in predicting the impacts of climate warming on oviparous animals because it encapsulates the integrative impacts of climate warming on all stages of reproductive life history.
Collapse
Affiliation(s)
- Liang Ma
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Durak R, Dampc J, Kula-Maximenko M, Mołoń M, Durak T. Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase. Antioxidants (Basel) 2021; 10:1181. [PMID: 34439429 PMCID: PMC8388978 DOI: 10.3390/antiox10081181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids' development, and a negative correlation between the activity of the antioxidant enzymes and aphids' development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.
Collapse
Affiliation(s)
- Roma Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Jan Dampc
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Mateusz Mołoń
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Tomasz Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| |
Collapse
|
14
|
Ma ZS. A unified survival-analysis approach to insect population development and survival times. Sci Rep 2021; 11:8223. [PMID: 33859237 PMCID: PMC8050314 DOI: 10.1038/s41598-021-87264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
There are two major categories of observation data in studying time-dependent processes: one is the time-series data, and the other is the perhaps lesser-recognized but similarly prevalent time-to-event data (also known as survival or failure time). Examples in entomology include molting times and death times of insects, waiting times of predators before the next attack or the hiding times of preys. A particular challenge in analyzing time-to-event data is the observation censoring, or the incomplete observation of survival times, dealing which is a unique advantage of survival analysis statistics. Even with a perfectly designed experiment being conducted perfectly, such ‘naturally’ censoring may still be unavoidable due to the natural processes, including the premature death in the observation of insect development, the variability in instarship, or simply the continuous nature of time process and the discrete nature of sampling intervals. Here we propose to apply the classic Cox proportional hazards model for modeling both insect development and survival rates (probabilities) with a unified survival analysis approach. We demonstrated the advantages of the proposed approach with the development and survival datasets of 1800 Russian wheat aphids from their births to deaths, observed under 25 laboratory treatments of temperatures and plant growth stages.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83843, USA.
| |
Collapse
|
15
|
Rukke BA, Salma U, Birkemoe T, Aak A. Blood deprivation and heat stress increase mortality in bed bugs (Cimex lectularius) exposed to insect pathogenic fungi or desiccant dust. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:121-128. [PMID: 32886388 DOI: 10.1111/mve.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Bed bugs (Cimex lectularius L.) have returned as a nuisance pest in the last 20 years. Different bed bug control measures in combination have not been thoroughly studied, although induction of multiple stressors may improve extermination. The effects of heat stress only, heat stress followed by exposure to insect pathogenic fungi, and heat stress followed by exposure to desiccant dust on starved and blood-fed bed bugs were investigated. Five days at 22 °C (control), 32 °C, 34 °C, or 36 °C (heat stress) did not cause mortality in adults. However, their starved first instar nymphs produced after heat stress suffered mortalities of 33%, 56% and 100%, respectively. Exposure to insect pathogenic fungi after heat stress increased the mortality of adults and their progeny compared to exposure to fungi without heat stress. The beneficial effects of heat stress were not observed in blood-fed bed bugs. Desiccant dust killed all nymphs within 2 days and all adults within 3 days regardless of previous heat stress, but survival time was prolonged by access to blood. This study highlights the advantage of combining different methods in pest management, and points to heat stress combined with blood deprivation as possible management elements to increase the control success.
Collapse
Affiliation(s)
- B A Rukke
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - U Salma
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - T Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - A Aak
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Parisi C, Guerriero G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants (Basel) 2019; 8:E622. [PMID: 31817462 PMCID: PMC6943697 DOI: 10.3390/antiox8120622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this review is to briefly summarize the recent progress in studies done on the assessment of reprotoxicity risk posed by global warming for the foundation of strategic tool in ecosystem-based adaptation. The selected animal data analysis that was used in this paper focuses on antioxidative markers and fertility rate estimated over the period 2000-2019. We followed a phylogenetic methodology in order to report data on a panel of selected organisms that show dangerous effects. The oxidative damage studies related to temperature fluctuation occurring in biosentinels of different invertebrate and vertebrate classes show a consistently maintained physiological defense. Furthermore, the results from homeothermic and poikilothermic species in our study highlight the influence of temperature rise on reprotoxicity.
Collapse
Affiliation(s)
- Costantino Parisi
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Interdepartmental Research Centre for Environment, University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|
17
|
Gondhalekar AD. 2018 Highlights of Urban Entomology. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1188-1193. [PMID: 31505667 DOI: 10.1093/jme/tjz093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 06/10/2023]
Abstract
The field of urban entomology is primarily associated with the study of ants, bed bugs, cockroaches, termites, and other occasional invader pests that are found within or near human-made structures. A wide array of peer-reviewed studies were published in 2018. The topics of these articles ranged from genomes and basic biology of urban insects to various applied aspects of pest management. Key findings of these papers are presented and discussed from the perspective of the contributions they make to the discipline of urban entomology. Additionally, potential future research opportunities that are evident from these publications have been outlined.
Collapse
|
18
|
Ashbrook AR, Scharf ME, Bennett GW, Gondhalekar AD. Bed bugs (Cimex lectularius L.) exhibit limited ability to develop heat resistance. PLoS One 2019; 14:e0211677. [PMID: 30731005 PMCID: PMC6366730 DOI: 10.1371/journal.pone.0211677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
The global population growth of the bed bug, Cimex lectularius (L.), is attributed to their cryptic behavior, diverse insecticide resistance mechanisms, and lack of public awareness. Bed bug control can be challenging and typically requires chemical and non-chemical treatments. One common non-chemical method for bed bug management is thermal remediation. However, in certain instances, bed bugs are known to survive heat treatments. Bed bugs may be present after a heat treatment due to (i) abiotic factors associated with the inability to achieve lethal temperatures in harborage areas for a sufficient time period, (ii) re-infestation from insects that escaped to cooler areas during a heat treatment or (iii) development of physiological resistance that allows them to survive heat exposure. Previous research has investigated the optimal temperature and exposure time required for either achieving complete mortality or sublethally affecting their growth and development. However, no research has examined bed bug populations for their ability to develop resistance to heat exposure and variation in thermo-tolerance between different bed bug strains. The goals of this study were: i) to determine if bed bugs could be selected for heat resistance under a laboratory selection regime, and ii) to determine if bed bug populations with various heat exposure histories, insecticide resistance profiles, and geographic origins have differential temperature tolerances using two heat exposure techniques (step-function and ramp-function). Selection experiments found an initial increase in bed bug survivorship; however, survivorship did not increase past the fourth generation. Sublethal exposure to heat significantly reduced bed bug feeding and, in some cases, inhibited development. The step-function exposure technique revealed non-significant variation in heat tolerance between populations and the ramp-function exposure technique provided similar results. Based on these study outcomes, the ability of bed bugs to develop heat resistance appears to be limited.
Collapse
Affiliation(s)
- Aaron R. Ashbrook
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael E. Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Gary W. Bennett
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Ameya D. Gondhalekar
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Walsh BS, Parratt SR, Hoffmann AA, Atkinson D, Snook RR, Bretman A, Price TAR. The Impact of Climate Change on Fertility. Trends Ecol Evol 2019; 34:249-259. [PMID: 30635138 DOI: 10.1016/j.tree.2018.12.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023]
Abstract
Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the 'critical thermal limit' (CTL). However, this overlooks important sublethal impacts of temperature that could affect species' persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism's lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the 'thermal fertility limit' (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts.
Collapse
Affiliation(s)
- Benjamin S Walsh
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK; Authors contributed equally
| | - Steven R Parratt
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK; Authors contributed equally
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Australia
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Amanda Bretman
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom A R Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|