1
|
Tan Z, Ping J, Zhang Y, Kong C, Luo J, Liu X. The impact of the interaction between BDNF rs7103411 gene polymorphism and social activities on mild cognitive impairment in community-dwelling elderly adults. Front Psychiatry 2025; 15:1469671. [PMID: 39876995 PMCID: PMC11772356 DOI: 10.3389/fpsyt.2024.1469671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Objective To investigate the correlation between BDNF gene polymorphism, BDNF levels, and susceptibility to mild cognitive impairment (MCI). Methods In this study, we investigated 107 elderly adults individuals from a community in Zhongshan, Guangdong Province, with an average age of 73.17 ± 7.081 years. The participants included 52 patients with Mild Cognitive Impairment due to Alzheimer's Disease and 55 cognitively normal elderly adults control subjects. The two groups were matched based on gender, age, and education level. We assessed their cognitive functions and analyzed their genotypes and serum BDNF levels. Analysis of covariance (ANCOVA) was used to evaluate the differences in serum BDNF levels between the MCI group and the control group. Multivariate linear regression was utilized to analyze the association between BDNF levels and susceptibility to MCI, as well as cognitive functions. Multivariate logistic regression was employed to investigate the association between BDNF gene polymorphisms and the risk of developing MCI, along with their interactions. Results The ANCOVA analysis indicated that there was no significant difference in serum BDNF levels between the MCI group and the control group (P > 0.05). Correlation analysis revealed a negative correlation between Mini-Mental Status Examination (MMSE) total scores and MCI (r = -0.461, P = 0.001), with significant correlations observed in orientation (r = -0.420, P = 0.002). Multiple linear regression analysis showed that specific polymorphisms, including rs7103411 (CT+TT vs. CC), rs6265 (CT and CT+TT vs. CC), rs11030104 (AG and AG+GG vs. AA), and rs988748 (CG+CC vs. GG), were significantly associated with decreased serum BDNF levels (P < 0.05). Multivariate logistic regression showed that rs7103411 polymorphism was associated with susceptibility to MCI; individuals with the CT or CC genotype had a 0.370 times lower risk of developing MCI compared to those with the TT genotype (OR = 0.370, 95% CI: 0.141-0.970, P = 0.043). A significant interaction was found between rs7103411 and social activity, which influenced the risk of developing MCI. Specifically, individuals with the CT or TT genotype of rs7103411 who engaged in social activities had a significantly lower risk of developing MCI (OR = 0.32, 95% CI: 0.117-0.878, P = 0.027). Conclusion This study indicates that BDNF rs7103411、rs6265、rs11030104 and rs988748 are associated with decreased serum BDNF levels in MCI patients. Individuals carrying the TT genotype in the BDNF rs7103411 gene are associated with an increased susceptibility to MCI. Individuals with the rs7103411 CT or TT genotype who participated in social activities showed a significantly reduced risk of developing MCI, suggesting that the interaction between the BDNF rs7103411 genotype and social activity can help reduce the risk of MCI.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinxia Liu
- Department of Psychiatry, Third People’s Hospital of Zhongshan City, Zhongshan, China
| |
Collapse
|
2
|
Qiu H, Yuan M, Guo Z, Liang J, Li Y, Gao Y, He S, Ma X. Hereditary Hemochromatosis Caused by SUGP2 and DENND3 Mutation in China: A Case Report. Clin Case Rep 2024; 12:e9592. [PMID: 39629038 PMCID: PMC11612258 DOI: 10.1002/ccr3.9592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Affiliation(s)
- Huiqing Qiu
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Brain Aging and Cognitive Neuroscience Laboratory of Heibei ProvinceThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangHebeiChina
| | - Mengwei Yuan
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Department of GraduateHebei Medical UniversityShijiazhuangHebeiChina
| | - Ziyu Guo
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Department of GraduateHebei Medical UniversityShijiazhuangHebeiChina
| | - Jiayi Liang
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Department of GraduateHebei Medical UniversityShijiazhuangHebeiChina
| | - Yang Li
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Brain Aging and Cognitive Neuroscience Laboratory of Heibei ProvinceThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangHebeiChina
| | - Yan Gao
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Brain Aging and Cognitive Neuroscience Laboratory of Heibei ProvinceThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangHebeiChina
| | - Sha He
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Brain Aging and Cognitive Neuroscience Laboratory of Heibei ProvinceThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangHebeiChina
| | - Xiaowei Ma
- Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurologyHebei Hospital of Xuanwu Hospital Capital Medical UniversityShijiazhuangHebeiChina
- Brain Aging and Cognitive Neuroscience Laboratory of Heibei ProvinceThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangHebeiChina
| |
Collapse
|
3
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Cătană CS, Marta MM, Văleanu M, Dican L, Crișan CA. Human Leukocyte Antigen and microRNAs as Key Orchestrators of Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. Int J Mol Sci 2024; 25:8544. [PMID: 39126112 PMCID: PMC11312697 DOI: 10.3390/ijms25158544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The expression of inflamma-miRs and human leukocyte antigen (HLA) haplotypes could indicate mild cognitive impairment (MCI) and Alzheimer's disease (AD). We used international databases to conduct a systematic review of studies on HLA variants and a meta-analysis of research on microRNAs (miRNAs). We aimed to analyze the discriminative value of HLA variants and miRNAs in MCI, AD and controls to evaluate the protective or causative effect of HLA in cognitive decline, establish the role of miRNAs as biomarkers for the early detection of AD, and find a possible link between miRNAs and HLA. Statistical analysis was conducted using Comprehensive Meta-analysis software, version 2.2.050 (Biostat Inc., Englewood, NJ, USA). The effect sizes were estimated by the logarithm base 2 of the fold change. The systematic review revealed that some HLA variants, such as HLA-B*4402, HLA-A*33:01, HLA-A*33:01, HLA-DPB1, HLA-DR15, HLA-DQB1*03:03, HLA-DQB1*06:01, HLA-DQB1*03:01, SNPs on HLA-DRB1/DQB1, and HLA-DQA1, predisposed to cognitive decline before the occurrence of AD, while HLA-A1*01, HLA-DRB1∗13:02, HLA-DRB1*04:04, and HLA-DRB1*04:01 demonstrated a protective role. The meta-analysis identified let-7 and miR-15/16 as biomarkers for the early detection of AD. The association between these two miRNA families and the HLA variants that predispose to AD could be used for the early screening and prevention of MCI.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mădălina Văleanu
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Lucia Dican
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania
| | - Cătălina Angela Crișan
- Department of Neurosciences, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Wu M, Chen L, Wang Y, Li Y, An Y, Wu R, Zhang Y, Gao J, Su K, Feng X. The Effect of Acupuncture on Brain Iron Deposition and Body Iron Metabolism in Vascular Cognitive Impairment: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e56484. [PMID: 38885500 PMCID: PMC11217710 DOI: 10.2196/56484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) persistently impairs cognition and the ability to perform activities of daily living, seriously compromising patients' quality of life. Previous studies have reported that disorders of serum iron metabolism and iron deposition in the brain can lead to inflammation, abnormal protein aggregation and degeneration, and massive neuronal apoptosis in the central nervous system, which in turn leads to a progressive decline in cognitive processes. Our previous clinical studies have found acupuncture to be a safe and effective intervention for treating VCI, but the specific mechanisms require further exploration. OBJECTIVE The objective of the trial is to evaluate the clinical efficacy of Tongdu Xingshen acupuncture and to investigate whether it can improve VCI by regulating brain iron deposition and body iron metabolism. METHODS In total, 42 patients with VCI and 21 healthy individuals will participate in this clinical trial. The 42 patients with VCI will be randomized into acupuncture and control groups, while the 21 healthy individuals will be in the healthy control group. Both the control and acupuncture groups will receive conventional medical treatment and cognitive rehabilitation training. In addition, the acupuncture group will receive electroacupuncture treatment with Tongdu Xingshen for 30 minutes each time, 6 times a week for 4 weeks. Meanwhile, the healthy control group will not receive any intervention. All 3 groups will undergo baseline assessments of brain iron deposition, serum iron metabolism, and neuropsychological tests after enrollment. The acupuncture and control groups will be evaluated again at the end of 4 weeks of treatment, as described earlier. By comparing neuropsychological test scores between groups, we will examine the efficacy of Tongdu Xingshen acupuncture in treating VCI. Additionally, we will test the correlations between neuropsychological test scores, brain iron deposition, and body iron metabolism indexes to explore the possible mechanisms of Tongdu Xingshen acupuncture in treating VCI. RESULTS Participants are currently being recruited. The first participant was enrolled in June 2023, which marked the official start of the experiment. As of the submission of the paper, there were 23 participants. The recruitment process is expected to continue until June 2025, at which point the processing and analysis of data will begin. As of May 15, 2024, up to 30 people have been enrolled in this clinical trial. CONCLUSIONS This study will provide data on the effects of Tongdu Xingshen acupuncture on cerebral iron deposition as well as somatic iron metabolism in patients with VCI. These results will help to prove whether Tongdu Xingshen acupuncture can improve VCI by regulating brain iron deposition and body iron metabolism, which will provide the clinical and theoretical basis for the wide application of acupuncture therapy in VCI rehabilitation. TRIAL REGISTRATION China Clinical Registration Agency ChiCTR2300072188; https://tinyurl.com/5fcydtkv. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/56484.
Collapse
Affiliation(s)
- Mingli Wu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lulu Chen
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Wang
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunpeng Li
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuqi An
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruonan Wu
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuhan Zhang
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodong Feng
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Saraceno GF, Abrego-Guandique DM, Cannataro R, Caroleo MC, Cione E. Machine Learning Approach to Identify Case-Control Studies on ApoE Gene Mutations Linked to Alzheimer’s Disease in Italy. BIOMEDINFORMATICS 2024; 4:600-622. [DOI: 10.3390/biomedinformatics4010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Background: An application of artificial intelligence is machine learning, which allows computer programs to learn and create data. Methods: In this work, we aimed to evaluate the performance of the MySLR machine learning platform, which implements the Latent Dirichlet Allocation (LDA) algorithm in the identification and screening of papers present in the literature that focus on mutations of the apolipoprotein E (ApoE) gene in Italian Alzheimer’s Disease patients. Results: MySLR excludes duplicates and creates topics. MySLR was applied to analyze a set of 164 scientific publications. After duplicate removal, the results allowed us to identify 92 papers divided into two relevant topics characterizing the investigated research area. Topic 1 contains 70 papers, and topic 2 contains the remaining 22. Despite the current limitations, the available evidence suggests that articles containing studies on Italian Alzheimer’s Disease (AD) patients were 65.22% (n = 60). Furthermore, the presence of papers about mutations, including single nucleotide polymorphisms (SNPs) ApoE gene, the primary genetic risk factor of AD, for the Italian population was 5.4% (n = 5). Conclusion: The results show that the machine learning platform helped to identify case-control studies on ApoE gene mutations, including SNPs, but not only conducted in Italy.
Collapse
Affiliation(s)
| | | | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
7
|
Tisato V, Silva JA, Scarpellini F, Capucci R, Marci R, Gallo I, Salvatori F, D'Aversa E, Secchiero P, Serino ML, Zauli G, Singh AV, Gemmati D. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Sci Rep 2024; 14:3275. [PMID: 38332006 PMCID: PMC10853191 DOI: 10.1038/s41598-024-53737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Spontaneous abortion is a pregnancy complication characterized by complex and multifactorial etiology. About 5% of childbearing women are globally affected by early pregnancy loss (EPL) and most of them experience recurrence (RPL). Epigenetic mechanisms and controlled inflammation are crucial for pregnancy maintenance and genetic predispositions may increase the risk affecting the maternal-fetal crosstalk. Combined analyses of global methylation, inflammation and inherited predispositions may contribute to define pregnancy loss etiopathogenesis. LINE-1 epigenetic regulation plays crucial roles during embryo implantation, and its hypomethylation has been associated with senescence and several complex diseases. By analysing a group of 230 women who have gone through pregnancy interruption and comparing those experiencing spontaneous EPL (n = 123; RPL, 54.5%) with a group of normal pregnant who underwent to voluntary interruption (VPI, n = 107), the single statistical analysis revealed significant lower (P < 0.00001) LINE-1 methylation and higher (P < 0.0001) mean cytokine levels (CKs: IL6, IL10, IL17A, IL23) in EPL. Genotyping of the following SNPs accounted for different EPL/RPL risk odds ratio: F13A1 rs5985 (OR = 0.24; 0.06-0.90); F13B rs6003 (OR = 0.23; 0.047-1.1); FGA rs6050 (OR = 0.58; 0.33-1.0); CRP rs2808635/rs876538 (OR = 0.15; 0.014-0.81); ABO rs657152 (OR = 0.48; 0.22-1.08); TP53 rs1042522 (OR = 0.54; 0.32-0.92); MTHFR rs1801133/rs1801131 (OR = 2.03; 1.2-3.47) and FGB rs1800790 (OR = 1.97; 1.01-3.87), although Bonferroni correction did not reach significant outputs. Principal Component Analysis (PCA) and logistic regression disclosed further SNPs positive/negative associations (e.g. APOE rs7412/rs429358; FGB rs1800790; CFH rs1061170) differently arranged and sorted in four significant PCs: PC1 (F13A, methylation, CKs); PC3 (CRP, MTHFR, age, methylation); PC4 (F13B, FGA, FGB, APOE, TP53, age, methylation); PC6 (F13A, CFH, ABO, MTHFR, TP53, age), yielding further statistical power to the association models. In detail, positive EPL risk association was with PC1 (OR = 1.81; 1.33-2.45; P < 0.0001) and negative associations with PC3 (OR = 0.489; 0.37-0.66; P < 0.0001); PC4 (OR = 0.72; 0.55-0.94; P = 0.018) and PC6 (OR = 0.61; 0.46-0.81; P = 0.001). Moreover, significant inverse associations were detected between methylation and CKs levels in the whole group (rIL10 = - 0.22; rIL17A = - 0.25; rIL23 = - 0.19; rIL6 = - 0.22), and methylation with age in the whole group, EPL and RPL subgroups (r2TOT = 0.147; r2EPL = 0.136; r2 RPL = 0.248), while VPI controls lost significance (r2VPI = 0.011). This study provides a valuable multilayer approach for investigating epigenetic abnormalities in pregnancy loss suggesting genetic-driven dysregulations and anomalous epigenetic mechanisms potentially mediated by LINE-1 hypomethylation. Women with unexplained EPL might benefit of such investigations, providing new insights for predicting the pregnancy outcome and for treating at risk women with novel targeted epidrugs.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies On Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy.
| | - Juliana A Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Roberta Capucci
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Roberto Marci
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Maria L Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay V Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies On Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
8
|
Tisato V, Castiglione A, Ciorba A, Aimoni C, Silva JA, Gallo I, D'Aversa E, Salvatori F, Bianchini C, Pelucchi S, Secchiero P, Zauli G, Singh AV, Gemmati D. LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL). Hum Genomics 2023; 17:112. [PMID: 38098073 PMCID: PMC10722762 DOI: 10.1186/s40246-023-00562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Andrea Ciorba
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Claudia Aimoni
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Bianchini
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis and Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Peluso G, Tisato V, Singh AV, Gemmati D, Scarpellini F. Semen Cryopreservation to Expand Male Fertility in Cancer Patients: Intracase Evaluation of Semen Quality. J Pers Med 2023; 13:1654. [PMID: 38138881 PMCID: PMC10744704 DOI: 10.3390/jpm13121654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
To preserve male fertility after diagnosis of any kind of cancer, a prompt assessment of the semen quality and an appropriate semen cryopreservation must be performed before radio-chemotherapy starts. The present work aims to evaluate the semen parameters at diagnosis of different cancer patients before cryopreservation and after thawing. Testicular tumors and lymphomas are among the most common cancers in younger patients, and while chemotherapy significantly increases patients' survival, it can epigenetically alter the semen fluid, resulting in temporary or permanent infertility. We analyzed data from the database of the Gamete Cryopreservation Center (Annunziata Hospital, CS; Italy) in the period of 2011-2020 from a cohort of 254 cancer patients aged 18-56 years. The evaluation was performed in a blind manner and anonymously recovered; the main parameters referring to semen quality were assessed in accordance with the WHO guidelines and decision limits (6th edition; 2021). The cancer types were as follows: testis cancers (TC; n = 135; 53.1%), hematological cancers (HC; n = 76; 29.9%), and other types of cancer (OC; n = 43; 17%). Comparing TC vs. HC (P1) and vs. OC (P2), TC had the worst semen quality: sperm number/mL (P1 = 0.0014; P2 = 0.004), total motility (P1 = 0.02; P2 = 0.07), progressive motility (P1 = 0.04; P2 = 0.05), viability (P1 = 0.01; P2 = 0.02), and percentage of atypical morphology (P1 = 0.05; P2 = 0.03). After semen thawing, viability and progressive motility recovery lowered, accounting for 46.82% and 16.75%, respectively, in the whole cohort; similarly, in the subgroups ascribed to TC, they showed the lowest recovery. Strong correlation existed between pre- and post-cryopreservation viability and progressive motility in the whole cohort (p < 0.001) and in the TC subgroup (p < 0.05). All cancer subgroups, to significantly different extents, had semen findings below the WHO reference values, suggesting diverse sperm susceptibilities to different cancers and cryodamage. Cancer and associated treatments epigenetically affect patients' semen quality, meaning cryopreservation should be considered a useful personalized prerogative for any kind of cancer in a timely manner.
Collapse
Affiliation(s)
- Giuseppina Peluso
- Sperm Bank, Department of Maternal Infant, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy
| | - Veronica Tisato
- Department of Translational Medicine, Hemostasis & Thrombosis Centre, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, Hemostasis & Thrombosis Centre, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | |
Collapse
|
10
|
Jin Y, Chen J, Chai Q, Zhu J, Jin X. Exploration of acupuncture therapy in the treatment of MCI patients with the ApoE ε4 gene based on the brain-gut axis theory. BMC Complement Med Ther 2023; 23:227. [PMID: 37422636 DOI: 10.1186/s12906-023-04060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is the predementia phase of Alzheimer's disease (AD). The intestinal microbiome is altered in MCI and AD, and apolipoprotein E (ApoE) ε4 gene polymorphism is a risk factor for the progression of MCI to AD. This study aims to investigate the improvement in cognitive function of MCI patients with and without ApoE ε4 due to acupuncture and the changes in gut microbiota community composition and abundance in MCI. METHODS This randomized assessor-blind controlled study will enrol MCI patients with and without the ApoE ε4 gene (n = 60/60). Sixty subjects with the ApoE ε4 gene and 60 subjects without the ApoE ε4 gene will be randomly allocated into treatment and control groups in a 1:1 ratio. Intestinal microbiome profiles will be evaluated by 16 S rRNA sequencing of faecal samples and compared between the groups. RESULTS/CONCLUSIONS Acupuncture is an effective method to improve cognitive function in MCI. This study will provide data on the relationship between the gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. This study will also provide data on the relationship between the gut microbiota and an AD susceptibility gene by integrating microbiologic and molecular approaches. TRIAL REGISTRATION www.chictr.org.cn , ID: ChiCTR2100043017, recorded on 4 February 2021.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| | - Jin Chen
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Qichen Chai
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Xiaoqing Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| |
Collapse
|
11
|
Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, Tisato V, Prabhu KS, Uddin S, Dakua SP. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother 2023; 163:114784. [PMID: 37121152 DOI: 10.1016/j.biopha.2023.114784] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600 Nepal
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
12
|
El-Gharbawi N, Shaheen I, Hamdy M, Elgawhary S, Samir M, Hanna BM, Ali EY, Youssef EA. Genetic Variations of ferroportin-1(FPN1-8CG), TMPRSS6 (rs855791) and Hemojuvelin (I222N and G320V) Among a Cohort of Egyptian β-Thalassemia Major Patients. Indian J Hematol Blood Transfus 2023; 39:258-265. [PMID: 37006987 PMCID: PMC10064347 DOI: 10.1007/s12288-022-01580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/05/2022] [Indexed: 04/04/2023] Open
Abstract
Iron overload remains a major cause of morbidity and mortality among β-thalassemia major (β-TM) patients. Iron regulatory proteins and their genetic variants together with changes in hepcidin levels in thalassemic patients could affect the disease manifestations. This work aimed to study genetic variations of ferroportin-1 (FPN1-8CG), Transmembrane Serine Protease 6 (TMPRSS6 rs855791) and hemojuvelin (HJV I222N and G320V) genes within a cohort of 97 β-TM Egyptian patients by Polymerase chain reaction Restriction Fragment Length Polymorphism (PCR-RFLP) in comparison to fifty normal control subjects. Among β-TM patients; the CG variant of FPN1 was significantly higher, while the TT and TC variants of TMPRSS6 were significantly lower in comparison to controls. Liver Iron Concentration (LIC) was significantly higher among β-TM patients harboring the FPN1 (GG) genotype and we found that FPN1gene mutation acts as independent predictor of MRI LIC (p = 0.011), Pulmonary artery pressure (PAP) was significantly higher in patients harboring the mutant FPN1 (GG and CG) genotypes (p value 0.04). β-TM patients having the HJV I222N (AA) genotype were having significantly higher cardiac iron overload (p value = 0.026). The studied genetic variants of iron regulatory proteins could alter the manifestations of iron overload thus resulting in different clinical phenotypes of thalassemic patients, these findings need to be confirmed by larger cohorts of patients with longer follow-up periods. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-022-01580-8.
Collapse
Affiliation(s)
| | - Iman Shaheen
- Clinical Pathology Department, Cairo University, Cairo, Egypt
| | - Mona Hamdy
- Pediatric Hematology, Department of pediatrics, Cairo University, Cairo, Egypt
| | | | - Mohamed Samir
- Pediatric Cardiology, Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Baher Matta Hanna
- Pediatric Cardiology, Department of Pediatrics, Cairo University, Cairo, Egypt
| | | | - Eman Ahmed Youssef
- Clinical Pathology Department, Cairo University, Cairo, Egypt
- Lecturer of Hematopathology, Department of Clinical and chemical pathology, Cairo University, Cairo, Egypt
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
13
|
Wang L, He S, Yan N, Pan R, Niu Y, Li J. Mediating role of depressive symptoms on the relationship between sleep duration and cognitive function. Sci Rep 2023; 13:4067. [PMID: 36906644 PMCID: PMC10008529 DOI: 10.1038/s41598-023-31357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Although some studies have shown the association between sleep duration and cognitive impairment is positive, the mechanism explaining how sleep duration is linked to cognition remains poor understood. The current study aims to explore it among Chinese population. A cross-sectional study of 12,589 participants aged 45 or over was conducted, cognition was assessed by three measures to capture mental intactness, episodic memory, and visuospatial abilities. The Center for Epidemiologic Studies Depression Scale 10 (CES-D10) was administered during the face-to-face survey to assess depressive status. Sleep duration was reported by the participants themselves. Partial correlation and linear regression were used to explore the association between sleep duration, cognition, and depression. The Bootstrap methods PROCESS program was used to detect the mediation effect of depression. Sleep duration was positively correlated with cognition and negatively with depression (p < 0.01). The CES-D10 score (r = - 0.13, p < 0.01) was negatively correlated with cognitive function. Linear regression analysis showed sleep duration was positively associated with cognition (p = 0.001). When depressive symptoms were considered, the association between sleep duration and cognition lost significance (p = 0.468). Depressive symptoms have mediated the relationship between sleep duration and cognitive function. The findings revealed that the relationship between sleep duration and cognition is mainly explained by depressive symptoms and may provide new ideas for interventions for cognitive dysfunction.
Collapse
Affiliation(s)
- Liqun Wang
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Shulan He
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Yan
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ruiping Pan
- Department of Chinese Medicine, The Second People's Hospital of Shizuishan, Shizuishan, 753000, China
| | - Yang Niu
- Key Laboratory of the Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jiangping Li
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
14
|
Dexmedetomidine Pre-Treatment of Neonatal Rats Prevents Sevoflurane-Induced Deficits in Learning and Memory in the Adult Animals. Biomedicines 2023; 11:biomedicines11020391. [PMID: 36830927 PMCID: PMC9953733 DOI: 10.3390/biomedicines11020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Anesthetics have been shown to cause cytotoxicity, cell death, affect neuronal growth and connectivity in animal models; however, their effects on learning and memory remain to be fully defined. Here, we examined the effects of the inhalation anesthetic sevoflurane (SEV)-both in vivo by examining learning and memory in freely behaving animals, and in vitro using cultured neurons to assess its impact on viability, mitochondrial structure, and function. We demonstrate here that neonatal exposure to sub-clinically used concentrations of SEV results in significant, albeit subtle and previously unreported, learning and memory deficits in adult animals. These deficits involve neuronal cell death, as observed in cell culture, and are likely mediated through perturbed mitochondrial structure and function. Parenthetically, both behavioural deficits and cell death were prevented when the animals and cultured neurons were pre-treated with the anesthetic adjuvant Dexmedetomidine (DEX). Taken together, our data provide direct evidence for sevoflurane-induced cytotoxic effects at the neuronal level while perturbing learning and memory at the behavioural level. In addition, our data underscore the importance of adjuvant agents such as DEX that could potentially counter the harmful effects of commonly used anesthetic agents for better clinical outcomes.
Collapse
|
15
|
Gemmati D, Longo G, Gallo I, Silva JA, Secchiero P, Zauli G, Hanau S, Passaro A, Pellegatti P, Pizzicotti S, Serino ML, Singh AV, Tisato V. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet 2022; 13:1028081. [PMID: 36531241 PMCID: PMC9748098 DOI: 10.3389/fgene.2022.1028081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 08/26/2023] Open
Abstract
Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Stefania Hanau
- Department of Neuroscience & Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Common Single Nucleotide Polymorphism of TMPRSS6, an Iron Regulation Gene, Associated with Variable Red Blood Cell Indices in Deletional α-Globin Genotypes. Genes (Basel) 2022; 13:genes13091502. [PMID: 36140670 PMCID: PMC9498602 DOI: 10.3390/genes13091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Red blood cell (RBC) indices, including mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH), have been widely used for primary screening for thalassaemia (thal) syndromes. Recently, a single nucleotide polymorphism (SNP) rs855791 of TMPRSS6, an iron regulation gene involved in the substitution of a nucleotide between thymine (T) and cytosine (C) in exon 17 resulted in an amino acid change, p.Val736Ala (V736A), has been described to associate with RBC indices. The objective was to study the effects of common SNP V736A on RBC indices in deletional α-thal variations. SNP rs855791 genotypes were identified from 433 Thai volunteers, including 32.6% males and 67.4% females with an average age of 23.0 ± 8.7 years. These populations included individuals (82.4%) who had normal globin genotype (αα/αα, ββ) and α-thal carriers, which were divided into two subgroups, including α+-thal (-α/αα) (14.1%) and αo-thal (--/αα) (3.5%). Among three SNP genotypes, the C allele gradually expressed higher MCV and MCH than those of the T allele in both α+- and αo-thal traits. Importantly, SNP rs855791 of TMPRSS6 responded to α-globin deletions for sustaining RBC sizes and haemoglobinisation in α-thal carriers.
Collapse
|
17
|
Hofer E, Pirpamer L, Langkammer C, Tinauer C, Seshadri S, Schmidt H, Schmidt R. Heritability of R2* iron in the basal ganglia and cortex. Aging (Albany NY) 2022; 14:6415-6426. [PMID: 35951362 PMCID: PMC9467397 DOI: 10.18632/aging.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND While iron is essential for normal brain functioning, elevated concentrations are commonly found in neurodegenerative diseases and are associated with impaired cognition and neurological deficits. Currently, only little is known about genetic and environmental factors that influence brain iron concentrations. METHODS Heritability and bivariate heritability of regional brain iron concentrations, assessed by R2* relaxometry at 3 Tesla MRI, were estimated with variance components models in 130 middle-aged to elderly participants of the Austrian Stroke Prevention Family Study. RESULTS Heritability of R2* iron ranged from 0.46 to 0.82 in basal ganglia and from 0.65 to 0.76 in cortical lobes. Age and BMI explained up to 12% and 9% of the variance of R2* iron, while APOE ε4 carrier status, hypertension, diabetes, hypercholesterolemia, sex and smoking explained 5% or less. The genetic correlation of R2* iron among basal ganglionic nuclei and among cortical lobes ranged from 0.78 to 0.87 and from 0.65 to 0.97, respectively. R2* rates in basal ganglia and cortex were not genetically correlated. CONCLUSIONS Regional brain iron concentrations are mainly driven by genetic factors while environmental factors contribute to a certain extent. Brain iron levels in the basal ganglia and cortex are controlled by distinct sets of genes.
Collapse
Affiliation(s)
- Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Styria, Austria
| | - Lukas Pirpamer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
| | | | - Christian Tinauer
- Department of Neurology, Medical University of Graz, Styria, Austria
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Styria, Austria
| | - Reinhold Schmidt
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
| |
Collapse
|
18
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
19
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
20
|
Zanella I, Zacchi E, Fornari C, Fumarola B, Antoni MD, Zizioli D, Quiros-Roldan E. An exploratory pilot study on the involvement of APOE, HFE, C9ORF72 variants and comorbidities in neurocognitive and physical performance in a group of HIV-infected people. Metab Brain Dis 2022; 37:1569-1583. [PMID: 35353274 PMCID: PMC8964929 DOI: 10.1007/s11011-022-00975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cognitive decline of aging is modulated by chronic inflammation and comorbidities. In people with HIV-infection (PWH) it may also be affected by HIV-induced inflammation, lifestyle and long-term effects of antiretroviral therapies (ART). The role of genetics in the susceptibility to HIV-associated neurocognitive disorders (HAND) is not fully understood. Here we explored the possible relations among variants in 3 genes involved in inflammation and neurodegenerative disorders (APOE: ε2/ε3/ε4; HFE: H63D; C9ORF72: hexanucleotide expansions ≥ 9 repeats), cognitive/functional impairment (MiniMental State Examination MMSE, Clock Drawing Test CDT, Short Physical Performance Battery SPPB), comorbidities and HIV-related variables in a cohort of > 50 years old PWH (n = 60) with at least 10 years efficient ART. Patients with diabetes or hypertension showed significantly lower MMSE (p = .031) or SPPB (p = .010) scores, respectively, while no relations between HIV-related variables and cognitive/functional scores were observed. Patients with at least one APOEε3 allele had higher CDT scores (p = .019), APOEε2/ε4 patients showing the lowest scores in all tests. Patients with HFE-H63D variant showed more frequently hypertriglyceridemia (p = .023) and those harboring C9ORF72 expansions > 9 repeats had higher CD4+-cell counts (p = .032) and CD4% (p = .041). Multiple linear regression analysis computed to verify possible associations among cognitive/functional scores and all variables further suggested positive association between higher CDT scores and the presence of at least one APOEε3 allele (2,2; 95% CI [0,03 0,8]; p = .037), independent of other variables, although the model did not reach the statistical significance (p = .14). These data suggest that in PWH on efficient ART cognitive abilities and physical performances may be partly associated with comorbidities and genetic background. However, further analyses are needed to establish whether they could be also dependent and influenced by comorbidities and genetic background.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy.
| | - Eliana Zacchi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Chiara Fornari
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Benedetta Fumarola
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Melania Degli Antoni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| |
Collapse
|
21
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
23
|
Hin N, Newman M, Pederson S, Lardelli M. Iron Responsive Element-Mediated Responses to Iron Dyshomeostasis in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1597-1630. [PMID: 34719489 DOI: 10.3233/jad-210200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets. OBJECTIVE To identify sets of genes predicted to contain iron responsive elements (IREs) and use these to explore possible iron dyshomeostasis-associated gene expression responses in AD. METHODS Comprehensive sets of genes containing predicted IRE or IRE-like motifs in their 3' or 5' untranslated regions (UTRs) were identified in human, mouse, and zebrafish reference transcriptomes. Further analyses focusing on these genes were applied to a range of cultured cell, human, mouse, and zebrafish gene expression datasets. RESULTS IRE gene sets are sufficiently sensitive to distinguish not only between iron overload and deficiency in cultured cells, but also between AD and other pathological brain conditions. Notably, changes in IRE transcript abundance are among the earliest observable changes in zebrafish familial AD (fAD)-like brains, preceding other AD-typical pathologies such as inflammatory changes. Unexpectedly, while some IREs in the 3' untranslated regions of transcripts show significantly increased stability under iron deficiency in line with current assumptions, many such transcripts instead display decreased stability, indicating that this is not a generalizable paradigm. CONCLUSION Our results reveal IRE gene expression changes as early markers of the pathogenic process in fAD and are consistent with iron dyshomeostasis as an important driver of this disease. Our work demonstrates how differences in the stability of IRE-containing transcripts can be used to explore and compare iron dyshomeostasis-associated gene expression responses across different species, tissues, and conditions.
Collapse
Affiliation(s)
- Nhi Hin
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
24
|
Atkins JL, Pilling LC, Heales CJ, Savage S, Kuo CL, Kuchel GA, Steffens DC, Melzer D. Hemochromatosis Mutations, Brain Iron Imaging, and Dementia in the UK Biobank Cohort. J Alzheimers Dis 2021; 79:1203-1211. [PMID: 33427739 PMCID: PMC7990419 DOI: 10.3233/jad-201080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background:
Brain iron deposition occurs in dementia. In European ancestry populations, the HFE p.C282Y variant can cause iron overload and hemochromatosis, mostly in homozygous males.
Objective: To estimate p.C282Y associations with brain MRI features plus incident dementia diagnoses during follow-up in a large community cohort. Methods:
UK Biobank participants with follow-up hospitalization records (mean 10.5 years). MRI in 206 p.C282Y homozygotes versus 23,349 without variants, including T2* measures (lower values indicating more iron).
Results:
European ancestry participants included 2,890 p.C282Y homozygotes. Male p.C282Y homozygotes had lower T2* measures in areas including the putamen, thalamus, and hippocampus, compared to no HFE mutations. Incident dementia was more common in p.C282Y homozygous men (Hazard Ratio HR = 1.83; 95% CI 1.23 to 2.72, p = 0.003), as was delirium. There were no associations in homozygote women or in heterozygotes.
Conclusion:
Studies are needed of whether early iron reduction prevents or slows related brain pathologies in male HFE p.C282Y homozygotes.
Collapse
Affiliation(s)
- Janice L Atkins
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK
| | - Luke C Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK
| | - Christine J Heales
- Medical Imaging, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sharon Savage
- Psychology Department, University of Exeter, Exeter, UK and University of Newcastle, Newcastle, NSW, Australia
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK.,Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
25
|
Babić Leko M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Lukinović Škudar V, Bačić Baronica K, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Borovečki F, Hof PR, Šimić G. The Association of Essential Metals with APOE Genotype in Alzheimer's Disease. J Alzheimers Dis 2021; 82:661-672. [PMID: 34057084 DOI: 10.3233/jad-210158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The major confirmed genetic risk factor for late-onset, sporadic Alzheimer's disease (AD) is variant ɛ4 of apolipoprotein E gene (APOE). It is proposed that ApoE, a protein involved in transport of cholesterol to neurons can cause neurodegeneration in AD through interaction with metals. Previous studies mostly associated copper, iron, zinc, and calcium with ApoE4-mediated toxicity. OBJECTIVE To test the association of essential metals with APOE genotype. METHODS We compared plasma and cerebrospinal fluid (CSF) levels of copper, zinc, iron, sodium, magnesium, calcium, cobalt, molybdenum, manganese, boron, and chromium, and CSF ferritin levels among AD, mild cognitive impairment (MCI) patients, and healthy controls (HC) with different APOE genotype. RESULTS Sodium, copper, and magnesium levels were increased in carriers of ɛ4 allele. Additionally, the increase in sodium, calcium and cobalt plasma levels was observed in carriers of ɛ4/ɛx genotype. The decrease in boron plasma levels was observed in carriers of ɛ4 allele and ɛ4/ɛ4 genotype. Additionally, CSF zinc levels as well as plasma sodium levels were increased in AD patients compared to HC. CONCLUSION These results indicate that the molecular underpinnings of association of essential metals and metalloids with APOE should be further tested and clarified in vivo and in vitro.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vesna Lukinović Škudar
- Department of Physiology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Koraljka Bačić Baronica
- University Department of Neurology, Clinical Hospital "Sveti Duh", Zagreb, Croatia and Neurology Clinic, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
26
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
27
|
Ficiarà E, Boschi S, Ansari S, D'Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids. Front Aging Neurosci 2021; 13:607858. [PMID: 33692679 PMCID: PMC7937894 DOI: 10.3389/fnagi.2021.607858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy.,Department NEUROFARBA, University of Firenze, Firenze, Italy
| | - Shoeb Ansari
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Federico D'Agata
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Indaco
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Innocenzo Rainero
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| |
Collapse
|
28
|
Cheng Y, Chen Y, Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:3. [PMID: 33419478 PMCID: PMC7792103 DOI: 10.1186/s40035-020-00228-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06–0.21], p = 0.001), serum ferritin level (WMD = 63.42, 95% CI [48.12–78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52–4.05], p < 0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90–127.67], p < 0.001), were significantly higher in the ALS patients, whereas the total iron-binding capacity (WMD = − 2.42, 95% CI [− 3.93, − 0.90], p = 0.002) was significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly reduced survival (HR = 1.38, 95% CI [1.02–1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS patients.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Hossain S, Beydoun MA, Weiss J, Kuczmarski MF, Evans MK, Zonderman AB. Longitudinal associations between dietary quality and Alzheimer's disease genetic risk on cognitive performance among African American adults. Br J Nutr 2020; 124:1264-1276. [PMID: 32248879 PMCID: PMC7541564 DOI: 10.1017/s0007114520001269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poor diet quality (DQ) is associated with poor cognition and increased neurodegeneration, including Alzheimer's disease (AD). We are interested in the role of DQ on cognitive functioning (by sex and increasing genetic risk for AD), in a sample of African American (AA) middle-aged adults. We analysed a sub-group of participants (about 55 % women; mean follow-up time of about 4·7 years) from the Healthy Aging in Neighborhoods of Diversity across the Life Span study with a genetic risk score for AD (hAlzScore). The Healthy Eating Index-2010, Dietary Approaches to Stop Hypertension and the mean adequacy ratio computed at baseline (2004-2009) and follow-up visits (2009-2013) were used to assess initial DQ and change over time. Linear mixed-effects regression models were utilised, adjusting for select covariates, selection bias and multiple testing. DQ change (ΔDQ) was associated with California Verbal Learning Test-List A - overall (0·15 (se 0·06), P = 0·008) and in women (0·21 (se 0·08), P = 0·006), at highest AD risk, indicating protective effects over time. Greater AD risk was longitudinally associated with poorer Clock Command Test scores in men. Poor DQ was positively and cross-sectionally associated with Trails B scores, but in women only. Better-quality diet was associated with a slower decline in verbal memory among AA women, with greater AD risk. Insufficient clinical evidence and/or mixed findings dictate that more studies are needed to investigate brain morphology and volume changes in relation to DQ in an at-risk population for AD, over time.
Collapse
Affiliation(s)
- Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - Jordan Weiss
- Population Studies Center and the Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie F. Kuczmarski
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| |
Collapse
|
30
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Zhu Y, Gong L, He C, Wang Q, Ren Q, Xie C. Default Mode Network Connectivity Moderates the Relationship Between the APOE Genotype and Cognition and Individualizes Identification Across the Alzheimer's Disease Spectrum. J Alzheimers Dis 2020; 70:843-860. [PMID: 31282419 DOI: 10.3233/jad-190254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although previous studies have investigated the effects of the apolipoprotein E (APOE) ɛ4 genotype on the default mode network (DMN) in the Alzheimer's disease (AD) spectrum, it is still unclear how the APOE genotype regulates the DMN and subsequently affects cognitive decline in the AD spectrum. One hundred sixty-nine subjects with resting-state functional magnetic resonance imaging data and neuropsychological test scores were selected from the Alzheimer's Disease Neuroimaging Initiative. The main effects and interaction of the APOE genotype and disease status on the DMN were explored. A moderation analysis was performed to investigate the relationship among the APOE genotype, DMN connectivity, and cognition. Additionally, the pair-wised DMN connectivity was used to classify AD spectrum, and the classification accuracy was validated. Compared to APOEɛ4 non-carriers, APOEɛ4 carriers showed the opposite trajectory of DMN connectivity across the AD spectrum. Specifically, the strengths in the posterior cingulate cortex (PCC) connecting with the right precuneus, insular, and fusiform area (FFA) were positively correlated with Mini-Mental State Examination (MMSE) scores in APOEɛ4 non-carriers but not in APOEɛ4 carriers. Furthermore, PCC-right FFA connectivity could moderate the effects of the APOE genotype on MMSE scores across the disease groups. More importantly, using a receiver operating characteristic analysis, these altered connectivities yielded strong classification powers in a pathological stage-dependent manner in the AD spectrum. These findings first identified the intrinsic DMN connectivity moderating the effect of the APOE genotype on cognition and provided a pathological stage-dependent neuroimaging biomarker for early differentiation of the AD spectrum.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | | |
Collapse
|
32
|
Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020; 75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Iron accumulation is a recurring pathological phenomenon in many neurological diseases including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and others. Iron is essential for normal development and functions of the brain; however, excess redox-active iron can also lead to oxidative damage and cell death. Especially for terminally differentiated cells like neurons, regulation of reactive oxygen species is critical for cell viability. As a result, cellular iron level is tightly regulated. Although iron accumulation related to neurological diseases has been well documented, the pathoetiological contributions of the homeostatic iron regulator (HFE), which controls cellular iron uptake, is less understood. Furthermore, a common HFE variant, H63D HFE, has been identified as a modifier of multiple neurological diseases. This review will discuss the roles of iron and HFE in the brain as well as their impact on various disease processes.
Collapse
Affiliation(s)
- Yunsung Kim
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA
| | - James R Connor
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA.
| |
Collapse
|
33
|
Zhang X, Wang B, Liu Z, Zhou Y, Du L. How to Fluorescently Label the Potassium Channel: A Case in hERG. Curr Med Chem 2020; 27:3046-3054. [DOI: 10.2174/0929867326666181129094455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential
role in cardiac action potential repolarization, is responsible for inherited and druginduced
long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation
of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å
resolution. This report focuses primarily on summarizing the design rationale and application
of several fluorescent probes that target hERG channels, which enables dynamic and real-time
monitoring of potassium pore channel affinity to further advance the understanding of the
channels.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Beilei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
34
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
35
|
Sex/Gender-Specific Imbalance in CVD: Could Physical Activity Help to Improve Clinical Outcome Targeting CVD Molecular Mechanisms in Women? Int J Mol Sci 2020; 21:ijms21041477. [PMID: 32098263 PMCID: PMC7073076 DOI: 10.3390/ijms21041477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, new insights have been gained regarding sex/gender-related differences in cardiovascular disease (CVD). CVD represents the leading cause of death worldwide in both men and women, accounting for at least one-third of all deaths in women and half of deaths in women over 50 years in developing countries. Important sex-related differences in prevalence, presentation, management, and outcomes of different CVDs have been recently discovered, demonstrating sex/gender-specific pathophysiologic features in the presentation and prognosis of CVD in men and women. A large amount of evidence has highlighted the role of sex hormones in protecting women from CVDs, providing an advantage over men that is lost when women reach the menopause stage. This hormonal-dependent shift of sex-related CVD risk consequently affects the overall CVD epidemiology, particularly in light of the increasing trend of population aging. The benefits of physical activity have been recognized for a long time as a powerful preventive approach for both CVD prevention and aging-related morbidity control. Exercise training is indeed a potent physiological stimulus, which reduces primary and secondary cardiovascular events. However, the underlying mechanisms of these positive effects, including from a sex/gender perspective, still need to be fully elucidated. The aim of this work is to provide a review of the evidence linking sex/gender-related differences in CVD, including sex/gender-specific molecular mediators, to explore whether sex- and gender-tailored physical activity may be used as an effective tool to prevent CVD and improve clinical outcomes in women.
Collapse
|
36
|
Vance E, Gonzalez Murcia JD, Miller JB, Staley L, Crane PK, Mukherjee S, Kauwe JSK. Failure to detect synergy between variants in transferrin and hemochromatosis and Alzheimer's disease in large cohort. Neurobiol Aging 2020; 89:142.e9-142.e12. [PMID: 32143980 DOI: 10.1016/j.neurobiolaging.2020.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and, despite decades of effort, there is no effective treatment. In the last decade, many association studies have identified genetic markers that are associated with AD status. Two of these studies suggest that an epistatic interaction between variants rs1049296 in the transferrin (TF) gene and rs1800562 in the homeostatic iron regulator (HFE) gene, commonly known as hemochromatosis, is in genetic association with AD. TF and HFE are involved in the transport and regulation of iron in the brain, and disrupting these processes exacerbates AD pathology through increased neurodegeneration and oxidative stress. However, by using a significantly larger data set from the Alzheimer's Disease Genetics Consortium, we fail to detect an association between TF rs1049296 or HFE rs1800562 with AD risk (TF rs1049296 p = 0.38 and HFE rs1800562 p = 0.40). In addition, logistic regression with an interaction term and a synergy factor analysis both failed to detect epistasis between TF rs1049296 and HFE rs1800562 (SF = 0.94; p = 0.48) in AD cases. Each of these analyses had sufficient statistical power (power > 0.99), suggesting that previously reported associations may be the result of more complex epistatic interactions, genetic heterogeneity, or false-positive associations because of limited sample sizes.
Collapse
Affiliation(s)
- Elizabeth Vance
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | - Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | - Lyndsay Staley
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
37
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
38
|
The Interplay of Diet Quality and Alzheimer's Disease Genetic Risk Score in Relation to Cognitive Performance Among Urban African Americans. Nutrients 2019; 11:nu11092181. [PMID: 31509959 PMCID: PMC6769979 DOI: 10.3390/nu11092181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022] Open
Abstract
We examined the interactive associations of poor diet quality and Alzheimer’s Disease (AD) genetic risk with cognitive performance among 304 African American adults (mean age~57 years) from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. In this cross-sectional study, selected participants had complete predictors and covariate data with 13 cognitive test scores as outcomes. Healthy Eating Index-2010 (HEI-2010), Dietary Approaches to Stop Hypertension (DASH), and mean adequacy ratio (MAR) were measured. A genetic risk score for AD in HANDLS (hAlzScore) was computed from 12 selected single nucleotide polymorphisms (SNPs). Our key hypotheses were tested using linear regression models. The hAlzScore was directly associated with poor performance in verbal memory (−0.4 ± 0.2, 0.01) and immediate visual memory (0.4 ± 0.2, 0.03) measured in seconds, in women only. The hAlzScore interacted synergistically with poorer diet quality to determine lower cognitive performance on a test of verbal fluency. Among numerous SNP × diet quality interactions for models of cognitive performance as outcomes, only one passed correction for multiple testing, namely verbal fluency. Our results suggest that improved diet quality can potentially modify performance on cognitive tests of verbal fluency among individuals with higher AD genetic risk.
Collapse
|
39
|
Maternal Haplotypes in DHFR Promoter and MTHFR Gene in Tuning Childhood Acute Lymphoblastic Leukemia Onset-Latency: Genetic/Epigenetic Mother/Child Dyad Study (GEMCDS). Genes (Basel) 2019; 10:genes10090634. [PMID: 31443485 PMCID: PMC6770441 DOI: 10.3390/genes10090634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) peaks around age 2–4, and in utero genetic epigenetic mother-fetus crosstalk might tune ALL onset during childhood life. Folate genes variably interact with vitamin status on ALL risk and prognosis. We investigated DHFR and MTHFR gene variants in 235 ALL children and their mothers to disclose their role in determining ALL onset age and survival. Pyrosequence of DHFR 19bp ins/del (rs70991108; W/D), MTHFR C677T (rs1801133; C>T), and MTHFR A1298C (rs1801131; A>C) was assessed in children and in 72% of mothers for dyad-analysis comparison. DHFR DD-children had delayed ALL onset compared to WW-children (7.5 ± 4.8 vs. 5.2 ± 3.7 years; P = 0.002) as well as MTHFR 1298 CC-children compared to AA-children (8.03 ± 4.8 vs. 5.78 ± 4.1 years; P = 0.006), and according to the strong linkage disequilibrium between MTHFR 677 T-allele and 1298C-allele, MTHFR TT-children showed early mean age of onset though not significant. Offspring of MTHFR 677 TT-mothers had earlier ALL onset compared to offspring of 677 CC-mothers (5.4 ± 3.3 vs. 7 ± 5.3 years; P = 0.017). DHFR/MTHFR 677 polymorphism combination influenced onset age by comparing DD/CC vs. WW/TT children (8.1 ± 5.7 vs. 4.7 ± 2.1 years; P = 0.017). Moreover, mother-child genotype combination gave 5.5-years delayed onset age in favor of DD-offspring of 677 CC-mothers vs. WW-offspring of 677 TT-mothers, and it was further confirmed including any D-carrier children and any 677 T-carrier mothers (P = 0.00052). Correction for multiple comparisons maintained statistical significance for DHFR ins/del and MTHFR A1298C polymorphisms. Unexpectedly, among the very-early onset group (<2.89 years; 25th), DD-genotype inversely clustered in children and mothers (4.8% vs. 23.8% respectively), and accordingly ALL offspring of homozygous DD-mothers had increased risk to have early-onset (adjusted OR (odds ratio) = 3.08; 1.1–8.6; P = 0.03). The opposite effect DHFR promoter variant has in tuning ALL onset-time depending on who is the carrier (i.e., mother or child) might suggest a parent-origin-effect of the D-allele or a two-faced epigenetic role driven by unbalanced folate isoform availability during the in-utero leukemogenesis responsible for the wide postnatal childhood ALL latency.
Collapse
|
40
|
Inherited genetic predispositions in F13A1 and F13B genes predict abdominal adhesion formation: identification of gender prognostic indicators. Sci Rep 2018; 8:16916. [PMID: 30446716 PMCID: PMC6240050 DOI: 10.1038/s41598-018-35185-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Abdominal adhesions (AA) account for the most common complication of peritoneal surgery with bowel obstruction being the severest problem in the absence of effective predicting biomarkers. Anti-AA-barriers or adhesiolysis did not completely prevent bowel obstruction, although there is evidence they might reduce related complications requiring reoperation. In addition, gender-related predispositions have not been adequately investigated. We explored the role of coagulation Factor XIII (F13A1 and F13B subunit-genes) in patients following laparotomy, mostly median/lower median incision line. Globally, 426 patients (54%,♀), were PCR-SNP-genotyped for FXIIIA V34L (rs5985), FXIIIA P564L (rs5982), FXIIIA Y204F (rs3024477) and FXIIIB H95R (rs6003). Patients' clinical phenotypes were: Group-A (n = 212), those who developed AA, and 55.2% of them developed bowel obstruction (subgroup-A1), the remaining were subgroup-A2; Group B (n = 214) were those who did not develop AA (subgroup-B1; 53.3%) or symptoms/complications (subgroup-B2). Among different laparotomy, colon surgery associated with AA at a major extent (OR = 5.1; 3.24-7.8; P < 0.0001) with different gender scores (♀OR = 5.33; 2.32-12.23; P < 0.0001 and ♂OR = 3.44; 1.58-7.49; P < 0.0001). Among SNPs, P564L (OR = 4.42; 1.45-13.4; P = 0.008) and Y204F (OR = 7.78; 1.62-37.3; P = 0.01) significantly predicted bowel obstruction and survival-analyses yielded interesting gender distinctions (♀HR = 5.28; 2.36-11.8; P = 0.00005; ♂HR = 2.22; 1.31-3.85; P = 0.0034). Active compounds preventing AA belong to the anticoagulant/fibrinolysis areas, suggesting them candidate investigation targets. We identified novel prognostic markers to predict AA/bowel obstruction giving insights to design novel therapeutic and gender prevention programs.
Collapse
|