1
|
Bitala A, Benko M, Nemčovič M, Nemčovičová I. Equi-MOI ratio for rapid baculovirus-mediated multiprotein co-expression in insect cells integrating selenomethionine for structural studies. FEBS Open Bio 2025; 15:563-572. [PMID: 40103323 PMCID: PMC11961385 DOI: 10.1002/2211-5463.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Proteins often co-exist as multicomponent assemblies, making their co-expression essential in recombinant production processes. The baculovirus expression vector system is commonly used to produce recombinant multiprotein complexes mostly for structural and functional studies. Although AI-enhanced tools, such as AlphaFold, have revolutionized protein structure prediction, solving the phase problem remains the most significant challenge in X-ray crystallography for determining entirely novel, dynamic, or complex protein structures. To address this challenge, the early incorporation of selenomethionine into native proteins during production is especially advantageous for facilitating experimental phasing. Here, we describe a fast, effective, and versatile research protocol that uniquely combines these two challenging features. The principle of this method is based on using co-infection of several recombinant baculoviruses in so-called equal multiplicity of infection (MOI) or equi-MOI ratio, while at the same time, the balanced selenomethionine incorporation takes place to allow for an accelerated workflow. The delicate balance between individual conditions for producing selenomethionine-incorporated multiprotein complexes with high efficiency has been developed over several years of studying protein complexes; therefore, many useful tips and tricks are provided as well. Moreover, this protocol is straightforward to implement in any wet lab.
Collapse
Affiliation(s)
- Andrej Bitala
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Mário Benko
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of SciencesBratislavaSlovakia
| | - Ivana Nemčovičová
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| |
Collapse
|
2
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
3
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
4
|
Targeted Metabolic Analysis and MFA of Insect Cells Expressing Influenza HA-VLP. Processes (Basel) 2022. [DOI: 10.3390/pr10112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virus-like particles (VLPs) are versatile vaccine carriers for conferring broad protection against influenza by enabling high-level display of multiple hemagglutinin (HA) strains within the same particle construct. The insect cell-baculovirus expression vector system (IC-BEVS) is amongst the most suitable platforms for VLP expression; however, productivities vary greatly with particle complexity (i.e., valency) and the HA strain(s) to be expressed. Understanding the metabolic signatures of insect cells producing different HA-VLPs could help dissect the factors contributing to such fluctuations. In this study, the metabolic traces of insect cells during production of HA-VLPs with different valences and comprising HA strains from different groups/subtypes were assessed using targeted metabolic analysis and metabolic flux analysis. A total of 27 different HA-VLP variants were initially expressed, with titers varying from 32 to 512 HA titer/mL. Metabolic analysis of cells during the production of a subset of HA-VLPs distinct for each category (i.e., group 1 vs. 2, monovalent vs. multivalent) revealed that (i) expression of group-2 VLPs is more challenging than for group-1 ones; (ii) higher metabolic rates are not correlated with higher VLP expression; and (iii) specific metabolites (besides glucose and glutamine) are critical for central carbon metabolism during VLPs expression, e.g., asparagine, serine, glycine, and leucine. Principal component analysis of specific production/consumption rates suggests that HA group/subtype, rather than VLP valency, is the driving factor leading to differences during influenza HA-VLPs production. Nonetheless, no apparent correlation between a given metabolic footprint and expression of specific HA variant and/or VLP design could be derived. Overall, this work gives insights on the metabolic profile of insect High Five cells during the production of different HA-VLPs variants and highlights the importance of understanding the metabolic mechanisms that may play a role on this system’s productivity.
Collapse
|
5
|
Bag I, Chen Y, D'Orazio K, Lopez P, Wenzel S, Takagi Y, Lei EP. Isha is a su(Hw) mRNA-binding protein required for gypsy insulator function. G3 (BETHESDA, MD.) 2022; 12:jkac152. [PMID: 35708663 PMCID: PMC9434307 DOI: 10.1093/g3journal/jkac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Chromatin insulators are DNA-protein complexes localized throughout the genome capable of establishing independent transcriptional domains. It was previously reported that the Drosophila su(Hw) mRNA physically associates with the gypsy chromatin insulator protein complex within the nucleus and may serve a noncoding function to affect insulator activity. However, how this mRNA is recruited to the gypsy complex is not known. Here, we utilized RNA-affinity pulldown coupled with mass spectrometry to identify a novel RNA-binding protein, Isha (CG4266), that associates with su(Hw) mRNA in vitro and in vivo. Isha harbors a conserved RNA recognition motif and RNA Polymerase II C-terminal domain-interacting domain (CID). We found that Isha physically interacts with total and elongating Polymerase II and associates with chromatin at the 5' end of genes in an RNA-dependent manner. Furthermore, ChIP-seq analysis reveals Isha overlaps particularly with the core gypsy insulator component CP190 on chromatin. Depletion of Isha reduces enhancer-blocking and barrier activities of the gypsy insulator and disrupts the nuclear localization of insulator bodies. Our results reveal a novel factor Isha that promotes gypsy insulator activity that may act as a nuclear RNA-binding protein adapter for su(Hw) noncoding mRNA.
Collapse
Affiliation(s)
- Indira Bag
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karole D'Orazio
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prisma Lopez
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elissa P Lei
- Corresponding author: Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Imasaki T, Kikkawa S, Niwa S, Saijo-Hamano Y, Shigematsu H, Aoyama K, Mitsuoka K, Shimizu T, Aoki M, Sakamoto A, Tomabechi Y, Sakai N, Shirouzu M, Taguchi S, Yamagishi Y, Setsu T, Sakihama Y, Nitta E, Takeichi M, Nitta R. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. eLife 2022; 11:77365. [PMID: 35762204 PMCID: PMC9239687 DOI: 10.7554/elife.77365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules. Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,JST, PRESTO, Saitama, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis, Thermo Fisher Scientific, Tokyo, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Aoki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoki Sakai
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Yamagishi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomiyoshi Setsu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Sakihama
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
7
|
Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F, Wenzel S, Yan R, Shiozaki M, Yu Z, Wang JCY, Takagi Y, Pikaard CS. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. Proc Natl Acad Sci U S A 2021; 118:e2115899118. [PMID: 34903670 PMCID: PMC8713982 DOI: 10.1073/pnas.2115899118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/18/2023] Open
Abstract
RNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In Arabidopsis, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest, induced by the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The double-stranded RNAs are then released from the Pol IV-RDR2 complex and diced into short-interfering RNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryoelectron microscopy. The N-terminal region contains an RNA-recognition motif adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1 to 2 nt internal to the 3' ends of its templates and can transcribe the RNA of an RNA/DNA hybrid, provided that 9 or more nucleotides are unpaired at the RNA's 3' end. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3' end occurs as the DNA template and nontemplate strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3' end as the DNA strands reanneal, allowing RDR2 to engage the RNA and synthesize the complementary strand.
Collapse
Affiliation(s)
- Akihito Fukudome
- HHMI, Indiana University, Bloomington, IN 47405
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Jasleen Singh
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Vibhor Mishra
- HHMI, Indiana University, Bloomington, IN 47405
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Eswar Reddem
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Francisco Martinez-Marquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Rui Yan
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Momoko Shiozaki
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Zhiheng Yu
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Joseph Che-Yen Wang
- Indiana University Electron Microscopy Center, Indiana University, Bloomington, IN 47405
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405;
| | - Craig S Pikaard
- HHMI, Indiana University, Bloomington, IN 47405;
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
8
|
Lye PY, Noor SM, Shohaimi SA, Junoh NF, Tan SC, Iwamoto S, Kotani E, Norazmi MN, Nagamine T, Mori H, Liew MW. Process development for quantitation and vaccine efficacy assessment of recombinant hemagglutinin-neuraminidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Zhu W, Radadiya A, Bisson C, Wenzel S, Nordin BE, Martínez-Márquez F, Imasaki T, Sedelnikova SE, Coricello A, Baumann P, Berry AH, Nomanbhoy TK, Kozarich JW, Jin Y, Rice DW, Takagi Y, Richards NGJ. High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity. Commun Biol 2019; 2:345. [PMID: 31552298 PMCID: PMC6748925 DOI: 10.1038/s42003-019-0587-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis. Wen Zhu et al. report the crystal structure of human asparagine synthetase at a 1.85 Å resolution, enabling computational analysis of inhibitor binding. They also find new insights into the intermolecular interactions contributing to binding specificity of inhibitors.
Collapse
Affiliation(s)
- Wen Zhu
- 1School of Chemistry, Cardiff University, Cardiff, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | | | - Claudine Bisson
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | - Sabine Wenzel
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Brian E Nordin
- 4ActivX Biosciences, Inc, La Jolla, CA USA.,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Francisco Martínez-Márquez
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tsuyoshi Imasaki
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA.,5Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Svetlana E Sedelnikova
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | | | - Alexandria H Berry
- 6Department of Biology, California Institute of Technology, Pasadena, CA USA
| | | | | | - Yi Jin
- 1School of Chemistry, Cardiff University, Cardiff, UK
| | - David W Rice
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Yuichiro Takagi
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nigel G J Richards
- 1School of Chemistry, Cardiff University, Cardiff, UK.,7Foundation for Applied Molecular Evolution, Alachua, FL USA
| |
Collapse
|
10
|
Rajendren S, Manning AC, Al-Awadi H, Yamada K, Takagi Y, Hundley HA. A protein-protein interaction underlies the molecular basis for substrate recognition by an adenosine-to-inosine RNA-editing enzyme. Nucleic Acids Res 2019; 46:9647-9659. [PMID: 30202880 PMCID: PMC6182170 DOI: 10.1093/nar/gky800] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) convert adenosine to inosine within double-stranded regions of RNA, resulting in increased transcriptomic diversity, as well as protection of cellular double-stranded RNA (dsRNA) from silencing and improper immune activation. The presence of dsRNA-binding domains (dsRBDs) in all ADARs suggests these domains are important for substrate recognition; however, the role of dsRBDs in vivo remains largely unknown. Herein, our studies indicate the Caenorhabditis elegans ADAR enzyme, ADR-2, has low affinity for dsRNA, but interacts with ADR-1, an editing-deficient member of the ADAR family, which has a 100-fold higher affinity for dsRNA. ADR-1 uses one dsRBD to physically interact with ADR-2 and a second dsRBD to bind to dsRNAs, thereby tethering ADR-2 to substrates. ADR-2 interacts with >1200 transcripts in vivo, and ADR-1 is required for 80% of these interactions. Our results identify a novel mode of substrate recognition for ADAR enzymes and indicate that protein-protein interactions can guide substrate recognition for RNA editors.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aidan C Manning
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Haider Al-Awadi
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Kentaro Yamada
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Wenzel S, Imasaki T, Takagi Y. A practical method for efficient and optimal production of Seleno-methionine-labeled recombinant protein complexes in the insect cells. Protein Sci 2019; 28:808-822. [PMID: 30663186 DOI: 10.1002/pro.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/07/2022]
Abstract
The use of Seleno-methionine (SeMet) incorporated protein crystals for single or multi-wavelength anomalous diffraction (SAD or MAD) to facilitate phasing has become almost synonymous with modern X-ray crystallography. The anomalous signals from SeMets can be used for phasing as well as sequence markers for subsequent model building. The production of large quantities of SeMet incorporated recombinant proteins is relatively straightforward when expressed in Escherichia coli. In contrast, production of SeMet substituted recombinant proteins expressed in the insect cells is not as robust due to the toxicity of SeMet in eukaryotic systems. Previous protocols for SeMet-incorporation in the insect cells are laborious, and more suited for secreted proteins. In addition, these protocols have generally not addressed the SeMet toxicity issue, and typically result in low recovery of the labeled proteins. Here we report that SeMet toxicity can be circumvented by fully infecting insect cells with baculovirus. Quantitatively controlling infection levels using our Titer Estimation of Quality Control (TEQC) method allow for the incorporation of substantial amounts of SeMet, resulting in an efficient and optimal production of labeled recombinant protein complexes. With the method described here, we were able to consistently reach incorporation levels of about 75% and protein yield of 60-90% compared with native protein expression.
Collapse
Affiliation(s)
- Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| |
Collapse
|
12
|
Nitta R, Imasaki T, Nitta E. Recent progress in structural biology: lessons from our research history. Microscopy (Oxf) 2018; 67:4996565. [PMID: 29771342 DOI: 10.1093/jmicro/dfy022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.
Collapse
Affiliation(s)
- Ryo Nitta
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|