1
|
Ni Y, Wu X, Yao W, Zhang Y, Chen J, Ding X. Evidence of traditional Chinese medicine for treating type 2 diabetes mellitus: from molecular mechanisms to clinical efficacy. PHARMACEUTICAL BIOLOGY 2024; 62:592-606. [PMID: 39028269 PMCID: PMC11262228 DOI: 10.1080/13880209.2024.2374794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT The global prevalence of type 2 diabetes mellitus (T2DM) has increased significantly in recent decades. Despite numerous studies and systematic reviews, there is a gap in comprehensive and up-to-date evaluations in this rapidly evolving field. OBJECTIVE This review provides a comprehensive and current overview of the efficacy of Traditional Chinese Medicine (TCM) in treating T2DM. METHODS A systematic review was conducted using PubMed, Web of Science, Wanfang Data, CNKI, and Medline databases, with a search timeframe extending up to November 2023. The search strategy involved a combination of subject terms and free words in English, including 'Diabetes,' 'Traditional Chinese Medicine,' 'TCM,' 'Hypoglycemic Effect,' 'Clinical Trial,' and 'Randomized Controlled Trial.' The studies were rigorously screened by two investigators, with a third investigator reviewing and approving the final selection based on inclusion and exclusion criteria. RESULTS A total of 108 relevant papers were systematically reviewed. The findings suggest that TCMs not only demonstrate clinical efficacy comparable to existing Western medications in managing hypoglycemia but also offer fewer adverse effects and a multitarget therapeutic approach. Five main biological mechanisms through which TCM treats diabetes were identified: improving glucose transport and utilization, improving glycogen metabolism, promoting GLP-1 release, protecting pancreatic islets from damage, and improving intestinal flora. CONCLUSIONS TCM has demonstrated significant protective effects against diabetes and presents a viable option for the prevention and treatment of T2DM. These findings support the further exploration and integration of TCM into broader diabetes management strategies.
Collapse
Affiliation(s)
- Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
van Hoorn E, Rademaker D, van der Wel A, DeVries J, Franx A, van Rijn B, Kooy A, Siegelaar S, Roseboom T, Ozanne S, Hooijmans C, Painter R. Fetal and post-natal outcomes in offspring after intrauterine metformin exposure: A systematic review and meta-analysis of animal experiments. Diabet Med 2024; 41:e15243. [PMID: 37845186 PMCID: PMC7617357 DOI: 10.1111/dme.15243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
AIMS The impact of maternal metformin use during pregnancy on fetal, infant, childhood and adolescent growth, development, and health remains unclear. Our objective was to systematically review the available evidence from animal experiments on the effects of intrauterine metformin exposure on offspring's anthropometric, cardiovascular and metabolic outcomes. METHODS A systematic search was conducted in PUBMED and EMBASE from inception (searched on 12th April 2023). We extracted original, controlled animal studies that investigated the effects of maternal metformin use during pregnancy on offspring anthropometric, cardiovascular and metabolic measurements. Subsequently, risk of bias was assessed and meta-analyses using the standardized mean difference and a random effects model were conducted for all outcomes containing data from 3 or more studies. Subgroup analyses were planned for species, strain, sex and type of model in the case of 10 comparisons or more per subgroup. RESULTS We included 37 articles (n = 3133 offspring from n = 716 litters, containing n = 51 comparisons) in this review, mostly (95%) on rodent models and 5% pig models. Follow-up of offspring ranged from birth to 2 years of age. Thirty four of the included articles could be included in the meta-analysis. No significant effects in the overall meta-analysis of metformin on any of the anthropometric, cardiovascular and metabolic offspring outcome measures were identified. Between-studies heterogeneity was high, and risk of bias was unclear in most studies as a consequence of poor reporting of essential methodological details. CONCLUSION This systematic review was unable to establish effects of metformin treatment during pregnancy on anthropometric, cardiovascular and metabolic outcomes in non-human offspring. Heterogeneity between studies was high and reporting of methodological details often limited. This highlights a need for additional high-quality research both in humans and model systems to allow firm conclusions to be established. Future research should include focus on the effects of metformin in older offspring age groups, and on outcomes which have gone uninvestigated to date.
Collapse
Affiliation(s)
- E.G.M. van Hoorn
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - D. Rademaker
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
| | - A.W.T. van der Wel
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
| | - J.H. DeVries
- Department of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Franx
- Department of Obstetrics and Gynecology Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - B.B. van Rijn
- Department of Obstetrics and Gynecology Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A. Kooy
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Bethesda Diabetes Research Center, Hoogeveen, The Netherlands
- Department of Internal Medicine, Care Group Treant, Location Bethesda Hoogeveen, Hoogeveen, The Netherlands
| | - S.E. Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - T.J. Roseboom
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S.E. Ozanne
- Welcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - C.R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Center, Nijmegen, The Netherlands
| | - R.C. Painter
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Li L, Zhang Y, Luo Y, Meng X, Pan G, Zhang H, Li Y, Zhang B. The Molecular Basis of the Anti-Inflammatory Property of Astragaloside IV for the Treatment of Diabetes and Its Complications. Drug Des Devel Ther 2023; 17:771-790. [PMID: 36925998 PMCID: PMC10013573 DOI: 10.2147/dddt.s399423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Astragali Radix is a significant traditional Chinese medication, and has a long history of clinical application in the treatment of diabetes mellitus (DM) and its complications. AS-IV is an active saponin isolated from it. Modern pharmacological study shows that AS-IV has anti-inflammatory, anti-oxidant and immunomodulatory activities. The popular inflammatory etiology of diabetes suggests that DM is a natural immune and low-grade inflammatory disease. Pharmacological intervention of the inflammatory response may provide promising and alternative approaches for the prevention and treatment of DM and its complications. Therefore, this article focuses on the potential of AS-IV in the treatment of DM from the perspective of an anti-inflammatory molecular basis. AS-IV plays a role by regulating a variety of anti-inflammatory pathways in multiple organs, tissues and target cells throughout the body. The blockade of the NF-κB inflammatory signaling pathway may be the central link of AS-IV's anti-inflammatory effect, resulting in a reduction in the tissue structure and function damage stimulated by inflammatory factors. In addition, AS-IV can delay the onset of DM and its complications by inhibiting inflammation-related oxidative stress, fibrosis and apoptosis signals. In conclusion, AS-IV has therapeutic prospects from the perspective of reducing the inflammation of DM and its complications. An in-depth study on the anti-inflammatory mechanism of AS-IV is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuwei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yudan Luo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xianghui Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People's Republic of China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
4
|
Gao Y, Zhang Z, Wang Y, Zhou D, Zhang J, Chen X, Li X, Shao Q. Impacts of lipopolysaccharide on fetal lung developmental maturity and surfactant protein B and surfactant protein C protein expression in gestational diabetes mellitus rats. Bioengineered 2022; 13:834-843. [PMID: 34898355 PMCID: PMC8805987 DOI: 10.1080/21655979.2021.2013099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
The rise of bioinformatics based on computer medicine provides a new method to reveal the complex biological data. This experiment is to explore the impacts of lipopolysaccharide on fetal lung developmental maturity and expressions of lung surfactant protein B (SP-B) and lung surfactant protein C (SP-C) in rats with gestational diabetes mellitus (GDM), thereby discussing the mechanism of developmental disorders in rats. Forty-eight conceived female rats were experimental subjects. Twenty-eight rats were randomly selected to construct the GDM models. All conceived rats underwent section on the 21st day of pregnancy. The ultrastructure of alveolar type II epithelial cells and the morphology of lung tissue were observed under a microscope. The protein localization and expression of SP-B and SP-C were determined by immunohistochemistry; the protein levels of SP-B and SP-C were determined by Western blot. Blood glucose and body weight of the GDM group were higher than those of the control group; the number of alveoli and alveolar area in the GDM group was lower than those in the control group; the alveolar interval in the GDM group was significantly higher than that in the control group (P < 0.05). The average absorbance of SP-B and SP-C in fetal lung tissue was significantly lower in the GDM group than that in the control group (P < 0.01). Changes in fetal lung tissue structure of rats were related to SP-B and SP-C, which was one of the main factors that affected the maturation of fetal lung tissue.
Collapse
Affiliation(s)
- Yue Gao
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Ziwei Zhang
- Public Affairs Management, Medical University of Tianjin, Tianjin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dayong Zhou
- Children’s Rehabilitation Center, Heilongjiang Seamen General Hospital, Harbin, China
| | - Jinghua Zhang
- Department of Health Care, Harbin City Maternal and Child Health Care Family Planning Service Center, Harbin, China
| | - Xiaoyu Chen
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Xin Li
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Qingliang Shao
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| |
Collapse
|
5
|
Ferrari N, Joisten C. Impact of physical activity on course and outcome of pregnancy from pre- to postnatal. Eur J Clin Nutr 2021; 75:1698-1709. [PMID: 33828239 PMCID: PMC8636258 DOI: 10.1038/s41430-021-00904-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
A healthy lifestyle that includes physical activity has numerous positive effects on the mother and child during and after pregnancy. In this context physical activity plays a central role due to its influence on body composition. While visceral fatty tissue has a pro-inflammatory effect via so-called adipokines, myokines seem to have a more anti-inflammatory effect and thus prevent numerous diseases such as gestational hypertension or gestational diabetes. However, many women show a decreased level of physical activity during pregnancy when compared to pre-gestation levels. The reasons underlying this change are manifold and include concern about the effects of physical exertion on the unborn child. Gynaecologists and midwives are also often uncertain about what specific advice to give regarding physical activity. The present review describes, besides the underlying mechanisms, current physical activity recommendations and corresponding evidence with a focus on weight development in terms of obesity, gestational diabetes and foetal outcome.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Cologne, Germany. .,Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.
| | - Christine Joisten
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Cologne, Germany.,Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
6
|
Sun B, Yan H, Li C, Yin L, Li F, Zhou L, Han X. Beneficial effects of walnut ( Juglans regia L.) oil-derived polyunsaturated fatty acid prevents a prooxidant status and hyperlipidemia in pregnant rats with diabetes. Nutr Metab (Lond) 2020; 17:92. [PMID: 33110438 PMCID: PMC7583188 DOI: 10.1186/s12986-020-00514-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus has a long-term effect on pregnant women. Walnut (Juglans regia L.) oil-derived polyunsaturated fatty acid (PUFA) possesses multifarious pharmacological activities. This study investigated the beneficial effects of walnut oil-derived PUFA on glucose metabolism, pregnancy outcomes, oxidative stress, and lipid metabolism in gestational diabetes mellitus. METHODS The GDM rat model was generated by intraperitoneal injection of streptozotocin (40 mg/kg) on gestational day (GD) 6, GD7 and GD8. The differences between groups were estimated using one-way ANOVA followed by the Tukey's multiple comparison test for post-hoc analysis. RESULTS The results indicated that PUFA could mitigate GDM in pregnant diabetic rats, as embodied by the decrease of fasting blood glucose and the increase of plasma insulin and hepatic glycogen levels. Also, PUFA could suppress oxidative stress in pregnant diabetic rats, as reflected by the decrease of malondialdehyde content, an increase of superoxide dismutase, catalase and gutathione peroxidase activities. PUFA could also mitigate the abnormal changes of lipid profiles in plasma and hepatic tissue. Moreover, the relative mRNA expression of sterol regulatory element-binding transcription factor-1, stearoyl-CoA desaturase-1, fatty acid synthase, and acetyl-coenzyme A carboxylase, was suppressed by PUFA in pregnant diabetic rats. CONCLUSIONS These results suggested that PUFA supplementation during pregnancy is beneficial in preventing diabetic complications in pregnant rats.
Collapse
Affiliation(s)
- Bingmei Sun
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Hua Yan
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Chao Li
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Linlin Yin
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Fei Li
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Lianxiang Zhou
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| | - Xiuqing Han
- Department of Gynaecology and Obstetrics, Central Hospital of Linyi, No. 17 Health Road of Yishui County, Linyi City, 276400 China
| |
Collapse
|
7
|
Zhou J, Dong X, Liu Y, Jia Y, Wang Y, Zhou J, Jiang Z, Chen K. Gestational hypothyroidism elicits more pronounced lipid dysregulation in mice than pre-pregnant hypothyroidism. Endocr J 2020; 67:593-605. [PMID: 32161203 DOI: 10.1507/endocrj.ej19-0455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is crucial for regulating lipid and glucose metabolism, which plays essential role in maintaining the health of pregnant women and their offspring. However, the current literature is just focusing on the development of offspring born to the untreated mothers with hypothyroidism, rather than mothers themselves. Additionally, the interaction between hypothyroidism and pregnancy, and its impact on the women's health are still elusive. Therefore, this study was designed to compare the metabolic differences in dams with hypothyroidism starting before pregnancy and after pregnancy. Pre-pregnant hypothyroidism was generated in 5-week-old female C57/BL/6J mice using iodine-deficient diet containing 0.15% propylthiouracil for 4 weeks, and the hypothyroidism was maintained until delivery. Gestational hypothyroidism was induced in dams after mating, using the same diet intervention until delivery. Compared with normal control, gestational hypothyroidism exhibited more prominent increase than pre-pregnant hypothyroidism in plasma total cholesterol and low-density lipoprotein cholesterol, and caused hepatic triglycerides accumulation. Similarly, more significant elevations of protein expressions of SREBP1c and p-ACL, while more dramatic inhibition of CPT1A and LDL-R levels were also observed in murine livers with gestational hypothyroidism than those with pre-pregnant hypothyroidism. Moreover, the murine hepatic levels of total cholesterol and gluconeogenesis were dramatically and equally enhanced in two hypothyroid groups, while plasma triglycerides and protein expressions of p-AKT, p-FoxO1 and APOC3 were reduced substantially in two hypothyroid groups. Taken together, our current study illuminated that gestational hypothyroidism may elicit more pronounced lipid dysregulation in dams than dose the pre-pregnant hypothyroidism.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Xuan Dong
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Liu
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Jia
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yang Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Ji Zhou
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| | - Keyang Chen
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| |
Collapse
|
8
|
Musial B, Fernandez‐Twinn DS, Duque‐Guimaraes D, Carr SK, Fowden AL, Ozanne SE, Sferruzzi‐Perri AN. Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiol Rep 2019; 7:e14202. [PMID: 31466137 PMCID: PMC6715452 DOI: 10.14814/phy2.14202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/02/2023] Open
Abstract
Obesity during gestation adversely affects maternal and infant health both during pregnancy and for long afterwards. However, recent work suggests that a period of maternal exercise during pregnancy can improve metabolic health of the obese mother and her offspring. This study aimed to identify the physiological and molecular impact of exercise on the obese mother during pregnancy that may lead to improved metabolic outcomes. To achieve this, a 20-min treadmill exercise intervention was performed 5 days a week in diet-induced obese female mice from 1 week before and up to day 17 of pregnancy. Biometric, biochemical and molecular analyses of maternal tissues and/or plasma were performed on day 19 of pregnancy. We found exercise prevented some of the adverse changes in insulin signaling and lipid metabolic pathways seen in the liver, skeletal muscle and white adipose tissue of sedentary-obese pregnant dams (p110β, p110α, AKT, SREBP). Exercise also induced changes in the insulin and lipid signaling pathways in obese dams that were different from those observed in control and sedentary-obese dams. The changes induced by obesity and exercise were tissue-specific and related to alterations in tissue lipid, protein and glycogen content and plasma insulin, leptin and triglyceride concentrations. We conclude that the beneficial effects of exercise on metabolic outcomes in obese mothers may be related to specific molecular signatures in metabolically active maternal tissues during pregnancy. These findings highlight potential metabolic targets for therapeutic intervention and the importance of lifestyle in reducing the burden of the current obesity epidemic on healthcare systems.
Collapse
Affiliation(s)
- Barbara Musial
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Denise S. Fernandez‐Twinn
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniella Duque‐Guimaraes
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Sarah K. Carr
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Abigail L. Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Susan E. Ozanne
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Amanda N. Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018; 19:E3634. [PMID: 30453687 PMCID: PMC6274950 DOI: 10.3390/ijms19113634] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work.
Collapse
Affiliation(s)
- Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|