1
|
Johne AS, Carter CG, Wotherspoon S, Hadley S, Symonds JE, Walker SP, Blanchard JL. Modeling the effects of ration on individual growth of Oncorhynchus tshawytscha under controlled conditions. JOURNAL OF FISH BIOLOGY 2023; 103:1003-1014. [PMID: 37410553 DOI: 10.1111/jfb.15499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
Fed aquaculture is one of the fastest-growing and most valuable food production industries in the world. The efficiency with which farmed fish convert feed into biomass influences both environmental impact and economic revenue. Salmonid species, such as king salmon (Oncorhynchus tshawytscha), exhibit high levels of plasticity in vital rates such as feed intake and growth rates. Accurate estimations of individual variability in vital rates are important for production management. The use of mean trait values to evaluate feeding and growth performance can mask individual-level differences that potentially contribute to inefficiencies. Here, the authors apply a cohort integral projection model (IPM) framework to investigate individual variation in growth performance of 1625 individually tagged king salmon fed one of three distinct rations of 60%, 80%, and 100% satiation and tracked over a duration of 276 days. To capture the observed sigmoidal growth of individuals, they compared a nonlinear mixed-effects (logistic) model to a linear model used within the IPM framework. Ration significantly influenced several aspects of growth, both at the individual and at the cohort level. Mean final body mass and mean growth rate increased with ration; however, variance in body mass and feed intake also increased significantly over time. Trends in mean body mass and individual body mass variation were captured by both logistic and linear models, suggesting the linear model to be suitable for use in the IPM. The authors also observed that higher rations resulted in a decreasing proportion of individuals reaching the cohort's mean body mass or larger by the end of the experiment. This suggests that, in the present experiment, feeding to satiation did not produce the desired effects of efficient, fast, and uniform growth in juvenile king salmon. Although monitoring individuals through time is challenging in commercial aquaculture settings, recent technological advances combined with an IPM approach could provide new scope for tracking growth performance in experimental and farmed populations. Using the IPM framework might allow the exploration of other size-dependent processes affecting vital rate functions, such as competition and mortality.
Collapse
Affiliation(s)
- Alexandra S Johne
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Chris G Carter
- Fisheries & Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | | | - Scott Hadley
- Fisheries & Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Jane E Symonds
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Cawthron Institute, Nelson, New Zealand
| | | | - Julia L Blanchard
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
2
|
Schull Q, Beauvieux A, Viblanc VA, Metral L, Leclerc L, Romero D, Pernet F, Quéré C, Derolez V, Munaron D, McKindsey CW, Saraux C, Bourjea J. An integrative perspective on fish health: Environmental and anthropogenic pathways affecting fish stress. MARINE POLLUTION BULLETIN 2023; 194:115318. [PMID: 37542925 DOI: 10.1016/j.marpolbul.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.
Collapse
Affiliation(s)
- Quentin Schull
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France.
| | | | | | - Luisa Metral
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Lina Leclerc
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Claudie Quéré
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | | | | | | | - Claire Saraux
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France; Université de Strasbourg, CNRS, IPHC, UMR, 7178 Strasbourg, France
| | - Jerôme Bourjea
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| |
Collapse
|
3
|
Chandran R, K Singh R, Singh A, Ganesan K, Thipramalai Thangappan AK, K Lal K, Mohindra V. Evaluating the influence of environmental variables on the length-weight relationship and prediction modelling in flathead grey mullet, Mugil cephalus Linnaeus, 1758. PeerJ 2023; 11:e14884. [PMID: 36860765 PMCID: PMC9969857 DOI: 10.7717/peerj.14884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fish stocks that are grown under diverse environmental conditions have different biometric relationships and growth patterns. The biometric length-weight relationship (LWR) is an essential fishery assessment tool, as fish growth is continuous and depends on genetic and environmental factors. The present study attempts to understand the LWR of the flathead grey mullet, Mugil cephalus Linnaeus, 1758, from different locations. The study area encompassed its distribution in the wild across freshwater location (one), coastal habitats (eight locations), and estuaries (six locations) in India to determine the relationship between various environmental parameters. Specimens (n = 476) of M. cephalus were collected from commercial catches and the length and weight of individual specimens were recorded. Monthly data from the study locations were extracted for nine environmental variables from the datasets downloaded from the Physical Oceanography Distributed Active Archive Center (PO.DAAC) and the Copernicus Marine Environment Monitoring Service (CMEMS) over 16 years (2002 to 2017) on the Geographical Information System platform. The parameters of the LWR, intercept 'a' and slope or regression coefficient 'b', varied from 0.005321 to 0.22182 and 2.235 to 3.173, respectively. The condition factor ranged from 0.92 to 1.41. The partial least squares (PLS) score scatter plot matrix indicated differences in the environmental variables between the locations. PLS analysis of the regression coefficient and environment parameters revealed that certain environment variables viz., sea surface temperature, salinity, dissolved oxygen, nitrate, and phosphate, played a positive role. However, chlorophyll, pH, silicate, and iron played a negative role in influencing weight growth across various locations. The results revealed that the M. cephalus specimens from three locations, Mandapam, Karwar, and Ratnagiri, possessed significantly higher fitness to their environment than those from the other six locations. The PLS model can be used to predict weight growth under the various environmental conditions of different ecosystems. The three identified locations are useful sites for the mariculture of this species considering their growth performance, the environmental variables, and their interactions. The results of this study will improve the management and conservation of exploited stocks in regions affected by climate change. Our results will also aid in making environment clearance decisions for coastal development projects and will improve the efficiency of mariculture systems.
Collapse
Affiliation(s)
- Rejani Chandran
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Rajeev K Singh
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Achal Singh
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Kantharajan Ganesan
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | | | - Kuldeep K Lal
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India,ICAR-Central Institute of Brackishwater Aquaculture (CIBA), Chennai, Tamil Nadu, India
| | - Vindhya Mohindra
- Fish Conservation Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Gibson D, Riecke TV, Catlin DH, Hunt KL, Weithman CE, Koons DN, Karpanty SM, Fraser JD. Climate change and commercial fishing practices codetermine survival of a long-lived seabird. GLOBAL CHANGE BIOLOGY 2023; 29:324-340. [PMID: 36229037 PMCID: PMC10092490 DOI: 10.1111/gcb.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Understanding the environmental mechanisms that govern population change is a fundamental objective in ecology. Although the determination of how top-down and bottom-up drivers affect demography is important, it is often equally critical to understand the extent to which, environmental conditions that underpin these drivers fluctuate across time. For example, associations between climate and both food availability and predation risk may suggest the presence of trophic interactions that may influence inferences made from patterns in ecological data. Analytical tools have been developed to account for these correlations, while providing opportunities to ask novel questions regarding how populations change across space and time. Here, we combine two modeling disciplines-path analysis and mark-recapture-recovery models-to explore whether shifts in sea-surface temperatures (SSTs) influenced top-down (entanglement in fishing equipment) or bottom-up (forage fish production) population constraints over 60 years, and the extent to which these covarying processes shaped the survival of a long-lived seabird, the Royal tern. We found that hemispheric trends in SST were associated with variation in the amount of fish harvested along the Atlantic coast of North America and in the Caribbean, whereas reductions in forage fish production were mostly driven by shifts in the amount of fish harvested by commercial fisheries throughout the North Atlantic the year prior. Although the indirect (i.e., stock depletion) and direct (i.e., entanglement) impacts of commercial fishing on Royal tern mortality has declined over the last 60 years, increased SSTs during this time period has resulted in a comparable increase in mortality risk, which disproportionately impacted the survival of the youngest age-classes of Royal terns. Given climate projections for the North Atlantic, our results indicate that threats to Royal tern population persistence in the Mid-Atlantic will most likely be driven by failures to recruit juveniles into the breeding population.
Collapse
Affiliation(s)
- Daniel Gibson
- Graduate Degree Program in Ecology, Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | | | - Daniel H. Catlin
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Kelsi L. Hunt
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Chelsea E. Weithman
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - David N. Koons
- Graduate Degree Program in Ecology, Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Sarah M. Karpanty
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - James D. Fraser
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
5
|
A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion. SUSTAINABILITY 2021. [DOI: 10.3390/su132111563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
European Union (EU) policy encourages the development of a blue economy (BE) by unlocking the full economic potential of oceans, seas, lakes, rivers and other water resources, especially in member countries in which it represents a low contribution to the national economy (under 1%). However, climate change represents a main barrier to fully realizing a BE. Enabling conditions that will support the sustainable development of a BE and increase its climate resiliency must be promoted. Romania has high potential to contribute to the development of the EU BE due to its geographic characteristics, namely the presence of the Danube Delta-Black Sea macrosystem, which is part of the Romanian Lower Danube Euroregion (RLDE). Aquatic living resources represent a sector which can significantly contribute to the growth of the BE in the RLDE, a situation which imposes restrictions for both halting biodiversity loss and maintaining the proper conditions to maximize the benefits of the existing macrosystem. It is known that climate change causes water quality problems, accentuates water level fluctuations and loss of biodiversity and induces the destruction of habitats, which eventually leads to fish stock depletion. This paper aims to develop an analytical framework based on multiple linear predictive and forecast models that offers cost-efficient tools for the monitoring and control of water quality, fish stock dynamics and biodiversity in order to strengthen the resilience and adaptive capacity of the BE of the RLDE in the context of climate change. The following water-dependent variables were considered: total nitrogen (TN); total phosphorus (TP); dissolved oxygen (DO); pH; water temperature (wt); and water level, all of which were measured based on a series of 26 physicochemical indicators associated with 4 sampling areas within the RLDE (Brăila, Galați, Tulcea and Sulina counties). Predictive models based on fish species catches associated with the Galati County Danube River Basin segment and the “Danube Delta” Biosphere Reserve Administration territory were included in the analytical framework to establish an efficient tool for monitoring fish stock dynamics and structures as well as identify methods of controlling fish biodiversity in the RLDE to enhance the sustainable development and resilience of the already-existing BE and its expansion (blue growth) in the context of aquatic environment climate variation. The study area reflects the integrated approach of the emerging BE, focused on the ocean, seas, lakes and rivers according to the United Nations Agenda. The results emphasized the vulnerability of the RLDE to climate change, a situation revealed by the water level, air temperature and water quality parameter trend lines and forecast models. Considering the sampling design applied within the RLDE, it can be stated that the Tulcea county Danube sector was less affected by climate change compared with the Galați county sector as confirmed by water TN and TP forecast analysis, which revealed higher increasing trends in Galați compared with Tulcea. The fish stock biodiversity was proven to be affected by global warming within the RLDE, since peaceful species had a higher upward trend compared with predatory species. Water level and air temperature forecasting analysis proved to be an important tool for climate change monitoring in the study area. The resulting analytical framework confirmed that time series methods could be used together with machine learning prediction methods to highlight their synergetic abilities for monitoring and predicting the impact of climate change on the marine living resources of the BE sector within the RLDE. The forecasting models developed in the present study were meant to be used as methods of revealing future information, making it possible for decision makers to adopt proper management solutions to prevent or limit the negative impacts of climate change on the BE. Through the identified independent variables, prediction models offer a solution for managing the dependent variables and the possibility of performing less cost-demanding aquatic environment monitoring activities.
Collapse
|
6
|
Salgueiro V, Manageiro V, Bandarra NM, Reis L, Ferreira E, Caniça M. Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture. Microorganisms 2020; 8:E1343. [PMID: 32887439 PMCID: PMC7564983 DOI: 10.3390/microorganisms8091343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/02/2023] Open
Abstract
In a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Narcisa M. Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA, IP), 1749-077 Lisbon, Portugal;
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| |
Collapse
|