1
|
Sepúlveda-Espinoza F, Cofré-Serrano A, Veloso-Valeria T, Quesada-Calderon S, Guillemin ML. Characterization of the organellar genomes of Mazzaella laminarioides and Mazzaella membranacea (Gigartinaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2024; 60:797-805. [PMID: 38944824 DOI: 10.1111/jpy.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Mazzaella, a genus with no genomic resources available, has extensive distribution in the cold waters of the Pacific, where they represent ecologically and economically important species. In this study, we aimed to sequence, assemble, and annotate the complete mitochondrial and chloroplast genomes from two Mazzaella spp. and characterize the intraspecific variation among them. We report for the first time seven whole organellar genomes (mitochondria: OR915856, OR947465, OR947466, OR947467, OR947468, OR947469, OR947470; chloroplast: OR881974, OR909680, OR909681, OR909682, OR909683, OR909684, OR909685) obtained through high-throughput sequencing for six M. laminarioides sampled from three Chilean regions and one M. membranacea. Sequenced Mazzaella mitogenomes have identical gene number, gene order, and genome structure. The same results were observed for assembled plastomes. A total of 52 genes were identified in mitogenomes, and a total of 235 genes were identified in plastomes. Although the M. membranacea plastome included a full-length pbsA gene, in all M. laminarioides samples, the pbsA gene was split in three open reading frames (ORFs). Within M. laminarioides, we observed important plastome lineage-specific variations, such as the pseudogenization of the two hypothetical protein-coding genes, ycf23 and ycf45. Nonsense mutations in the ycf23 and ycf45 genes were only detected in the northern lineage. These results are consistent with phylogenetic reconstructions and divergence time estimation using concatenated coding sequences that not only support the monophyly of M. laminarioides but also underscore that the three M. laminarioides lineages are in an advanced stage of divergence. These new results open the question of the existence of still undisclosed species in M. laminarioides.
Collapse
Affiliation(s)
- Francisco Sepúlveda-Espinoza
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Epigenética Vegetal, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Angela Cofré-Serrano
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Tomás Veloso-Valeria
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Suany Quesada-Calderon
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-Omics, Vicerrectoría de Investigación, desarrollo y creación artística (VIDCA), Universidad Austral de Chile, Valdivia, Chile
| | - Marie-Laure Guillemin
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
2
|
Preuss M, Díaz-Tapia P, Verbruggen H, Zuccarello GC. Gene-rich plastid genomes of two parasitic red algal species, Laurencia australis and L. verruciformis (Rhodomelaceae, Ceramiales), and a taxonomic revision of Janczewskia. JOURNAL OF PHYCOLOGY 2023; 59:950-962. [PMID: 37638497 DOI: 10.1111/jpy.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.
Collapse
Affiliation(s)
- Maren Preuss
- National Institute of Water and Atmosphere Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Pilar Díaz-Tapia
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research, University of A Coruña, A Coruña, Spain
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña, Spain
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Cho CH, Park SI, Ciniglia C, Yang EC, Graf L, Bhattacharya D, Yoon HS. Potential causes and consequences of rapid mitochondrial genome evolution in thermoacidophilic Galdieria (Rhodophyta). BMC Evol Biol 2020; 20:112. [PMID: 32892741 PMCID: PMC7487498 DOI: 10.1186/s12862-020-01677-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Cyanidiophyceae is an early-diverged red algal class that thrives in extreme conditions around acidic hot springs. Although this lineage has been highlighted as a model for understanding the biology of extremophilic eukaryotes, little is known about the molecular evolution of their mitochondrial genomes (mitogenomes). RESULTS To fill this knowledge gap, we sequenced five mitogenomes from representative clades of Cyanidiophyceae and identified two major groups, here referred to as Galdieria-type (G-type) and Cyanidium-type (C-type). G-type mitogenomes exhibit the following three features: (i) reduction in genome size and gene inventory, (ii) evolution of unique protein properties including charge, hydropathy, stability, amino acid composition, and protein size, and (iii) distinctive GC-content and skewness of nucleotides. Based on GC-skew-associated characteristics, we postulate that unidirectional DNA replication may have resulted in the rapid evolution of G-type mitogenomes. CONCLUSIONS The high divergence of G-type mitogenomes was likely driven by natural selection in the multiple extreme environments that Galdieria species inhabit combined with their highly flexible heterotrophic metabolism. We speculate that the interplay between mitogenome divergence and adaptation may help explain the dominance of Galdieria species in diverse extreme habitats.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
4
|
Zhan SH, Shih C, Liu S. Reappraising plastid markers of the red algae for phylogenetic community ecology in the genomic era. Ecol Evol 2020; 10:1299-1310. [PMID: 32076515 PMCID: PMC7029088 DOI: 10.1002/ece3.5984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/07/2022] Open
Abstract
Selection of appropriate genetic markers to quantify phylogenetic diversity is crucial for community ecology studies. Yet, systematic evaluation of marker genes for this purpose is scarcely done. Recently, the combined effort of phycologists has produced a rich plastid genome resource with taxonomic representation spanning all of the major lineages of the red algae (Rhodophyta). In this proof-of-concept study, we leveraged this resource by developing and applying a phylogenomic strategy to seek candidate plastid markers suitable for phylogenetic community analysis. We ranked the core genes of 107 published plastid genomes based on various sequence-derived properties and their tree distance to plastid genome phylogenies. The resulting ranking revealed that the most widely used marker, rbcL, is not necessarily the optimal marker, while other promising markers might have been overlooked. We designed and tested PCR primers for several candidate marker genes, and successfully amplified one of them, rpoC1, in a taxonomically broad set of red algal specimens. We suggest that our general marker identification methodology and the rpoC1 primers will be useful to the phycological community for investigating the biodiversity and community ecology of the red algae.
Collapse
Affiliation(s)
- Shing Hei Zhan
- Department of Zoology & Biodiversity Research Centrethe University of British ColumbiaVancouverBCCanada
| | - Chun‐Chi Shih
- Department of Life Science & Center for Ecology and EnvironmentTunghai UniversityTaichungTaiwan
| | - Shao‐Lun Liu
- Department of Life Science & Center for Ecology and EnvironmentTunghai UniversityTaichungTaiwan
| |
Collapse
|
5
|
Kumagai Y, Miyabe Y, Takeda T, Adachi K, Yasui H, Kishimura H. In Silico Analysis of Relationship between Proteins from Plastid Genome of Red Alga Palmaria sp. (Japan) and Angiotensin I Converting Enzyme Inhibitory Peptides. Mar Drugs 2019; 17:E190. [PMID: 30934583 PMCID: PMC6470614 DOI: 10.3390/md17030190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/02/2022] Open
Abstract
Plastid proteins are one of the main components in red algae. In order to clarify the angiotensin I converting enzyme (ACE) inhibitory peptides from red alga Palmaria sp. (Japan), we determined the plastid genome sequence. The genome possesses 205 protein coding genes, which were classified as genetic systems, ribosomal proteins, photosystems, adenosine triphosphate (ATP) synthesis, metabolism, transport, or unknown. After comparing ACE inhibitory peptides between protein sequences and a database, photosystems (177 ACE inhibitory peptides) were found to be the major source of ACE inhibitory peptides (total of 751). Photosystems consist of phycobilisomes, photosystem I, photosystem II, cytochrome complex, and a redox system. Among them, photosystem I (53) and II (51) were the major source of ACE inhibitory peptides. We found that the amino acid sequence of apcE (14) in phycobilisomes, psaA (18) and psaB (13) in photosystem I, and psbB (11) and psbC (10) in photosystem II covered a majority of bioactive peptide sequences. These results are useful for evaluating the bioactive peptides from red algae.
Collapse
Affiliation(s)
- Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yoshikatsu Miyabe
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Tomoyuki Takeda
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Kohsuke Adachi
- Laboratory of Aquatic Product Utilization, Graduate School of Agriculture, Kochi University, Monobeotsu 200, Nankoku, Kochi 783-8502, Japan.
| | - Hajime Yasui
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|