4
|
Czechowska K, Lannigan J, Wang L, Arcidiacono J, Ashhurst TM, Barnard RM, Bauer S, Bispo C, Bonilla DL, Brinkman RR, Cabanski M, Chang HD, Chakrabarti L, Chojnowski G, Cotleur B, Degheidy H, Dela Cruz GV, Eck S, Elliott J, Errington R, Filby A, Gagnon D, Gardner R, Green C, Gregory M, Groves CJ, Hall C, Hammes F, Hedrick M, Hoffman R, Icha J, Ivaska J, Jenner DC, Jones D, Kerckhof FM, Kukat C, Lanham D, Leavesley S, Lee M, Lin-Gibson S, Litwin V, Liu Y, Molloy J, Moore JS, Müller S, Nedbal J, Niesner R, Nitta N, Ohlsson-Wilhelm B, Paul NE, Perfetto S, Portat Z, Props R, Radtke S, Rayanki R, Rieger A, Rogers S, Rubbens P, Salomon R, Schiemann M, Sharpe J, Sonder SU, Stewart JJ, Sun Y, Ulrich H, Van Isterdael G, Vitaliti A, van Vreden C, Weber M, Zimmermann J, Vacca G, Wallace P, Tárnok A. Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2018 Conference Workshops. Cytometry A 2020; 95:598-644. [PMID: 31207046 DOI: 10.1002/cyto.a.23777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Joanne Lannigan
- Flow Cytometry Core, University of Virginia, School of Medicine, 1300 Jefferson Park Ave., Charlottesville, Virginia
| | - Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | - Judith Arcidiacono
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Thomas M Ashhurst
- Sydney Cytometry Facility, Discipline of Pathology, and Ramaciotti Facility for Human Systems Biology; Charles Perkins Centre, The University of Sydney and Centenary Institute, New South Wales, Australia
| | - Ruth M Barnard
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Steven Bauer
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Cláudia Bispo
- UCSF Parnassus Flow Cytometry Core Facility, 513 Parnassus Ave, San Francisco, California
| | - Diana L Bonilla
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan R Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, Canada
| | - Maciej Cabanski
- Novartis Pharma AG, Fabrikstrasse 10-4.27.02, CH-4056, Basel, Switzerland
| | - Hyun-Dong Chang
- Schwiete-Laboratory Microbiota and Inflammation, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Lina Chakrabarti
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - Grace Chojnowski
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | | | - Heba Degheidy
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland
| | - Gelo V Dela Cruz
- Flow Cytometry Platform, Novo Nordisk Center for Stem Cell Biology - Danstem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen, Denmark
| | - Steven Eck
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - John Elliott
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | | | - Andy Filby
- Newcastle University, Flow Cytometry Core Facility, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | | | - Rui Gardner
- Memorial Sloan Kettering Cancer Center, Flow Cytometry Core, New York, New York
| | | | - Michael Gregory
- Division of Advanced Research Technologies, New York University Langone Health, New York, New York
| | - Christopher J Groves
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | | | - Frederik Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | | | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland
| | - Dominic C Jenner
- Defence Science and Technology Laboratory, Chemical Biological and Radiological Division, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Köln, Germany
| | | | | | - Michael Lee
- The University California San Francisco, 505 Parnassus Ave, San Francisco, California
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8312, Gaithersburg, Maryland
| | - Virginia Litwin
- Memorial Sloan Kettering Cancer Center, Flow Cytometry Core, New York, New York
| | | | - Jenny Molloy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Susann Müller
- Working Group Flow Cytometry, Department of Environmental Microbiology, Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany
| | - Jakub Nedbal
- Marylou Ingram ISAC Scholar, King's College London, UK
| | - Raluca Niesner
- Marylou Ingram ISAC Scholar, German Rheumatism Research Centre, Berlin, Germany
| | - Nao Nitta
- Department of Chemistry, The University of Tokyo
| | - Betsy Ohlsson-Wilhelm
- SciGro, North Central Office, Foster Plaza 5, Suite 300/PMB 20, 651 Holiday Drive, Pittsburgh, Pennsylvania
| | - Nicole E Paul
- LMA CyTOF Core, Dana-Faber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts
| | - Stephen Perfetto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health (NIH), 40 Convent Drive, Bethesda, Maryland
| | - Ziv Portat
- Weizmann Institute of Science, Life Sciences Core Facilities, Flow Cytometry Unit, Rehovot, 7610001, Israel
| | - Ruben Props
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefan Radtke
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, Washington
| | - Radhika Rayanki
- Research and Development, MedImmune, an AstraZeneca Company, One Medimmune Way, Gaithersburg, Maryland
| | - Aja Rieger
- Faculty of Medicine and Dentistry Flow Cytometry Facility, Department of Medical Microbiology & Immunology, University of Alberta, 6-020C Katz Group Centre for Pharmacy and Health Research, Canada
| | - Samson Rogers
- TTP plc, Melbourn Science Park, Melbourn, Hertfordshire SG8 6EE, UK
| | - Peter Rubbens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Robert Salomon
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, New South Wales, Australia
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - John Sharpe
- Cytonome/ST LLC, 9 Oak Park Drive, Bedford, Massachusetts
| | | | - Jennifer J Stewart
- Flow Contract Site Laboratory, LLC 18323, Bothell, Everett Highway, Suite 110, Bothell, Washington
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Caryn van Vreden
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Michael Weber
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Jacob Zimmermann
- Mucosal Immunology and Host-Microbial Mutualism laboratories, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Paul Wallace
- Roswell Park Comprehensive Cancer Center, New York
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
6
|
Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol 2019; 35:119-128. [PMID: 30638954 DOI: 10.1016/j.pt.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Inheritance of the single mitochondrial nucleoid (kinetoplast) in the trypanosome requires numerous proteins, many of whose precise roles are unclear. By considering kinetoplast DNA (kDNA) as a template for cleavage into two equal-size networks, we predicted sets of mutant kinetoplasts associated with defects in each of the five steps in the kinetoplast cycle. Comparison of these kinetoplasts with those obtained after gene knockdowns enabled assignment of proteins to five classes - kDNA synthesis, site of scission selection, scission, separation, and partitioning. These studies highlight how analysis of mutant kinetoplast phenotypes may be used to predict functional categories of proteins involved in the biogenesis of kinetoplasts.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | - Benjamin Hoffman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Justin Wiedeman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Catherine Sullenberger
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | - Amrita Sharma
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
7
|
Woodring J, Behera R, Sharma A, Wiedeman J, Patel G, Singh B, Guyett P, Amata E, Erath J, Roncal N, Penn E, Leed SE, Rodriguez A, Sciotti RJ, Mensa-Wilmot K, Pollastri MP. Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation. ACS Med Chem Lett 2018; 9:996-1001. [PMID: 30344906 PMCID: PMC6187419 DOI: 10.1021/acsmedchemlett.8b00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
Discovery of new chemotherapeutic lead agents can be accelerated by optimizing chemotypes proven to be effective in other diseases to act against parasites. One such medicinal chemistry campaign has focused on optimizing the anilinoquinazoline drug lapatinib (1) and the alkynyl thieno[3,2-d]pyrimidine hit GW837016X (NEU-391, 3) into leads for antitrypanosome drugs. We now report the structure-activity relationship studies of 3 and its analogs against Trypanosoma brucei, which causes human African trypanosomiasis (HAT). The series was also tested against Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum. In each case, potent antiparasitic hits with acceptable toxicity margins over mammalian HepG2 and NIH3T3 cell lines were identified. In a mouse model of HAT, 3 extended life of treated mice by 50%, compared to untreated controls. At the cellular level, 3 inhibited mitosis and cytokinesis in T. brucei. Thus, the alkynylthieno[3,2-d]pyrimidine chemotype is an advanced hit worthy of further optimization as a potential chemotherapeutic agent for HAT.
Collapse
Affiliation(s)
- Jennifer
L. Woodring
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ranjan Behera
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Amrita Sharma
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Justin Wiedeman
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Gautam Patel
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Baljinder Singh
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul Guyett
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emanuele Amata
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jessey Erath
- Department
of Microbiology, New York University School
of Medicine, 430 E. 29th Street New York, New York 10010, United
States
- Anti-Infectives
Screening Core, New York University School
of Medicine, New York, New York 10010, United
States
| | - Norma Roncal
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Erica Penn
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Susan E. Leed
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Ana Rodriguez
- Department
of Microbiology, New York University School
of Medicine, 430 E. 29th Street New York, New York 10010, United
States
- Anti-Infectives
Screening Core, New York University School
of Medicine, New York, New York 10010, United
States
| | - Richard J. Sciotti
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Kojo Mensa-Wilmot
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|