1
|
Myles E, D'Sa RA, Aveyard J. Antimicrobial nitric oxide releasing gelatin nanoparticles to combat drug resistant bacterial and fungal infections. NANOSCALE ADVANCES 2025; 7:3096-3113. [PMID: 40207089 PMCID: PMC11976662 DOI: 10.1039/d4na01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) represents a significant global health challenge, contributing to increased mortality rates and substantial economic burdens. The development of new antimicrobial agents with dual antimicrobial and antibiofilm capabilities is crucial to mitigate AMR. Nitric oxide (NO) is a broad-spectrum antimicrobial agent which has shown promise in treating infections due to its multiple antimicrobial mechanisms. However, the high reactivity of NO poses a challenge for effective delivery to infection sites. We investigated the antimicrobial and antibiofilm capabilities, and the shelf life, of NO-releasing gelatin nanoparticles (GNP/NO) against three common hospital-acquired pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans. The synthesised GNP/NO were found to be cytocompatible and exhibited significant antimicrobial and antibiofilm efficacies against the tested pathogens in both nutrient-rich and nutrient-poor conditions. Furthermore, we found that the antimicrobial capabilities of GNP/NO were maintained for up to 6 months post synthesis, against Staphylococcus aureus (2.4 log), Escherichia coli (1.2 log) and Candida albicans (3 log) under nutrient-poor conditions. Our study demonstrates the use of a novel broad-spectrum antimicrobial with a prolonged shelf life for the treatment of infections. These findings offer an effective alternative to traditional antibiotics which would contribute to mitigating the current global AMR threat resulting from antibiotic overuse.
Collapse
Affiliation(s)
- Erin Myles
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Jenny Aveyard
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| |
Collapse
|
2
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
3
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Shek R, Tillery L, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. PLoS Pathog 2024; 20:e1012412. [PMID: 39088549 PMCID: PMC11321563 DOI: 10.1371/journal.ppat.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024] Open
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 μM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 μM) while the reported CC50 was >300 μM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Florian Muller
- Sporos Bioventures, Houston, Texas, United States of America
| | - Samuel Kwain
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Kerrick C. Rees
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Brian N. Dominy
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Madison Bolejack
- UCB BioSciences, Bainbridge Island, Washington, United States of America
| | - Roger Shek
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Logan Tillery
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Isabelle Q. Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - James C. Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
4
|
Chan AHY, Ho TCS, Fathoni I, Hamid R, Hirsch AKH, Saliba KJ, Leeper FJ. Evaluation of ketoclomazone and its analogues as inhibitors of 1-deoxy-d-xylulose 5-phosphate synthases and other thiamine diphosphate (ThDP)-dependent enzymes. RSC Med Chem 2024; 15:1773-1781. [PMID: 38784473 PMCID: PMC11110791 DOI: 10.1039/d4md00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Imam Fathoni
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Rawia Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Kevin J Saliba
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
5
|
Coco LB, Freel Meyers CL. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1389620. [PMID: 39544285 PMCID: PMC11562961 DOI: 10.3389/fchbi.2024.1389620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP) for 1-deoxy-d-xylulose 5-phosphate synthase DXPS, a promising antimicrobial target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at a branchpoint in bacterial central metabolism and is believed to play key roles in pathogen adaptation during infection. How different bacterial pathogens harness DXPS activity to adapt and survive within host environments remains incompletely understood, and tools for probing DXPS function in different contexts of infection are lacking. Here, we have developed alkylAP-based ABP 1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active site upon photoactivation. ABP 1 displays low micromolar potency against DXPS and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors. The probe displays selectivity for DXPS over ThDP-dependent enzymes and is capable of detecting active DXPS in a complex proteome. These studies represent an important advance toward development of tools to probe DXPS function in different contexts of bacterial infection, and for drug discovery efforts on this target.
Collapse
Affiliation(s)
- Lauren B Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Chen EC, Shapiro RL, Pal A, Bartee D, DeLong K, Carter DM, Serrano-Diaz E, Rais R, Ensign LM, Freel Meyers CL. Investigating inhibitors of 1-deoxy-d-xylulose 5-phosphate synthase in a mouse model of UTI. Microbiol Spectr 2024; 12:e0389623. [PMID: 38376151 PMCID: PMC10986598 DOI: 10.1128/spectrum.03896-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.
Collapse
Affiliation(s)
- Eric C. Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Davell M. Carter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Serrano-Diaz
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura M. Ensign
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Islam S, Salekeen R, Ashraf A. Computational screening of natural MtbDXR inhibitors for novel anti-tuberculosis compound discovery. J Biomol Struct Dyn 2024; 42:3593-3603. [PMID: 37272886 DOI: 10.1080/07391102.2023.2218933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
DXR (1-deoxy-d-xylulose-5-phosphate reductoisomerase) is an essential enzyme in the Methylerythritol 4-phosphate (MEP) pathway, which is used by M. tuberculosis and a few other pathogens. This essential enzyme in the isoprenoid synthesis pathway has been previously reported as an important target for antibiotic drug design. However, till now, there is no record of any drug-like safe molecule to inhibit MtbDXR. Numerous plant species have been traditionally used for tuberculosis therapies. In this study, we selected six plant species with anti-tubercular properties. The chemoinformatic screening was performed on 352 phytochemicals from those plants against the MtbDXR protein. After molecular docking analysis, we filtered the top five compounds, CID: 5280443 (Apigenin), CID: 3220 (Emodin), CID: 5280863 (Kaempferol), CID: 5280445 (Luteolin), and CID: 6101979 (beta-Hydroxychalcone), based on binding affinity. Molecular dynamics simulations disclosed the stability of the compounds at the active site of the proteins. Finally, in silico ADME and toxicity evaluations confirmed the compounds to be effective and safe for oral administration. Thus, our findings identified three drug-like safe molecules- Apigenin, Kaempferol, and beta-Hydroxychalcone, that showed good stability in the protein's active site. The results of this computational approach may act as an initial instruction for future in vitro and in vivo testing to identify natural drug-like compounds to treat tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sabrina Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Ayesha Ashraf
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
8
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Abendroth J, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575558. [PMID: 38293107 PMCID: PMC10827119 DOI: 10.1101/2024.01.16.575558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.
Collapse
|
9
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
10
|
Chen EC, Freel Meyers CL. DXP Synthase Function in a Bacterial Metabolic Adaptation and Implications for Antibacterial Strategies. Antibiotics (Basel) 2023; 12:692. [PMID: 37107054 PMCID: PMC10135061 DOI: 10.3390/antibiotics12040692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Pathogenic bacteria possess a remarkable ability to adapt to fluctuating host environments and cause infection. Disturbing bacterial central metabolism through inhibition of 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) has the potential to hinder bacterial adaptation, representing a new antibacterial strategy. DXPS functions at a critical metabolic branchpoint to produce the metabolite DXP, a precursor to pyridoxal-5-phosphate (PLP), thiamin diphosphate (ThDP) and isoprenoids presumed essential for metabolic adaptation in nutrient-limited host environments. However, specific roles of DXPS in bacterial adaptations that rely on vitamins or isoprenoids have not been studied. Here we investigate DXPS function in an adaptation of uropathogenic E. coli (UPEC) to d-serine (d-Ser), a bacteriostatic host metabolite that is present at high concentrations in the urinary tract. UPEC adapt to d-Ser by producing a PLP-dependent deaminase, DsdA, that converts d-Ser to pyruvate, pointing to a role for DXPS-dependent PLP synthesis in this adaptation. Using a DXPS-selective probe, butyl acetylphosphonate (BAP), and leveraging the toxic effects of d-Ser, we reveal a link between DXPS activity and d-Ser catabolism. We find that UPEC are sensitized to d-Ser and produce sustained higher levels of DsdA to catabolize d-Ser in the presence of BAP. In addition, BAP activity in the presence of d-Ser is suppressed by β-alanine, the product of aspartate decarboxylase PanD targeted by d-Ser. This BAP-dependent sensitivity to d-Ser marks a metabolic vulnerability that can be exploited to design combination therapies. As a starting point, we show that combining inhibitors of DXPS and CoA biosynthesis displays synergy against UPEC grown in urine where there is increased dependence on the TCA cycle and gluconeogenesis from amino acids. Thus, this study provides the first evidence for a DXPS-dependent metabolic adaptation in a bacterial pathogen and demonstrates how this might be leveraged for development of antibacterial strategies against clinically relevant pathogens.
Collapse
Affiliation(s)
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Zhu D, Johannsen S, Masini T, Simonin C, Haupenthal J, Illarionov B, Andreas A, Awale M, Gierse RM, van der Laan T, van der Vlag R, Nasti R, Poizat M, Buhler E, Reiling N, Müller R, Fischer M, Reymond JL, Hirsch AKH. Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening. Chem Sci 2022; 13:10686-10698. [PMID: 36320685 PMCID: PMC9491098 DOI: 10.1039/d2sc02371g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action. We identified two drug-like antitubercular hits with submicromolar inhibition constants against the target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) with a new mode of action and promising activity against drug-resistant tuberculosis.![]()
Collapse
Affiliation(s)
- Di Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Céline Simonin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Mahendra Awale
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Tridia van der Laan
- Department of Mycobacteria, National Institute of Public Health and the Environment (RIVM), Diagnostics and Laboratory Surveillance (IDS) Infectious Diseases Research Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Rita Nasti
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Mael Poizat
- Symeres Kadijk 3 9747 AT Groningen The Netherlands
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité Bâtiment Condorcet 75205 Paris Cedex 13 France
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
12
|
Davis K, Greenstein T, Viau Colindres R, Aldridge BB. Leveraging laboratory and clinical studies to design effective antibiotic combination therapy. Curr Opin Microbiol 2021; 64:68-75. [PMID: 34628295 PMCID: PMC8671129 DOI: 10.1016/j.mib.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023]
Abstract
Interest in antibiotic combination therapy is increasing due to antimicrobial resistance and a slowing antibiotic pipeline. However, aside from specific indications, combination therapy in the clinic is often not administered systematically; instead, it is used at the physician's discretion as a bet-hedging mechanism to increase the chances of appropriately targeting a pathogen(s) with an unknown antibiotic resistance profile. Some recent clinical trials have been unable to demonstrate superior efficacy of combination therapy over monotherapy. Other trials have shown a benefit of combination therapy in defined circumstances consistent with recent studies indicating that factors including species, strain, resistance profile, and microenvironment affect drug combination efficacy and drug interactions. In this review, we discuss how a careful study design that takes these factors into account, along with the different drug interaction and potency metrics for assessing combination performance, may provide the necessary insight to understand the best clinical use-cases for combination therapy.
Collapse
Affiliation(s)
- Kathleen Davis
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States
| | - Talia Greenstein
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| | - Roberto Viau Colindres
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Bree B Aldridge
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| |
Collapse
|
13
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Ortiz-Severín J, Stuardo CJ, Jiménez NE, Palma R, Cortés MP, Maldonado J, Maass A, Cambiazo V. Nutrient Scarcity in a New Defined Medium Reveals Metabolic Resistance to Antibiotics in the Fish Pathogen Piscirickettsia salmonis. Front Microbiol 2021; 12:734239. [PMID: 34707589 PMCID: PMC8542936 DOI: 10.3389/fmicb.2021.734239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Extensive use of antibiotics has been the primary treatment for the Salmonid Rickettsial Septicemia, a salmonid disease caused by the bacterium Piscirickettsia salmonis. Occurrence of antibiotic resistance has been explored in various P. salmonis isolates using different assays; however, P. salmonis is a nutritionally demanding intracellular facultative pathogen; thus, assessing its antibiotic susceptibility with standardized and validated protocols is essential. In this work, we studied the pathogen response to antibiotics using a genomic, a transcriptomic, and a phenotypic approach. A new defined medium (CMMAB) was developed based on a metabolic model of P. salmonis. CMMAB was formulated to increase bacterial growth in nutrient-limited conditions and to be suitable for performing antibiotic susceptibility tests. Antibiotic resistance was evaluated based on a comprehensive search of antibiotic resistance genes (ARGs) from P. salmonis genomes. Minimum inhibitory concentration assays were conducted to test the pathogen susceptibility to antibiotics from drug categories with predicted ARGs. In all tested P. salmonis strains, resistance to erythromycin, ampicillin, penicillin G, streptomycin, spectinomycin, polymyxin B, ceftazidime, and trimethoprim was medium-dependent, showing resistance to higher antibiotic concentrations in the CMMAB medium. The mechanism for antibiotic resistance to ampicillin in the defined medium was further explored and was proven to be associated to a decrease in the bacterial central metabolism, including the TCA cycle, the pentose-phosphate pathway, energy production, and nucleotide metabolism, and it was not associated with decreased growth rate of the bacterium or with the expression of any predicted ARG. Our results suggest that nutrient scarcity plays a role in the bacterial antibiotic resistance, protecting against the detrimental effects of antibiotics, and thus, we propose that P. salmonis exhibits a metabolic resistance to ampicillin when growing in a nutrient-limited medium.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile
| | - Camila J Stuardo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Natalia E Jiménez
- Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Matemático (AFB170001), Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and UMI-CNRS 2807, Santiago, Chile
| | - Ricardo Palma
- Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Matemático (AFB170001), Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and UMI-CNRS 2807, Santiago, Chile
| | - María P Cortés
- Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Matemático (AFB170001), Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and UMI-CNRS 2807, Santiago, Chile
| | - Jonathan Maldonado
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Matemático (AFB170001), Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and UMI-CNRS 2807, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (Fondap 15200002), Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Copper intoxication in group B Streptococcus triggers transcriptional activation of the cop operon that contributes to enhanced virulence during acute infection. J Bacteriol 2021; 203:e0031521. [PMID: 34251869 DOI: 10.1128/jb.00315-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can utilize Copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS), and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of GBS mutants deficient in either the copA Cu exporter, or the copY repressor, were severely compromised in Cu-stress conditions. GBS survival of Cu stress reflected a mechanism of CopY de-repression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA-sequencing revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication, via regulation by the Cu-sensing transcriptional repressor, copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacteria's ability to survive in different environments. Importance Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show how the opportunistic pathogen group B Streptococcus (GBS) achieves homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.
Collapse
|
16
|
Breukers J, Horta S, Struyfs C, Spasic D, Feys HB, Geukens N, Thevissen K, Cammue BPA, Vanhoorelbeke K, Lammertyn J. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2316-2326. [PMID: 33411502 DOI: 10.1021/acsami.0c19657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retrieving single cells of interest from an array of microwells for further off-chip analysis is crucial in numerous biological applications. To this end, several single cell manipulation strategies have been developed, including optical tweezers (OT). OT represent a unique approach for contactless cell retrieval, but their performance is often suboptimal due to nonspecific cell adhesion to the microwell surface. In this study, we focused on improving the surface chemistry of microwell arrays to ensure efficient single cell manipulation using OT. For this purpose, the surface of an off-stoichiometry thiol-ene-epoxy (OSTE+) microwell array was grafted with polyethylene glycol (PEG) molecules with different molecular weights: PEG 360, PEG 500, PEG 2000, and a PEG Mix (an equimolar ratio of PEG 500 and PEG 2000). Contact angle measurements showed that the PEG grafting process resulted in an increased surface energy, which was stable for at least 16 weeks. Next, cell adhesion of two cell types, baker's yeast (Saccharomyces cerevisiae) and human B cells, to surfaces treated with different PEGs was evaluated by registering the presence of cellular motion inside microwells and the efficiency of optical lifting of cells that display motion. Optimal results were obtained for surfaces grafted with PEG 2000 and PEG Mix, reaching an average fraction of cells with motion of over 93% and an average lifting efficiency of over 96% for both cell types. Upon the integration of this microwell array with a polydimethylsiloxane (PDMS) microfluidic channel, PEG Mix resulted in proper washing of non-seeded cells. We further demonstrated the wide applicability of the platform by manipulating non-responding yeast cells to antifungal treatment and B cells expressing surface IgG antibodies. The combination of the optimized microwell surface with continuous microfluidics results in a powerful and versatile platform, allowing high-throughput single cell studies and retrieval of target cells for off-chip analysis.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders Ottergemsesteenweg 413, Gent 9000, Belgium
- Diagnostic Sciences, Ghent University, C. Heymanslaan 10, Gent 9000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| |
Collapse
|
17
|
Wang J, Zhou Y, Wang X, Duan L, Duan J, Li W, Zhang A. Synthesis and Evaluation of Halogenated 5-(2-Hydroxyphenyl)pyrazoles as Pseudilin Analogues Targeting the Enzyme IspD in the Methylerythritol Phosphate Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3071-3078. [PMID: 32078770 DOI: 10.1021/acs.jafc.9b08057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports halogenated 5-(2-hydroxyphenyl)pyrazoles as pseudilin analogues with the potential to target the enzyme IspD in the methylerythritol phosphate (MEP) pathway. Such analogues were designed using the bioisosteric replacement of the pseudilin core structure and synthesized via an efficient three-step route. With AtIspD-based screening and pre- and post-emergence herbicidal tests, these compounds were demonstrated to have considerable activities against AtIspD, with IC50 up to 3.27 μM, and against model plants rape and barnyard grass, with moderate to excellent activities. At a rate of 150 g/ha in the greenhouse test, three compounds exhibited higher or comparable herbicidal activities than pseudilin. Molecular docking of representative compounds into the allosteric site of AtIspD revealed a binding mode similar to that of pseudilin. The established bioisosterism and synthesis method in this work may serve as an important tool for the development of new herbicides and antimicrobials targeting IspD in the MEP pathway.
Collapse
Affiliation(s)
- Jili Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yaqing Zhou
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Xiuwen Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lixia Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiang Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weiguo Li
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Aidong Zhang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
18
|
Bartee D, Sanders S, Phillips PD, Harrison MJ, Koppisch AT, Freel Meyers CL. Enamide Prodrugs of Acetyl Phosphonate Deoxy-d-xylulose-5-phosphate Synthase Inhibitors as Potent Antibacterial Agents. ACS Infect Dis 2019; 5:406-417. [PMID: 30614674 DOI: 10.1021/acsinfecdis.8b00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Sara Sanders
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Paul D. Phillips
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Mackenzie J. Harrison
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Andrew T. Koppisch
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
19
|
Bartee D, Freel Meyers CL. Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism. Acc Chem Res 2018; 51:2546-2555. [PMID: 30203647 DOI: 10.1021/acs.accounts.8b00321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the cornerstone of modern healthcare. The 20th century discovery of sulfonamides and β-lactam antibiotics altered human society immensely. Simple bacterial infections were no longer a leading cause of morbidity and mortality, and antibiotic prophylaxis greatly reduced the risk of infection from surgery. The current healthcare system requires effective antibiotics to function. However, antibiotic-resistant infections are becoming increasingly prevalent, threatening the emergence of a postantibiotic era. To prevent this public health crisis, antibiotics with novel modes of action are needed. Currently available antibiotics target just a few cellular processes to exert their activity: DNA, RNA, protein, and cell wall biosynthesis. Bacterial central metabolism is underexploited, offering a wealth of potential new targets that can be pursued toward expanding the armamentarium against microbial infections. Discovered in 1997 as the first enzyme in the methylerythritol phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate (DXP) synthase is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylative condensation of pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to form DXP. This five-carbon metabolite feeds into three separate essential pathways for bacterial central metabolism: ThDP synthesis, pyridoxal phosphate (PLP) synthesis, and the MEP pathway for isoprenoid synthesis. While it has long been identified as a target for the development of antimicrobial agents, limited progress has been made toward developing selective inhibitors of the enzyme. This Account highlights advances from our lab over the past decade to understand this important and unique enzyme. Unlike all other known ThDP-dependent enzymes, DXP synthase uses a random-sequential mechanism that requires the formation of a ternary complex prior to decarboxylation of the lactyl-ThDP intermediate. Its large active site accommodates a variety of acceptor substrates, lending itself to a number of alternative activities, such as the production of α-hydroxy ketones, hydroxamates, amides, acetolactate, and peracetate. Knowledge gained from mechanistic and substrate-specificity studies has guided the development of selective inhibitors with antibacterial activity and provides a biochemical foundation toward understanding DXP synthase function in bacterial cells. Although it is a promising drug target, the centrality of DXP synthase in bacterial metabolism imparts specific challenges to assessing antibacterial activity of DXP synthase inhibitors, and the susceptibility of most bacteria to current DXP synthase inhibitors is remarkably culture-medium-dependent. Despite these challenges, the study of DXP synthase is poised to reveal the role of DXP synthase in bacterial metabolic adaptability during infection, ultimately providing a more complete picture of how inhibiting this crucial enzyme can be used to develop novel antibiotics.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|