1
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2025; 228:32-43. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
2
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
3
|
Beck A, Dietenberger H, Kunz SN, Mellert K, Möller P. Emergence of SARS-CoV-2 spike protein at the vaccination site. Immun Inflamm Dis 2023; 11:e827. [PMID: 36988249 PMCID: PMC10052447 DOI: 10.1002/iid3.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The anti-coronavirus disease 2019 (COVID-19) vaccines are of paramount importance in the fight against the COVID-19 pandemic. Both viral vector- and nucleic acid-based vaccines are known to effectively induce protection against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by generating high antibody titers and effective T-cell responses to the spike protein they encode. Although these vaccines are being applied worldwide and have been extensively investigated, the immunomorphological events at the vaccination site with respect to SARS-CoV-2 spike protein expression have not yet been described. METHODS We had the opportunity to examine the deltoid muscles of three men who died shortly after vaccination for unrelated reasons. We examined the vaccination sites histologically and immunohistochemically with various antibodies. Furthermore we incubated two different cell lines with one vaccine and examined the expression of the spike protein. RESULTS The vaccination sites show a dense lymphohistiocytic interstitial infiltrate which surrounds the small vessels and extends into the perimysium. The spike protein is expressed by histiocytic cells with a dendritic shape that are CD68-positive and CD207-negative, fibrocytes, and very rare S100-positive cells. Interestingly, the skeletal muscle, being constitutively human leukocyte antigen (HLA)-A,B,C-negative, is induced at different levels in each specimen. In a cell culture experiment, we confirmed the ability of fibroblasts and interdigitating dendritic sarcoma cells to express spike protein in vitro after incubation with the Comirnaty vaccine. CONCLUSIONS Histiocytic cells and fibrocytes are the heralds of spike protein synthesis at the vaccination site. The underlying cause of this apparent cell specifity is unknown. This needs to be investigated in future experiments, for example in an animal model.
Collapse
Affiliation(s)
- Annika Beck
- Institute of PathologyUniversity Hospital of UlmUlmGermany
| | | | | | - Kevin Mellert
- Institute of PathologyUniversity Hospital of UlmUlmGermany
| | - Peter Möller
- Institute of PathologyUniversity Hospital of UlmUlmGermany
| |
Collapse
|
4
|
Activation of Early Proinflammatory Responses by TBEV NS1 Varies between the Strains of Various Subtypes. Int J Mol Sci 2023; 24:ijms24021011. [PMID: 36674524 PMCID: PMC9863113 DOI: 10.3390/ijms24021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an emerging zoonosis that may cause long-term neurological sequelae or even death. Thus, there is a growing interest in understanding the factors of TBE pathogenesis. Viral genetic determinants may greatly affect the severity and consequences of TBE. In this study, nonstructural protein 1 (NS1) of the tick-borne encephalitis virus (TBEV) was tested as such a determinant. NS1s of three strains with similar neuroinvasiveness belonging to the European, Siberian and Far-Eastern subtypes of TBEV were studied. Transfection of mouse cells with plasmids encoding NS1 of the three TBEV subtypes led to different levels of NS1 protein accumulation in and secretion from the cells. NS1s of TBEV were able to trigger cytokine production either in isolated mouse splenocytes or in mice after delivery of NS1 encoding plasmids. The profile and dynamics of TNF-α, IL-6, IL-10 and IFN-γ differed between the strains. These results demonstrated the involvement of TBEV NS1 in triggering an immune response and indicated the diversity of NS1 as one of the genetic factors of TBEV pathogenicity.
Collapse
|
5
|
Melo ARDS, de Macêdo LS, Invenção MDCV, de Moura IA, da Gama MATM, de Melo CML, Silva AJD, Batista MVDA, de Freitas AC. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes (Basel) 2022; 13:genes13122287. [PMID: 36553554 PMCID: PMC9777941 DOI: 10.3390/genes13122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gene immunization comprises mRNA and DNA vaccines, which stand out due to their simple design, maintenance, and high efficacy. Several studies indicate promising results in preclinical and clinical trials regarding immunization against ebola, human immunodeficiency virus (HIV), influenza, and human papillomavirus (HPV). The efficiency of nucleic acid vaccines has been highlighted in the fight against COVID-19 with unprecedented approval of their use in humans. However, their low intrinsic immunogenicity points to the need to use strategies capable of overcoming this characteristic and increasing the efficiency of vaccine campaigns. These strategies include the improvement of the epitopes' presentation to the system via MHC, the evaluation of immunodominant epitopes with high coverage against emerging viral subtypes, the use of adjuvants that enhance immunogenicity, and the increase in the efficiency of vaccine transfection. In this review, we provide updates regarding some characteristics, construction, and improvement of such vaccines, especially about the production of synthetic multi-epitope genes, widely employed in the current gene-based vaccines.
Collapse
Affiliation(s)
- Alanne Rayssa da Silva Melo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marco Antonio Turiah Machado da Gama
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Imunophatology Laboratory, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-8199-6067-671
| |
Collapse
|
6
|
Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112273. [PMID: 36304724 PMCID: PMC9595111 DOI: 10.1002/adfm.202112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Weibo Cai
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
7
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
9
|
Correction: DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response. PLoS One 2021; 16:e0247239. [PMID: 33571288 PMCID: PMC7877747 DOI: 10.1371/journal.pone.0247239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Bazhan SI, Antonets DV, Starostina EV, Ilyicheva TN, Kaplina ON, Marchenko VY, Volkova OY, Bakulina AY, Karpenko LI. In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J Biomol Struct Dyn 2020; 40:3196-3212. [PMID: 33222632 DOI: 10.1080/07391102.2020.1845978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polyepitope strategy is promising approach for successfully creating a broadly protective flu vaccine, which targets T-lymphocytes (both CD4+ and CD8+) to recognise the most conserved epitopes of viral proteins. In this study, we employed a computer-aided approach to develop several artificial antigens potentially capable of evoking immune responses to different virus subtypes. These antigens included conservative T-cell epitopes of different influenza A virus proteins. To design epitope-based antigens we used experimentally verified information regarding influenza virus T-cell epitopes from the Immune Epitope Database (IEDB) (http://www.iedb.org). We constructed two "human" and two "murine" variants of polyepitope antigens. Amino acid sequences of target polyepitope antigens were designed using our original TEpredict/PolyCTLDesigner software. Immunogenic and protective features of DNA constructs encoding "murine" target T-cell immunogens were studied in BALB/c mice. We showed that mice groups immunised with a combination of computer-generated "murine" DNA immunogens had a 37.5% survival rate after receiving a lethal dose of either A/California/4/2009 (H1N1) virus or A/Aichi/2/68 (H3N2) virus, while immunisation with live flu H1N1 and H3N2 vaccine strains provided protection against homologous viruses and failed to protect against heterologous viruses. These results demonstrate that mechanisms of cross-protective immunity may be associated with the stimulation of specific T-cell responses. This study demonstrates that our computer-aided approach may be successfully used for rational designing artificial polyepitope antigens capable of inducing virus-specific T-lymphocyte responses and providing partial protection against two different influenza virus subtypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sergei I Bazhan
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Denis V Antonets
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Ekaterina V Starostina
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Tatyana N Ilyicheva
- Department of zoonotic infections and Influenza, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Olga N Kaplina
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Vasiliy Yu Marchenko
- Department of zoonotic infections and Influenza, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Olga Yu Volkova
- Immunogenetics laboratory, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya Yu Bakulina
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia.,Laboratory of structural bioinformatics and molecular modeling, Novosibirsk State University, Novosibirsk, Russia
| | - Larisa I Karpenko
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
11
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
12
|
Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, Kostyusheva A, Artyuhov A, Dashinimaev E, Avdoshina D, Kondrashova A, Valuev-Elliston V, Latyshev O, Eliseeva O, Petkov S, Abakumov M, Hippe L, Kholodnyuk I, Starodubova E, Gorodnicheva T, Ivanov A, Gordeychuk I, Isaguliants M. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel) 2020; 8:318. [PMID: 32570805 PMCID: PMC7350266 DOI: 10.3390/vaccines8020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Alisa Kurlanda
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Ilze Fridrihsone
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Anastasia Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 127994, Russia
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Vladimir Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maxim Abakumov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 127994, Russia
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia
| | - Laura Hippe
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Irina Kholodnyuk
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | | | - Alexander Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Maria Isaguliants
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
13
|
Bayurova E, Jansons J, Skrastina D, Smirnova O, Mezale D, Kostyusheva A, Kostyushev D, Petkov S, Podschwadt P, Valuev-Elliston V, Sasinovich S, Korolev S, Warholm P, Latanova A, Starodubova E, Tukhvatulin A, Latyshev O, Selimov R, Metalnikov P, Komarov A, Ivanova O, Gorodnicheva T, Kochetkov S, Gottikh M, Strumfa I, Ivanov A, Gordeychuk I, Isaguliants M. HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6016278. [PMID: 31885806 PMCID: PMC6915010 DOI: 10.1155/2019/6016278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of "non-AIDS-defining" malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Juris Jansons
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dzeina Mezale
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Anastasia Kostyusheva
- National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow, Russia
| | - Dmitry Kostyushev
- National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sviataslau Sasinovich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Korolev
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Per Warholm
- Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Anastasia Latanova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta Starodubova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amir Tukhvatulin
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Oleg Latyshev
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Renat Selimov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Pavel Metalnikov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Alexander Komarov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Olga Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Gottikh
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Fan W, Wan Y, Li Q. Interleukin-21 enhances the antibody avidity elicited by DNA prime and MVA boost vaccine. Cytokine 2019; 125:154814. [PMID: 31450102 DOI: 10.1016/j.cyto.2019.154814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
Enhancement of the magnitude or affinity of protective antibodies (Abs) induced by vaccine adjuvant is highly desirable to prevent challenging pathogens such as HIV-1. IL-21 plays a crucial role in germinal center reactions during humoral immune responses. However, the effect of IL-21 as a vaccine adjuvant on the quantity and quality of antigen-specific Abs elicited by DNA prime and MVA boost vaccine, a commonly used vaccine strategy, remains unknown. To close this knowledge gap, female adult B6N mice were primed with DNA vaccine twice (days 0, 14, 100 µg, I.M.) and boosted with MVA vaccine (day 28, 2 × 107 pfu, I.M.) with or without an IL-21 DNA adjuvant (days 3, 17, 31, 40 µg, I.M.), in which HIV-1 gag was expressed as a model antigen. With the addition of an IL-21 adjuvant, we found significantly increased avidity of antigen-specific Abs at multiple time points in a longitudinal follow up. Collectively, our results suggest that an IL-21 immune adjuvant can significantly increase Ab quality induced by heterologous DNA-MVA prime-boost vaccine strategy.
Collapse
Affiliation(s)
- Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA
| | - Yanmin Wan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA.
| |
Collapse
|
15
|
In silico Designed Ebola Virus T-Cell Multi-Epitope DNA Vaccine Constructions Are Immunogenic in Mice. Vaccines (Basel) 2019; 7:vaccines7020034. [PMID: 30934980 PMCID: PMC6630745 DOI: 10.3390/vaccines7020034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The lack of effective vaccines against Ebola virus initiates a search for new approaches to overcoming this problem. The aim of the study was to design artificial polyepitope T-cell immunogens⁻⁻candidate DNA vaccines against Ebola virus and to evaluate their capacity to induce a specific immune response in a laboratory animal model. Method: Design of two artificial polyepitope T-cell immunogens, one of which (EV.CTL) includes cytotoxic and the other (EV.Th)⁻⁻T-helper epitopes of Ebola virus proteins was carried out using original TEpredict/PolyCTLDesigner software. Synthesized genes were cloned in pcDNA3.1 plasmid vector. Target gene expression was estimated by synthesis of specific mRNAs and proteins in cells transfected with recombinant plasmids. Immunogenicity of obtained DNA vaccine constructs was evaluated according to their capacity to induce T-cell response in BALB/c mice using IFNγ ELISpot and ICS. Results: We show that recombinant plasmids pEV.CTL and pEV.Th encoding artificial antigens provide synthesis of corresponding mRNAs and proteins in transfected cells, as well as induce specific responses both to CD4+ and CD8+ T-lymphocytes in immunized animals. Conclusions: The obtained recombinant plasmids can be regarded as promising DNA vaccine candidates in future studies of their capacity to induce cytotoxic and protective responses against Ebola virus.
Collapse
|
16
|
Jansons J, Sominskaya I, Petrakova N, Starodubova ES, Smirnova OA, Alekseeva E, Bruvere R, Eliseeva O, Skrastina D, Kashuba E, Mihailova M, Kochetkov SN, Ivanov AV, Isaguliants MG. The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells 2019; 8:208. [PMID: 30823485 PMCID: PMC6468923 DOI: 10.3390/cells8030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Natalia Petrakova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Elizaveta S Starodubova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ekaterina Alekseeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Ruta Bruvere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Olesja Eliseeva
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institite of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine.
| | - Marija Mihailova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Maria G Isaguliants
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- MP Chumakov Center for Research and Development of Immune and Biological Preparations of RAS, 108819 Moscow, Russia.
| |
Collapse
|