1
|
Liang D, Wang D, Zheng X, Xiang H, Liu S, Yu C, Tian J, Ma J, Niu Y. Aerobic plus resistance exercise attenuates skeletal muscle atrophy induced by dexamethasone through the HDAC4/FoxO3a pathway. Cell Signal 2025; 127:111581. [PMID: 39732306 DOI: 10.1016/j.cellsig.2024.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined. To elucidate the involvement of Histone deacetylase 4 (HDAC4) in the protective effects of exercise against muscle loss, a combination of RT-PCR, Western blotting, immunoprecipitation, and immunofluorescence staining techniques were employed. The upregulation of HDAC4 was observed following Dex-induced muscle atrophy in vitro and in vivo. Inhibition of HDAC4 in C2C12 cells resulted in an increase in myotube diameter and fusion index, along with a decrease in the expression of Atrogin-1 and MuRF1. Treatment with Tasquinimod, an HDAC4 inhibitor, effectively prevented muscle wasting and dysfunction in mice induced by Dex. After a 6-week exercise intervention, the Dex-Exercise group exhibited significant improvements in body fat level, hyperinsulinemia, muscle mass and function in comparison to the Dex-Sedentary group. Mechanistically, we discovered that HDAC4 bound to and deacetylated Forkhead box protein O 3a (FoxO3a) within the nucleus, leading to decreased phosphorylation of FoxO3a at Ser 253. This interaction subsequently facilitated the expression of downstream atrogene Atrogin-1 and MuRF1, resulting in muscle atrophy. Conversely, exercise was found to potentially mitigate muscle atrophy by inhibiting the HDAC4/FoxO3a pathway. These findings suggest that HDAC4 may be a potential therapeutic target for exercise to combat Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Dehuan Liang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Danni Wang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xinyue Zheng
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Heng Xiang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Chunxia Yu
- School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jiatong Tian
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin 300211, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Peters TL, Qiu W, Yang H, Huang W, Hu Y, Zou Z, Ye W. Associations of cachexia and frailty with amyotrophic lateral sclerosis. Sci Rep 2025; 15:4437. [PMID: 39910275 PMCID: PMC11799500 DOI: 10.1038/s41598-025-89080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
In the present study, we investigated the associations of cachexia (loss of muscle, weight and fat) and frailty (loss of weight and muscle) status with the risk of developing amyotrophic lateral sclerosis, because these specific terms are rarely used in this research area. In this prospective study, we extracted cachexia and frailty status from the UK Biobank cohort to study the associations of these conditions (as determined via international classification of disease-10 codes) with amyotrophic lateral sclerosis. There was a greater risk of developing amyotrophic lateral sclerosis among individuals with cachexia and frailty status after adjusting for age, sex, income (pounds), body mass index, UK Biobank centers and smoking status. Among individuals with frailty status: a grip strength of < 21 kg, a slow walking speed, and exhaustion (more than half the days or nearly every day) increase the risk of developing amyotrophic lateral sclerosis. We believe that studying cachexia and frailty status can be used to help define and treat amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Tracy L Peters
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Institute of Population Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yizhen Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Fujian Medical University, Fuzhou, 350000, Fujian, China
| | - Zhangyu Zou
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Institute of Population Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
3
|
Kawata S, Seki S, Nishiura A, Kitaoka Y, Iwamori K, Fukada SI, Kogo M, Tanaka S. Preservation of masseter muscle until the end stage in the SOD1G93A mouse model for ALS. Sci Rep 2024; 14:24279. [PMID: 39414899 PMCID: PMC11484890 DOI: 10.1038/s41598-024-74669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) progressively impairs motor neurons, leading to muscle weakness and loss of voluntary muscle control. This study compared the effects of SOD1 mutation on masticatory and limb muscles from disease onset to death in ALS model mice. Notably, limb muscles begin to atrophy soon after ALS-like phenotype appear, whereas masticatory muscles maintain their volume and function in later stages. Our analysis showed that, unlike limb muscles, masticatory muscles retain their normal structure and cell makeup throughout most of the disease course. We found an increase in the number of muscle satellite cells (SCs), which are essential for muscle repair, in masticatory muscles. In addition, we observed no reduction in the number of muscle nuclei and no muscle fibre-type switching in masticatory muscles. This indicates that masticatory muscles have a higher resistance to ALS-related damage than limb muscles, likely because of differences in cell composition and repair mechanisms. Understanding why masticatory muscles are less affected by ALS could lead to the development of new treatments. This study highlights the importance of studying different muscle groups in ALS to clarify disease aetiology and mechanisms.
Collapse
Affiliation(s)
- Sou Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kitaoka
- University California, Los Angeles, School of Dentistry, Section of Biosystems and Function, Laboratory of Neuropharmacology, 714 Tiverton Los Angeles, CA 90095, United States
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Towle I, Loch C, Oxenham M, Krueger KL, Samir Salem A, de Pinillos MM, Modesto-Mata M, Hlusko LJ. Technical note: Micro-computed tomography calibration using dental tissue for bone mineral research. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24952. [PMID: 38775381 DOI: 10.1002/ajpa.24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Computed tomography (CT) and microcomputed tomography (μCT) require calibration against density phantoms scanned with specimens or during routine internal calibration for assessment of mineral concentration (MC) and density. In clinical studies involving bone, alternative calibration methods using bodily tissues and fluids ("phantomless" calibration) have been suggested. However, such tissues are seldom available in archeological and osteological research. This study investigates the potential of dental tissue as internal reference for calibration of μCT scans, facilitating the analysis of bone MC. We analyzed 70 molars from 24 extant primate species, including eight human teeth, each scanned with density phantoms for calibration. Our findings indicate that sampling specific regions of molars (lateral aspects of the mesial cusps) yields low variation in enamel and dentine MC values, averaging 1.27 g/cm3 (±0.03) for dentine and 2.25 g/cm3 (±0.03) for enamel. No significant differences were observed across molar types or among scanning procedures, including scanner model, resolution, and filters. An ad hoc test on 12 mandibles revealed low variance in MC between the conventional phantom and dental tissue calibration methods; all 36 measurements (low, medium, and high MC for each mandible) were within 0.05 g/cm3 of each other -81% were within 0.03 g/cm3 and 94% within 0.04 g/cm3. Based on these results, we propose a new "phantomless" calibration technique using these mean enamel and dentine MC values. The presented phantomless calibration method could aid in the assessment of bone pathology and enhance the scope of studies investigating bone structure and physical property variations in archeological, osteological, and laboratory-based research.
Collapse
Affiliation(s)
- Ian Towle
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Marc Oxenham
- School of Archaeology and Anthropology, Australian National University, Canberra, Australia
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK
| | - Kristin L Krueger
- Department of Anthropology, Loyola University Chicago, Chicago, IL, USA
| | - Amira Samir Salem
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Marina Martínez de Pinillos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Laboratorio de Evolución Humana (LEH), Universidad de Burgos, Burgos, Spain
| | - Mario Modesto-Mata
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Universidad Internacional de La Rioja (UNIR), Logroño La Rioja, Spain
| | - Leslea J Hlusko
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| |
Collapse
|
5
|
Byrne E, Johnston RD, Kilroy D, Bhattacharjee S. An arch worth revisiting: a study on the feline humeral supracondylar foramen and its evolutionary significance. Biol Open 2024; 13:bio060420. [PMID: 38818877 PMCID: PMC11225584 DOI: 10.1242/bio.060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
The supracondylar foramen with a (seemingly) osseous peripheral arch noticed on the medio-distal feline humeri had remained disputed among anatomists. Some scholars have argued in favor of homology between this foramen and the supracondyloid foramen formed in presence of the ligament of Struthers in humans. Other theories include its presence as a retinaculum holding the median nerve and brachial artery to their anatomical position in a flexed elbow. Unfortunately, these theories lack investigative rigor. The emergence of non-invasive imaging modalities, such as micro-computed tomography, has enabled researchers to inspect the internal anatomy of bones without dismantling them. Thus, a micro-computed tomographic investigation was conducted on three feline (Felis catus) humeri specimens while the internal anatomy of the supracondylar foramina was examined. Unlike the humerus, the thin peripheral arch of the feline supracondylar foramen failed to elicit any osseous trabeculae or foci of calcification. While adhering to the humeral periosteum at its origin, the non-osseous arch, typical of a muscular tendon, attaches into the bony saddle related to the medial humeral epicondyle suggestive of a tendon or aponeurotic extension of a (vestigial) brachial muscle, with the coracobrachialis longus emerging to be the most likely candidate.
Collapse
Affiliation(s)
- Eimear Byrne
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Robert D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David Kilroy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
6
|
Xiang J, Qin L, Zhong J, Xia N, Liang Y. GLP-1RA Liraglutide and Semaglutide Improves Obesity-Induced Muscle Atrophy via SIRT1 Pathway. Diabetes Metab Syndr Obes 2023; 16:2433-2446. [PMID: 37602204 PMCID: PMC10439806 DOI: 10.2147/dmso.s425642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023] Open
Abstract
Background Obesity is related to the loss of skeletal muscle mass and function (sarcopenia). The co-existence of obesity and sarcopenia is called sarcopenic obesity (SO). Glucagon like peptide-1 receptor agonists (GLP-1RA) are widely used in the treatment of diabetes and obesity. However, the protective effects of GLP-1RA on skeletal muscle in obesity and SO are not clear. This study investigated the effects of GLP-1RA liraglutide and semaglutide on obesity-induced muscle atrophy and explored the underlying mechanisms. Methods Thirty-six male C57BL/6J mice were randomly divided into two groups and fed a regular diet and a high-fat diet for 18 weeks, respectively. After establishing an obesity model, mice were further divided into six groups: control group, liraglutide (LIRA) group, semaglutide (SEMA) group, high-fat diet (HFD) group, HFD + LIRA group, HFD + SEMA group, and subcutaneous injection for 4 weeks. The body weight, muscle mass, muscle strength, glycolipid metabolism, muscle atrophy markers, myogenic differentiation markers, GLUT4 and SIRT1 were analyzed. C2C12 myotube cells treated with palmitic acid (PA) were divided into four groups: control group, PA group, PA + LIRA group, PA + SEMA group. The changes in glucose uptake, myotube diameter, lipid droplet infiltration, markers of muscle atrophy, myogenic differentiation markers, GLUT4 and SIRT1 were analyzed, and the changes in related indicators were observed after the addition of SIRT1 inhibitor EX527. Results Liraglutide and semaglutide reduced HFD-induced body weight gain, excessive lipid accumulation and improved muscle atrophy. Liraglutide and semaglutide eliminated the increase of muscle atrophy markers in skeletal muscle and C2C12 myotubes. Liraglutide and semaglutide restored impaired glucose tolerance and insulin resistance. However, these beneficial effects were attenuated by inhibiting SIRT1 expression. Conclusion Liraglutide and semaglutide protects skeletal muscle against obesity-induced muscle atrophy via the SIRT1 pathway.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Liyan Qin
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jinling Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ning Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
7
|
Kishi K, Goto M, Tsuru Y, Hori M. Noninvasive monitoring of muscle atrophy and bone metabolic disorders using dual-energy X-ray absorptiometry in diabetic mice. Exp Anim 2023; 72:68-76. [PMID: 36104204 PMCID: PMC9978124 DOI: 10.1538/expanim.22-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tracking metabolic changes in skeletal muscle and bone using animal models of diabetes mellitus (DM) provides important insights for the management of DM complications. In this study, we aimed to establish a method for monitoring changes in body composition characteristics, such as fat mass, skeletal muscle mass (lean mass), bone mineral density, and bone mineral content, during DM progression using a dual-energy X-ray absorptiometry (DXA) system in a mouse model of streptozotocin (STZ)-induced type 1 DM. In the DM model, STZ administration resulted in increased blood glucose levels, increased water and food intake, and decreased body weight. Serum insulin levels were significantly decreased on day 30 of STZ administration. The DXA analysis revealed significant and persistent decreases in fat mass, lower limb skeletal muscle mass, and bone mineral content in DM mice. We measured tibialis anterior (TA) muscle weight and performed a quantitative analysis of tibial microstructure by micro-computed tomography imaging in DM mice. The TA muscle weight of DM mice was significantly lower than that of control mice. In addition, the trabecular bone volume fraction, trabecular thickness, trabecular number, and cortical thickness were significantly decreased in DM mice. Pearson's product-moment correlation coefficient analysis showed a high correlation between the DXA-measured and actual body composition. In conclusion, longitudinal measurement of body composition changes using a DXA system may be useful for monitoring abnormalities in muscle and bone metabolism in animal models of metabolic diseases such as DM mice.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Momo Goto
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Yoshiharu Tsuru
- Primetech Life Science Laboratory, Primetech Corporation, 1-3-25 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
8
|
Pasetto L, Grassano M, Pozzi S, Luotti S, Sammali E, Migazzi A, Basso M, Spagnolli G, Biasini E, Micotti E, Cerovic M, Carli M, Forloni G, De Marco G, Manera U, Moglia C, Mora G, Traynor BJ, Chiò A, Calvo A, Bonetto V. Defective cyclophilin A induces TDP-43 proteinopathy: implications for amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2021; 144:3710-3726. [PMID: 34972208 PMCID: PMC8719849 DOI: 10.1093/brain/awab333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Silvia Pozzi
- CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Eliana Sammali
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Manuela Basso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Edoardo Micotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Milica Cerovic
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Mirjana Carli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Gabriele Mora
- Department of Neurorehabilitation, ICS Maugeri IRCCS, Milano, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| |
Collapse
|
9
|
Roesl C, Evans ER, Dissanayake KN, Boczonadi V, Jones RA, Jordan GR, Ledahawsky L, Allen GCC, Scott M, Thomson A, Wishart TM, Hughes DI, Mead RJ, Shone CC, Slater CR, Gillingwater TH, Skehel PA, Ribchester RR. Confocal Endomicroscopy of Neuromuscular Junctions Stained with Physiologically Inert Protein Fragments of Tetanus Toxin. Biomolecules 2021; 11:1499. [PMID: 34680132 PMCID: PMC8534034 DOI: 10.3390/biom11101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.
Collapse
Affiliation(s)
- Cornelia Roesl
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Elizabeth R. Evans
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Kosala N. Dissanayake
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Veronika Boczonadi
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Ross A. Jones
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Graeme R. Jordan
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Leire Ledahawsky
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Guy C. C. Allen
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Molly Scott
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Alanna Thomson
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Thomas M. Wishart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - David I. Hughes
- Spinal Cord Research Group, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Glossop Road, Sheffield S10 2HQ, UK;
| | - Clifford C. Shone
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Clarke R. Slater
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Thomas H. Gillingwater
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Paul A. Skehel
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Richard R. Ribchester
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| |
Collapse
|
10
|
Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, Xiao WF, Li YS. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle 2021; 12:538-554. [PMID: 33951340 PMCID: PMC8200444 DOI: 10.1002/jcsm.12709] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is a progressive and widespread skeletal muscle disease that is related to an increased possibility of adverse consequences such as falls, fractures, physical disabilities and death, and its risk increases with age. With the deepening of the understanding of sarcopenia, the disease has become a major clinical disease of the elderly and a key challenge of healthy ageing. However, the exact molecular mechanism of this disease is still unclear, and the selection of treatment strategies and the evaluation of its effect are not the same. Most importantly, the early symptoms of this disease are not obvious and are easy to ignore. In addition, the clinical manifestations of each patient are not exactly the same, which makes it difficult to effectively study the progression of sarcopenia. Therefore, it is necessary to develop and use animal models to understand the pathophysiology of sarcopenia and develop therapeutic strategies. This paper reviews the mouse models that can be used in the study of sarcopenia, including ageing models, genetically engineered models, hindlimb suspension models, chemical induction models, denervation models, and immobilization models; analyses their advantages and disadvantages and application scope; and finally summarizes the evaluation of sarcopenia in mouse models.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Deng-Jie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Xiu-Hua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Baek S, Kim J, Moon BS, Park SM, Jung DE, Kang SY, Lee SJ, Oh SJ, Kwon SH, Nam MH, Kim HO, Yoon HJ, Kim BS, Lee KP. Camphene Attenuates Skeletal Muscle Atrophy by Regulating Oxidative Stress and Lipid Metabolism in Rats. Nutrients 2020; 12:nu12123731. [PMID: 33287349 PMCID: PMC7761825 DOI: 10.3390/nu12123731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia- or cachexia-related muscle atrophy is due to imbalanced energy metabolism and oxidative stress-induced muscle dysfunction. Monoterpenes play biological and pharmacological reactive oxygen species (ROS) scavenging roles. Hence, we explored the effects of camphene, a bicyclic monoterpene, on skeletal muscle atrophy in vitro and in vivo. We treated L6 myoblast cells with camphene and then examined the ROS-related oxidative stress using Mito TrackerTM Red FM and anti-8-oxoguanine antibody staining. To investigate lipid metabolism, we performed real-time polymerase chain reactions, holotomographic microscopy, and respiratory gas analysis. Rat muscle atrophy in in vivo models was observed using 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography and immunocytochemistry. Camphene reversed the aberrant cell size and muscle morphology of L6 myoblasts under starvation and in in vivo models. Camphene also attenuated E3 ubiquitin ligase muscle RING-finger protein-1, mitochondrial fission, and 8-oxoguanine nuclear expression in starved myotubes and hydrogen peroxide (H2O2)-treated cells. Moreover, camphene significantly regulated lipid metabolism in H2O2-treated cells and in vivo models. These findings suggest that camphene may potentially affect skeletal muscle atrophy by regulating oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
- Suji Baek
- Research and Development Center, UMUST R&D Corporation, Seoul 05029, Korea;
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Korea;
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
- Correspondence: (B.S.M.); (B.S.K.); (K.P.L.)
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
| | - Da Eun Jung
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.J.L.); (S.J.O.)
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.J.L.); (S.J.O.)
| | - Seung Hae Kwon
- Seoul Center, Korean Basic Science Institute, Seoul 02841, Korea; (S.H.K.); (M.H.N.)
| | - Myung Hee Nam
- Seoul Center, Korean Basic Science Institute, Seoul 02841, Korea; (S.H.K.); (M.H.N.)
| | - Hye Ok Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
| | - Hai Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (S.M.P.); (D.E.J.); (S.Y.K.); (H.O.K.); (H.J.Y.)
- Correspondence: (B.S.M.); (B.S.K.); (K.P.L.)
| | - Kang Pa Lee
- Research and Development Center, UMUST R&D Corporation, Seoul 05029, Korea;
- Correspondence: (B.S.M.); (B.S.K.); (K.P.L.)
| |
Collapse
|
12
|
Cole CL, Beck CA, Robinson D, Ye J, Mills B, Gerber SA, Schwarz EM, Linehan D. Dual Energy X-ray Absorptiometry (DEXA) as a longitudinal outcome measure of cancer-related muscle wasting in mice. PLoS One 2020; 15:e0230695. [PMID: 32559188 PMCID: PMC7304564 DOI: 10.1371/journal.pone.0230695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is notorious for its associated skeletal muscle wasting (SMW) and mortality. Currently, the relationships between PDAC, SMW, and survival are poorly understood. Thus, there is great need for a faithful small animal model with quantitative longitudinal outcome measures that recapitulate clinical PDAC, to define SMW onset and assess progression. Therefore, we aimed to validate dual energy X-ray absorptiometry (DEXA) as a longitudinal measure of lean mass, and demonstrate its utility to quantify SMW in the KCKO murine model of PDAC. Methods In vivo body composition of: 1) untreated mice at 5, 8, 12, 18, and 22 weeks of age (n = 4) and 2) a cohort of mice with (n = 5) and without PDAC (n = 5), was determined via DEXA and lean mass of the lower hind limbs was predicted via a region of interest analysis by two-independent observers. Total body weight was determined. Tibialis anterior (TA) muscles were weighed and processed for histomorphometry immediately post-mortem. Statistical differences between groups were assessed using ANOVA and Student’s t-tests. Linear regression models and correlation analysis were used to measure the association between TA and DEXA mass, and reproducibility of DEXA was quantified via the intraclass correlation coefficient (ICC). Results Lean mass in growing untreated mice determined by DEXA correlated with TA mass (r2 = 0.94; p <0.0001) and body weight (r2 = 0.89; p <0.0001). DEXA measurements were highly reproducible between observers (ICC = 0.95; 95% CI: 0.89–0.98). DEXA and TA mass also correlated in the PDAC cohort (r2 = 0.76; p <0.0001). Significant SMW in tumor-bearing mice was detected within 38 days of implantation, by DEXA, TA mass, and histomorphometry. Conclusions DEXA is a longitudinal outcome measure of lean mass in mice. The KCKO syngeneic model is a bona fide model of PDAC associated SMW that can be quantified with longitudinal DEXA.
Collapse
Affiliation(s)
- Calvin L. Cole
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Cancer Control, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | | | - Deja Robinson
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bradley Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Edward M. Schwarz
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
13
|
van der Heyden B, van de Worp WRPH, van Helvoort A, Theys J, Schols AMWJ, Langen RCJ, Verhaegen F. Automated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning network. J Appl Physiol (1985) 2019; 128:42-49. [PMID: 31697595 DOI: 10.1152/japplphysiol.00465.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The loss of skeletal muscle mass is recognized as a complication of several chronic diseases and is associated with increased mortality and a decreased quality of life. Relevant and reliable animal models in which muscle wasting can be monitored noninvasively over time are instrumental to investigate and develop new therapies. In this work, we developed a fully automatic deep learning algorithm for segmentation of micro cone beam computed tomography images of the lower limb muscle complex in mice and subsequent muscle mass calculation. A deep learning algorithm was trained on manually segmented data from 32 mice. Muscle wet mass measurements were obtained from 47 mice and served as a data set for model validation and reverse model validation. The automatic algorithm performance was ~150 times faster than manual segmentation. Reverse validation of the algorithm showed high quantitative metrics (i.e., a Dice similarity coefficient of 0.93, a Hausdorff distance of 0.4 mm, and a center of mass displacement of 0.1 mm), substantiating the robustness and accuracy of the model. A high correlation (R2 = 0.92) was obtained between the computed tomography-derived muscle mass measurements and the muscle wet masses. Longitudinal follow-up revealed time-dependent changes in muscle mass that separated control from lung tumor-bearing mice, which was confirmed as cachexia. In conclusion, this deep learning model for automated assessment of the lower limb muscle complex provides highly accurate noninvasive longitudinal evaluation of skeletal muscle mass. Furthermore, it facilitates the workflow and increases the amount of data derived from mouse studies while reducing the animal numbers.NEW & NOTEWORTHY This deep learning application enables highly accurate noninvasive longitudinal evaluation of skeletal muscle mass changes in mice with minimal requirement for operator involvement in the data analysis. It provides a unique opportunity to increase and analyze the amount of data derived from animal studies automatically while reducing animal numbers and analytical workload.
Collapse
Affiliation(s)
- Brent van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Health and Science Department, Danone Nutricia Research, Utrecht, The Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers (Basel) 2019; 11:cancers11101541. [PMID: 31614775 PMCID: PMC6826436 DOI: 10.3390/cancers11101541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Physical activity improves the prognosis of cancer patients, partly by contrasting the associated muscle wasting (cachexia), through still unknown mechanisms. We asked whether aerobic exercise causes secretion by skeletal muscles of proteins (myokines) that may contrast cachexia. Media conditioned by peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)-expressing myotubes, reproducing some metabolic adaptations of aerobic exercise, as increased mitochondrial biogenesis and oxidative phosphorylation, restrained constitutively active Forkhead box-containing subfamily O3 (caFoxO3)-induced proteolysis. Microarray analysis identified amphiregulin (AREG), natriuretic peptide precursor B (NppB), musclin and fibroblast growth factor 18 (FGF18) as myokines highly induced by PGC1α. Notably, only musclin tended to be low in muscle of mice with a rare human renal carcinoma; it was reduced in plasma and in muscles of C26-bearing mice and in atrophying myotubes, where PGC1α expression is impaired. Therefore, we electroporated the Tibialis Anterior (TA) of C26-bearing mice with musclin or (its receptor) natriuretic peptide receptor 3 (Npr3)-encoding plasmids and found a preserved fiber area, as a result of restrained proteolysis. Musclin knockout (KO) mice lose more muscle tissue during growth of two distinct cachexia-causing tumors. Running protected C26-bearing mice from cachexia, not changing tumor growth, and rescued the C26-induced downregulation of musclin in muscles and plasma. Musclin expression did not change in overloaded plantaris of mice, recapitulating partially muscle adaptations to anaerobic exercise. Musclin might, therefore, be beneficial to cancer patients who cannot exercise and are at risk of cachexia and may help to explain how aerobic exercise alleviates cancer-induced muscle wasting.
Collapse
|
15
|
Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep 2019; 9:3920. [PMID: 30850672 PMCID: PMC6408440 DOI: 10.1038/s41598-019-40553-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/18/2019] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease involving motor neuron death, paralysis and, ultimately, respiratory failure. Motor neuron dysfunction leads to target skeletal muscle atrophy involving dysregulation of downstream cell survival, growth and metabolic signaling. Decreased Akt activity is linked to muscle atrophy in ALS and is associated with increased atrophy gene expression. Unfortunately, the regulating mechanism of Akt activity in atrophic muscle remains unclear. Recent research indicates a role of carboxyl-terminal modulator protein (CTMP) in Akt-signaling related neurologic dysfunction and skeletal muscle metabolism. CTMP is known to bind and reduce Akt phosphorylation and activation. We hypothesized that CTMP expression might progressively increase in ALS skeletal muscle as the disease progresses, downregulating Akt activity. We found that CTMP protein expression significantly increased in hindlimb skeletal muscle in the mSOD1G93A mouse model of ALS in late stages of the disease (P < 0.05), which negatively correlated with Akt phosphorylation over this period (R2 = -0.77). Co-immunoprecipitation of Akt revealed CTMP binding in pre-symptomatic and end-stage skeletal muscle, suggesting a possible direct role in reduced Akt signaling during disease progression. Inflammatory TNFα and downstream cellular degradation process markers for autophagy, lysosome production, and atrophy significantly increased in a pattern corresponding to increased CTMP expression and reduced Akt phosphorylation. In an in vitro model of skeletal muscle atrophy, differentiated C2C12 cells exhibited reduced Akt activity and decreased FOXO1 phosphorylation, a process known to promote transcription of atrophy genes in skeletal muscle. These results corresponded with increased Atrogin-1 expression compared to healthy control cells (P < 0.05). Transfection with CTMP siRNA significantly increased Akt phosphorylation in atrophic C2C12 cells, corresponding to significantly decreased CTMP expression. In conclusion, this is the first study to provide evidence for a link between elevated CTMP expression, downregulated Akt phosphorylation and muscle atrophy in ALS and clearly demonstrates a direct influence of CTMP on Akt phosphorylation in an in vitro muscle cell atrophy model.
Collapse
|